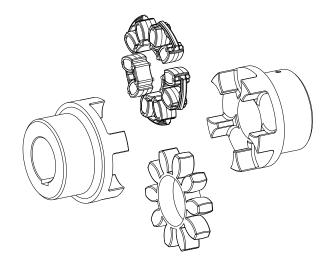
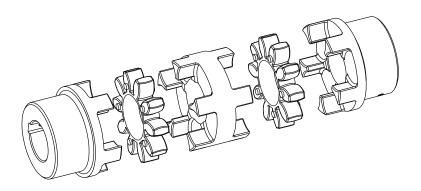


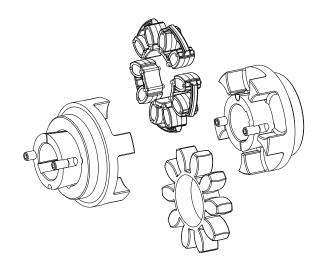
KTR-N 40210 FR Page: 1 de 22


Edition: 22

ROTEX[®]


Accouplements à doigts, élastiques en torsion

N° 001 - Accouplement d'arbres N° 018 - Accouplement à double cardan DKM avec bague taperlock, autres combinaisons


Conformes à la Directive Européenne 2014/34/UE applicable aux accouplements alésés, non alésés ou préalésés

N° 001 - Accouplement d'arbres

N° 018 - Accouplement à double cardan DKM

Version avec bague taperlock

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 2 de 22 Edition: 22

Le **ROTEX**® est un accouplement élastique à doigts. Il permet de compenser des désalignements d'arbre causés par des défauts de tolérance, des dilatations thermiques, etc.

Table des matières

1	Données techniques	3
2	Conseils	į
	 2.1 Remarques générales 2.2 Consignes de sécurité 2.3 Recommandations sécuritaires 2.4 Mises en garde générales 2.5 Sélection de l'accouplement 2.6 Conformité à la Directive Machines CE 2006/42/CE 	6
3	Stockage, transport et emballage	7
	3.1 Stockage3.2 Transport et emballage	- -
4	Montage	8
	 4.1 Composants de l'accouplement 4.2 Conseils pour l'alésage 4.3 Montage des moyeux 4.4 Montage de la bague taperlock 4.5 Désalignements - Réglages de l'accouplement 	8 10 11 12
5	Mise en service	14
6	Problèmes de fonctionnement, causes et solutions	15
7	Traitement résiduel	17
8	Maintenance et entretien	17
9	Maintenance et service après-vente	17
10	Annexe A	
	Conseils et recommandations pour applications en milieu explosible	18
	10.1 Applications en milieu explosible	18
	10.2 Contrôles des accouplements pour applications en milieu explosible 10.3 Valeurs d'usure de référence	19 20
	10.4 Matières préconisées pour les accouplements utilisés en milieu explosible	2
	10.5 Caractéristiques de l'accouplement pour applications en milieu explosible 10.6 Déclaration UE de conformité	2′ 22

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 3 de 22 Edition: 22

Données techniques

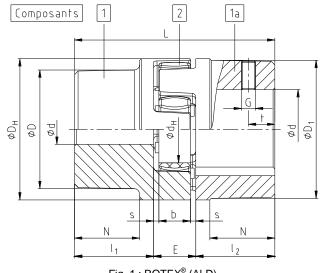


Fig. 1: ROTEX® (Al-D)

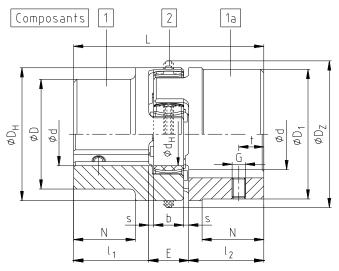


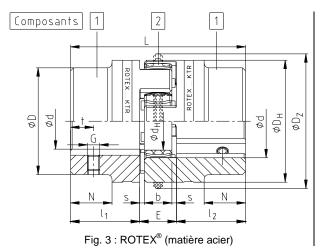
Fig. 2: ROTEX® (matière EN-GJL-250/EN-GJS-400-15)

Tableau 1 : Matière Al-D

		Annea		sant 2)					Dimer	nsions [[mm] ³⁾					
Taille	Com-	Coup	ole nominal	[Nm]	Alésage fini 2)					C	Sénéra	lités				
Tallie	posant	92 ShA	98 ShA	64 ShD	d (min-max)	Ш	l ₁ ; l ₂	Ш	b	s	D _H	Dz	D _{Z1} ⁴⁾	d_{H}	D; D₁	N
14	1a	7,5	12,5	-	6 - 16	35	11	13	10	1,5	30	-	-	10	30	-
19	1	10	17		6 - 19	66	25	16	12	2,0	41	_		18	32	20
19	1a	10	17	-	19 - 24	0	23	10	12	2,0	41	_	_	10	41	20
24	1	35	60		9 - 24	78	30	18	14	2,0	56	_		27	40	24
24	1a	33	60	-	22 - 28	70	30	10	14	2,0	56	-	-	21	56	24
28	1	95	160		10 - 28	90	35	20	15	2,5	67	_	_	30	48	28
20	1a	95	160	-	28 - 38	90	33	20	15	2,3	67	_	-	30	67	20

Tableau 2: Matière EN-GJL-250 (GG 25)/EN-GJS-400-15 (GGG 40)

			u ¹⁾ (compo						Dimer	sions [mm] ³⁾					
Taille	Com-	Coup	le nominal	[Nm]	Alésage fini 2)					G	énéral	ités				
ramo	posant	92 ShA	98 ShA	64 ShD	d (min-max)	L	l ₁ ; l ₂	Е	b	S	D_H	Dz	D _{Z1} ⁴⁾	d_H	D; D₁	N
					Fonte g	rise E	N-GJL	-250								
	1				12 - 40	114	45								66	37
38	1a	190	325	405	38 - 48			24	18	3,0	80	-	-	38	78	
	1b				12 - 48	164	64 70									62
	1				14 - 45	126	50								75	40
42	1a	265	450	560	42 - 55			26	20	3,0	95	-	-	46	94	
	1b				14 - 55	176	75									65
	1				15 - 52	140	56								85	45
48	1a	310	525	655	48 - 62			28	21	3,5	105	-	-	51	104	
	1b				15 - 62	188	80								_	69
55	1	410	685	825	20 - 60	160	65	30	22	4,0	120	-	_	60	98	52
	1a				55 - 74										118	
65	1	625	940	1175	22 - 70	185	75	35	26	4,5	135	-	-	68	115	61
75	1	1280	1920	2400	30 - 80	210	85	40	30	5,0	160	-	-	80	135	69
90	1	2400	3600	4500	40 - 97	245	100	45	34	5,5	200	218	230	100	160	81
				1	Fonte sphér											
100	1	3300	4950	6185	50 - 115	270	110	50	38	6,0	225	246	260	113	180	89
110	1	4800	7200	9000	60 - 125	295	120	55	42	6,5	255	276	290	127	200	96
125	1	6650	10000	12500	60 - 145	340	140	60	46	7,0	290	315	330	147	230	112
140	1	8550	12800	16000	60 - 160	375	155	65	50	7,5	320	345	360	165	255	124
160	1	12800	19200	24000	80 - 185	425	175	75	57	9,0	370	400	415	190	290	140
180	1	18650	28000	35000	85 - 200	475	185	85	64	10,5	420	450	465	220	325	156


- Couple maximal de l'accouplement $T_{Kmax.}$ = couple nominal de l'accouplement $T_{K nominal}$ x 2 Alésage H7, rainure DIN 6885/1 [JS9], vis de fixation
- Cotes G et t: Tableau 6; vis de fixation face à la rainure pour l'alu-D, sur la rainure pour la fonte EN-GJL-250/EN-GJS-400-15
- D_{Z1} = diamètre intérieur du carter

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 4 de 22 Edition: 22

Données techniques

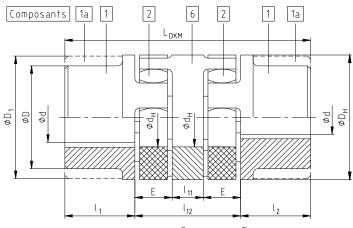


Fig. 4 : $ROTEX^{8}$, type DKM $^{5)}$

Tableau 3 : Matière acier

			u ¹⁾ (compo			1			Dimer	nsions						
Taille	Com-	Coup	le nominal	[NM]	Alésage fini 2)		1			(Sénéra	ites		1	1	
	posant	92 ShA	98 S A	64 ShD	d (min-max)	L	l ₁ ; l ₂	Е	b	s	D _H	D_{Z}	D _{Z1} 4)	d_{H}	D	Ν
14	1a 1b	7,5	12,5	16	0 - 16	35 50	11 18,5	13	10	1,5	30	-	-	10	30	-
19	1a 1b	10	17	21	0 - 25	66 90	25	16	12	2,0	40	_	-	18	40	-
24	1a	35	60	75	0 - 35	78	30	18	14	2,0	55	_	-	27	55	-
28	1b 1a 1b	95	160	200	0 - 40	118 90	50 35 60	20	15	2,5	65	-	-	30	65	-
38	1	190	325	405	0 - 48	140	45	24	18	3,0	80	_	_	38	70	27
	1b 1					164 126	70 50								80 85	28
42	1b	265	450	560	0 - 55	176	75	26	20	3,0	95	-	-	46	95	-
48	1 1b	310	525	655	0 - 62	140 188	56 80	28	21	3,5	105	-	-	51	95 105	32
55	1 1b	410	685	825	0 - 75	160 210	65 90	30	22	4,0	120	-	-	60	110 120	37
65	1 1b	625	940	1175	0 - 80	185 235	75 100	35	26	4,5	135	-	-	68	115	47
75	1	1280	1920	2400	0 - 95	210	85	40	30	5,0	160	_	_	80	135	53
, 3	1b	1200	1320	2700	0 - 95	260	110	70	30	5,0	100	_		00	160	-
90	1 1b	2400	3600	4500	0 - 110	245 295	100 125	45	34	5,5	200	218	230	100	160 200	62

Tableau 4 : type DKM ⁵⁾

	Anneau 1) (c	omposant 2)					Dimensior	ns [mm] ³⁾				
Taille		minal [Nm]	Cotes				(Généralité	S			
	92 ShA	98 ShA	d, D, D ₁	L_{DKM}	l ₁ ; l ₂	Е	b	S	D_H	d_H	I ₁₁	l ₁₂
19	10	17		92	25	16	12	2,0	40	18	10	42
24	35	60		112	30	18	14	2,0	55	27	16	52
28	95	160	à 3	128	35	20	15	2,5	65	30	18	58
38	190	325	~	158	45	24	18	3,0	80	38	20	68
42	265	450	an	174	50	26	20	3,0	95	46	22	74
48	310	525	tableau	192	56	28	21	3,5	105	51	24	80
55	410	685		218	65	30	22	4,0	120	60	28	88
65	625	940	, oir	252	75	35	26	4,5	135	68	32	102
75	1280	1920]	286	85	40	30	5,0	160	80	36	116
90	2400	3600		330	100	45	34	5,5	200	100	40	130

- Couple maximal de l'accouplement $T_{Kmax.}$ = couple nominal de l'accouplement $T_{K\,nominal}\,x\,2$
- Alésage H7, rainure DIN 6885/1 [JS9], vis de fixation
- Cotes G et t: Tableau 6; vis de fixation face à la rainure pour l'alu-D, sur la rainure pour la fonte EN-GJL-250/EN-GJS-400-15
- 4) D_{Z1} = diamètre intérieur du carter
 5) Type DKM possible sans éléments DZ.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 5 de 22 Edition: 22

Données techniques



Fig. 5: ROTEX® avec bague taperlock

Versions d'accouplement:

Intérieur : vis côté doigts TB1 TB2

Possibilité de combinaisons des versions TB1 et TB2.

Extérieur : vis sur face extérieure

Tableau 5: Version avec bague taperlock

			composant 2)					Dime	ensions							Bague
Taille	Com-	Couple no	ominal [Nm]	Alésage fini					G	énéral	ités					taper-
ramo	posant	92 ShA	98 ShA	d (min- max)	L	l ₁ ; l ₂	Е	b	s	D_H	Dz	D _{Z1} ²⁾	d_{H}	D_1	N	lock
24	1a	35	60	10 - 25	64	23	18	14	2,0	55	-	-	27	-	-	1008
28	1a	95	160	10 - 25	66	23	20	15	2,5	65	1	-	30	-	-	1108
38	1a	190	325	10 - 25	70	23	24	18	3,0	80	-	-	38	78	15	1108
42	1a	265	450	14 - 25	78	26	26	20	3,0	95	1	-	46	94	16	1610
48	1a	310	525	14 - 40	106	39	28	21	3,5	105	1	-	51	104	28	1615
55	1a	410	685	14 - 50	96	33	30	22	4,0	120	1	-	60	118	20	2012
65	1	625	940	14 - 50	101	33	35	26	4,5	135	1	-	68	115	5	2012
75	1	1280	1920	16 - 60	144	52	40	30	5,0	160			80	158	36	2517
73	ı	1200	1920	25 - 75	144	52	4	3	3,0	100	-	-	80	136	30	3020 ³⁾
90	1	2400	3600	25 - 75	149	52	45	34	5,5	200	218	230	100	160	14	3020
100	1	3300	4950	35 - 90	230	90	50	38	6,0	225	246	260	113	180	69	3535
125	1	6650	10000	55 - 110	288	114	60	46	7,0	290	315	330	147	230	86	4545

- Couple maximal de l'accouplement $T_{K nominal}$ x 2
- D_{Z1} = diamètre intérieur du carter
- Disponible pour version TB2 uniquement

En milieu explosible il est interdit d'utiliser des accouplements ROTEX[®] associés à des composants générateurs de chaleur, d'étincelles et de charges statiques (réalisations avec tambour ou disque de frein, limiteurs de couple à friction, ventilateur). Un contrôle complémentaire s'impose.

2 Conseils

2.1 Remarques générales

Lire attentivement la notice d'utilisation/de montage avant de mettre l'accouplement en service! Faites attention aux consignes de sécurité!

L'accouplement ROTEX® certifié antidéflagrant conformément à la Directive Européenne 94/9/CE est tout à fait recommandé en milieu explosible. Respecter les consignes de sécurité de l'annexe A.

La notice d'utilisation/de montage fait partie du produit. La conserver soigneusement à proximité de l'accouplement. Les droits d'auteur de la notice d'utilisation/de montage sont la propriété de KTR.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 6 de 22

Edition: 22

2 Conseils

2.2 Consignes de sécurité

Risque d'explosion dans les millieux

Instructions visant à éviter le risque de brûlure ou d'accident mortel dû à une explosion.

explosibles

Risque de dommage corporel

Risque de dommage matériel

Instructions visant à éviter le risque d'accident corporel ou d'accident corporel grave ayant entraîné la mort.

_

Instructions visant à éviter le risque de dommage

matériel.

Remarques générales

Instructions visant à éviter le événement l'aléatoire non

souhaité.

Risque de brûlure

Instructions visant à éviter le contact avec des surfaces

brûlantes.

2.3 Recommandations sécuritaires

Pendant le montage, l'utilisation ou la maintenance de l'accouplement, s'assurer que la chaîne de transmission est sécurisée contre des démarrages non souhaités. Les pièces en rotation peuvent provoquer des blessures graves. Lire et suivre impérativement les conseils de sécurité ci-dessous.

- Toutes les personnes amenées à travailler sur ou autour de l'accouplement doivent en priorité «penser sécurité».
- Débrancher le système d'entraînement avant de travailler sur l'accouplement.
- Sécuriser l'entraînement contre des démarrages involontaires, par exemple par des panneaux de mise en garde ou en enlevant les fusibles de l'alimentation électrique.
- Ne pas mettre la main près de l'accouplement tant que celui-ci est encore en service.
- Protéger l'accouplement contre des contacts involontaires. Mettre en place des carters de protection adaptés.

2.4 Mises en garde générales

Conditions préalables au montage, à l'utilisation et l'entretien de l'accouplement :

- Avoir lu et compris la notice d'utilisation/de montage
- · Avoir les compétences requises
- Avoir l'autorisation de l'entreprise

Le respect des propriétés techniques de l'accouplement (chapitre 1) est la garantie de son bon fonctionnement. Toute modification arbitraire est interdite. Dans le cas contraire, la responsabilité de KTR ne serait pas en cause. KTR se réserve le droit d'effectuer des modifications techniques en vue de nouveaux développements. Le **ROTEX**® présenté ici est l'accouplement tel qu'il était au moment de l'élaboration de la présente notice d'utilisation/de montage.

Droit de protection	des Dess	iné par :	06/09/2017 Pz/Bru	Remplace :	KTR-N du 02/01/2017
documents selon ISO	16016. Cont	ôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 7 de 22 Edition: 22

2 Conseils

2.5 Sélection de l'accouplement

Pour assurer un bon fonctionnement de l'accouplement, il faut que sa sélection soit conforme à la norme DIN 740/2 valable pour l'application (voir catalogue Transmissions "ROTEX[®]").

La vérification du type d'accouplement sélectionné s'impose si les conditions d'exploitation sont modifiées (puissance, vitesse, machine).

Bien noter que les données techniques relatives au couple se rapportent uniquement à l'anneau élastique. La transmission du couple arbre / moyeu par pression est à valider par le client et est sous sa responsabilité.

Pour s'assurer une sélection fiable dans le cas d'entraînement soumis à des vibrations périodiques, il faut effectuer des calculs de vibrations de torsion (moteurs diesel, pompes à piston, compresseurs à piston). Sur demande, KTR effectue la sélection et le contrôle vibratoire.

2.6 Conformité à la Directive Machines CE 2006/42/CE

Les accouplements fournis par KTR sont des composants et non des machines ou des machines incomplètes au sens de la Directive Machines CE 2006/42/CE. En conséquence, aucune déclaration d'incorporation ne sera émise par KTR. Vous trouverez plus d'informations sur la mise en sécurité de l'installation, la mise en service et l'exploitation en toute sécurité dans les notices et instructions de service et montage.

3 Stockage, transport et emballage

3.1 Stockage

Les moyeux livrés sont prétraités et peuvent se stocker de 6 à 9 mois dans un endroit couvert et sec. Les anneaux (élastomères) conservent leur intégrité cinq ans à température normale.

Le lieu de stockage ne doit pas générer d'ozone : éviter les lumières fluorescentes, les lampes à mercure, les installations à haute tension.

Eviter les entrepôts humides.

Eviter la formation de condensation. Le taux d'hygrométrie doit se situer idéalement endessous de 65 %.

3.2 Transport et emballage

Pour éviter tout type de blessure ou d'accident, utiliser les équipements de levage appropriés.

Les accouplements sont emballés selon la taille, le nombre et le mode de transport. A moins d'une réserve particulière, l'emballage se conforme au règlement appliqué par KTR.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace :	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 8 de 22

Edition: 22

4 Montage

Les accouplements sont livrés en pièces détachées. Avant le montage il faut impérativement vérifier l'intégralité des pièces.

4.1 Composants de l'accouplement

Composants de ROTEX® N° 001 – Accouplement d'arbre

Compo- sant	Quantité	Désignation
1	2	Moyeu
2	1	Anneau ¹⁾
3	5 ²⁾	Eléments DZ 1)
4	2	Vis filetée DIN EN ISO 4029

1) Au choix : anneau ou éléments DZ

2) Pour la taille 180, quantité = 6

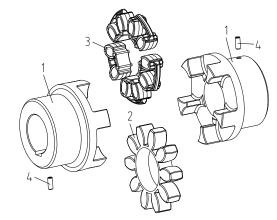


Fig. 6: ROTEX®

Composants de ROTEX® DKM 1)

Compo- sant	Quantité	Désignation		
1	2	Moyeu		
2	2	Anneau		
3	1	Pièce intermédiaire DKM		
4	2	Vis filetée DIN EN ISO 4029		

1) Type DKM possible sans éléments DZ.

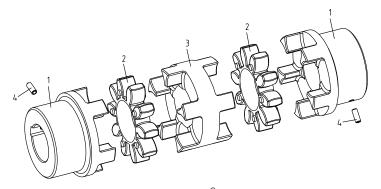


Fig. 7: ROTEX® DKM

Composants de ROTEX® version avec bague taperlock

Compo- sant	Quantité	Désignation
TB1/TB2	2	Moyeu - bague taperlock
1	2	Bague taperlock
2	1	Anneau ¹⁾
3	5 ²⁾	Eléments DZ 1)
4	4	Vis filetée DIN EN ISO 4029

1) Au choix : anneau ou éléments DZ

2) Pour la taille 180, quantité = 6

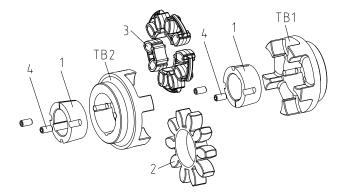


Fig. 8 : ROTEX® version avec bague taperlock

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 9 de 22

Edition: 22

4 Montage

4.1 Composants de l'accouplement

Caractéristiques des anneaux standards

Dureté anneau	92 Sh	ore A	95/98 S	Shore A	64 Sh	ore D
(Shore)	T-PUR [®] (orange)	PUR (jaune)	T-PUR [®] (violet)	PUR (rouge)	T-PUR [®] (vert pâle)	PUR (blanc ¹⁾)
Repère (couleur)		*		*		

¹⁾ Blanc avec marquage des dents en vert

4.2 Conseils pour l'alésage

Les diamètres d'alésage maximum autorisés d (tableaux 1 à 5 - chapitre 1) ne doivent pas être dépassés. En cas de non-respect de ces valeurs, l'accouplement risque de casser et éclater en morceaux, avec le danger que cela représente.

- Si le client réalise l'alésage du moyeu, il faut qu'il respecte précisément concentricité et perpendicularité (fig. 9).
- Respecter impérativement les valeurs Ø d_{max}.
- Installer avec soin les moyeux pour l'usinage.
- Prévoir une vis de pression DIN EN ISO 4029 ou une rondelle en bout d'arbre pour le blocage axial du moyeu sur l'arbre.

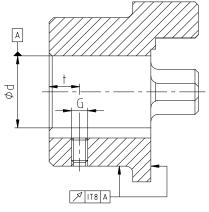


Fig. 9 : Concentricité et perpendicularité

Les modifications apportées postérieurement par le client sur les composants préalésés ou non alésés et sur les pièces de rechange sont de sa seule responsabilité. KTR décline toute responsabilité.

KTR fournit seulement sur demande les accouplements et autres composants non alésés ou préalésés. Ces composants sont marqués du symbole ①.

Tableau 6: Vis de pression DIN EN ISO 4029

Taille	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
Cote G	M4	M5	M5	M8	M8	M8	M8	M10	M10	M10	M12	M12	M16	M16	M20	M20	M20
Cote t	5	10	10	15	15	20	20	20	20	25	30	30	35	40	45	50	50
Couple de serrage T _A [Nm]	1,5	2	2	10	10	10	10	17	17	17	40	40	80	80	140	140	140

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

ROTEX[®] Notice d'utilisation/de montage

KTR-N 40210 FR Page: 10 de 22

Edition: 22

4 Montage

4.2 Conseils pour l'alésage

Tableau 7 : Tolérances de montage selon DIN 748/1

Alésage [mm]		Tolérance de l'arbre	Taláranas da l'alásago		
Au-dessus de	jusqu'à	roierance de raibre	Tolérance de l'alésage		
	50	k6	H7		
50		m6	(Standard KTR)		

La tolérance de la rainure de clavette est ISO JS9 (standard KTR) en cas de conditions de travail normales ou ISO P9 en cas de conditions de travail compliquées (inversion du sens de rotation, charges par à-coups, etc.). Il est cependant nécessaire d'adapter la clavette à la rainure. L'immobilisation axiale est obtenue par la vis pression sur la clavette sauf pour les moyeux AI-D (aluminium), à l'opposé de la clavette.

La transmission du couple arbre / moyeu par pression est à valider par le client et est sous sa responsabilité.

4.3 Montage des moyeux

Nous recommandons de vérifier les cotes exactes des alésages, des arbres, des rainures et des clavettes avant le montage.

Un léger échauffement des moyeux (environ 80 °C) facilite le montage du moyeu sur l'arbre.

Attention au risque d'inflammation dans les milieux explosibles!

Ne pas se brûler au contact des moyeux. Porter des gants de sécurité.

Lors du montage, respecter la cote E (tableaux 1 à 5) pour que l'anneau reste libre axialement quand il est en service.

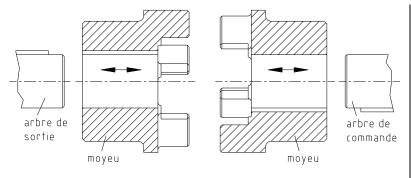
En cas de non-respect, l'accouplement peut se détériorer.

- Monter les moyeux sur les arbres moteurs et récepteurs (fig. 10).
- Placer l'anneau ou les éléments DZ entre les doigts du moyeu côté moteur ou récepteur.
- Déplacer les ensembles axialement jusqu'à atteindre la cote E (Fig. 11).
- Si les ensembles sont déjà fixés, déplacer les moyeux sur les arbres pour régler la cote E.
- Serrer les moyeux avec une vis filetée DIN EN ISO 4029 et rondelle-frein (couple de serrage voir tableau 6).

Il est possible que l'un ou les deux bouts d'arbre rentrent dans l'anneau si le diamètre de l'arbre avec sa clavette montée est plus grand que la cote d_H de l'anneau (tableaux 1 à 5).

En milieu explosible, les vis de fixation des moyeux et des brides doivent être collées avec de la colle Loctite (force moyenne).

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace :	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	



KTR-N 40210 FR Page: 11 de 22

Edition: 22

4 Montage

4.3 Montage des moyeux

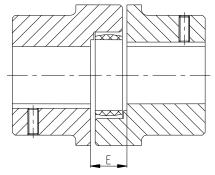


Fig. 11: Montage de l'accouplement

4.4 Montage de la bague taperlock

Montage de la bague taperlock :

Nettoyer les surfaces de contact des bagues taperlock ainsi que celles de l'arbre et du moyeu, enduire légèrement d'un lubrifiant fluide (Ballistol Universal Oil ou Klüber Quietsch-Ex).

Les bagues taperlock ont des perçages lisses, cylindriques, parallèles à l'axe, qui pour moitié sont dans la bague, l'autre moitié étant taraudée et se trouvant dans le moyeu de l'accouplement.

Monter accouplement et bague taperlock l'un dans l'autre, faire coïncider les perçages et serrer légèrement les vis. Monter l'accouplement et la bague taperlock sur l'arbre et serrer les vis jusqu'au couple du tableau 8.

Au vissage, le moyeu se plaque contre la bague conique, celle-ci vient s'emboîter contre l'arbre. Enfoncer ensuite la bague taperlock dans le perçage conique avec un petit marteau. Ensuite, serrer de nouveau les vis jusqu'au couple du tableau 8. A faire au moins une fois.

Contrôler le serrage des vis après avoir fait fonctionner sous charge pendant un temps limité.

La fixation axiale du moyeu et de la bague taperlock nécessite un montage dans les règles.

Pour un montage en milieu explosible, sécuriser les vis de pression en les collant avec de la colle Loctite (force moyenne).

L'utilisation de bagues taperlock sans clavette n'est pas autorisée en milieu explosible.

Ne pas utiliser d'huiles ou de graisses à base de Disulfide de Molybdène, d'additifs à base de Teflon ou de Silicone ou de graisses solides qui réduisent considérablement les coefficients de friction.

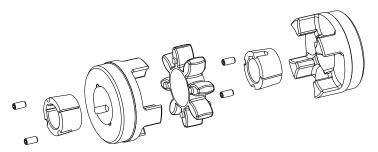


Fig. 12: ROTEX® avec bague taperlock

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 12 de 22

Edition: 22

4 Montage

4.4 Montage de la bague taperlock

Démontage de la bague taperlock :

La bague taperlock se libère en dévissant les vis. Se servir ensuite de l'une d'elles comme vis d'extraction dans le filetage de la bague, visser et tirer.

Le moyeu ainsi libéré peut, avec la bague taperlock, se retirer de l'arbre manuellement.

Tableau 8:

Poguo		Taille des vis					
Bague taperlock	G [pouce]	L [pouce]	SW [mm]	T _A [Nm]	Quantité		
1008	1/4	1/2	3	5,7	2		
1108	1/4	1/2	3	5,7	2		
1610	3/8	5/8	5	20	2		
1615	3/8	5/8	5	20	2		
2012	7/16	7/8	6	31	2		
2517	1/2	7/8	6	49	2		
3020	5/8	1 1/4	8	92	2		
3535	1/2	1 1/2	10	115	3		
4545	3/4	1 3/4	12	170	3		

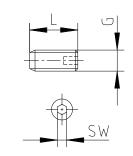


Fig. 13 : Vis de fixation sans tête

4.5 Désalignements - Réglages de l'accouplement

Les valeurs de désalignement des tableaux 9 à 11 apportent une sécurité pour compenser des influences extérieures telles que dilatation, affaissement de fondation.

L'alignement des bouts d'arbres doit être très précis pour prolonger la durée de vie de l'accouplement et éviter les risques d'explosion.

Respecter impérativement les valeurs de désalignement préconisées (tableau 9 à 11). Si ces valeurs sont dépassées, l'accouplement risque d'être endommagé.

La durée de vie de l'accouplement est directement liée à l'alignement de l'accouplement. Pour une application en milieu explosible - groupe IIC / classe II 2GD c IIC T X - les valeurs autorisées dans les tableaux 9 à 11 sont à diviser par deux.

Noter:

- Les valeurs de désalignement des tableaux 9 à 11 sont des valeurs maximales qui ne doivent pas se produire simultanément. S'il y a en même temps désalignement radial et désalignement angulaire, les valeurs utilisables doivent être réduites (fig. 15).
- Contrôler à l'aide d'un comparateur ou d'une jauge si les valeurs de désalignement des tableaux 9 à 11 sont respectées.

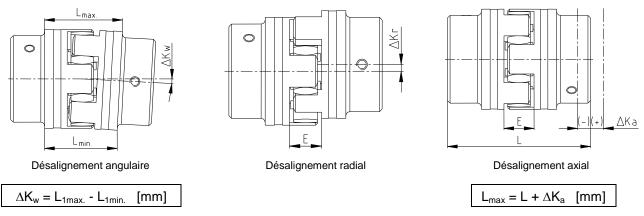


Fig. 14: Désalignements

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

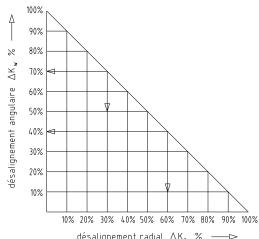
$\textbf{ROTEX}^{\mathbb{B}}$ Notice d'utilisation/de montage

KTR-N 40210 FR Page: 13 de 22

Edition: 22

Montage

Désalignements - Réglages de l'accouplement 4.5


Exemples de combinaisons de désalignement de la fig. 15 :

Exemple 1: $\Delta K_r = 30 \%$ $\Delta K_w = 70 \%$

Exemple 2: $\Delta K_r = 60 \%$ $\Delta K_w = 40 \%$

 $\Delta K_{total} = \Delta K_r + \Delta K_w \le 100 \%$

Fig. 15: Combinaisons de désalignement

désalignement radial ΔK_r % \longrightarrow

Tableau 9 : Valeurs de désalignement avec 92 et 95/98 Shore A

Taill	е	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
Désalignemen	t axial max.	-0,5	-0,5	-0,5	-0,7	-0,7	-1,0	-1,0	-1,0	-1,0	-1,5	-1,5	-1,5	-2,0	-2,0	-2,0	-2,5	-3,0
∆Ka [n	nm]	+1,0	+1,2	+1,4	+1,5	+1,8	+2,0	+2,1	+2,2	+2,6	+3,0	+3,4	+3,8	+4,2	+4,6	+5,0	+5,7	+6,4
Désalignemen t radial max.	1500 tr/min	0,17	0,20	0,22	0,25	0,28	0,32	0,36	0,38	0,42	0,48	0,50	0,52	0,55	0,60	0,62	0,64	0,68
DKr [mm] à	3000 tr/min	0,11	0,13	0,15	0,17	0,19	0,21	0,25	0,26	0,28	0,32	0,34	0,36	0,38	-	-	-	-
∆Kw [de Désalignemer		1,2	1,2	0,9	0,9	1,0	1,0	1,1	1,1	1,2	1,2	1,2	1,2	1,3	1,3	1,2	1,2	1,2
max. à 150 ∆Kw [r		0,67	0,82	0,85	1,05	1,35	1,70	2,00	2,30	2,70	3,30	4,30	4,80	5,60	6,50	6,60	7,60	9,00
∆Kw [de Désalignemer		1,1	1,1	0,8	0,8	0,9	0,9	1,0	1,0	1,1	1,1	1,1	1,1	1,2	ı	ı	-	-
max. à 300 ∆Kw [r		0,60	0,70	0,75	0,85	1,10	1,40	1,60	2,00	2,30	2,90	3,80	4,20	5,00	-	-	-	-

Tableau 10 : Valeurs de désalignement avec 64 Shore D

Taill	е	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
Désalignemen	t axial max.	-0,5	-0,5	-0,5	-0,7	-0,7	-1,0	-1,0	-1,0	-1,0	-1,5	-1,5	-1,5	-2,0	-2,0	-2,0	-2,5	-3,0
∆Ka [n	nm]	+1,0	+1,2	+1,4	+1,5	+1,8	+2,0	+2,1	+2,2	+2,6	+3,0	+3,4	+3,8	+4,2	+4,6	+5,0	+5,7	+6,4
Désalignemen t radial max.	1500 tr/min	0,11	0,13	0,15	0,18	0,21	0,23	0,25	0,27	0,30	0,34	0,36	0,37	0,40	0,43	0,45	0,46	0,49
DKr [mm] à	3000 tr/min	0,08	0,09	0,10	0,13	0,15	0,16	0,18	0,19	0,21	0,24	0,25	0,26	0,28	-	-	-	-
∆Kw [de Désalignemer		1,1	1,1	0,8	0,8	0,9	0,9	1,0	1,0	1,1	1,1	1,1	1,1	1,2	1,2	1,1	1,1	1,1
max. à 150 ∆Kw [r		0,57	0,77	0,77	0,90	1,25	1,40	1,80	2,00	2,50	3,00	3,80	4,30	5,30	6,00	6,10	7,10	8,00
∆Kw [de Désalignemer		1,0	1,0	0,7	0,7	0,8	0,8	0,9	0,9	1,0	1,0	1,0	1,0	1,1	-	1	-	1
max. à 300 ∆Kw [r		0,52	0,70	0,67	0,80	1,00	1,30	1,60	1,80	2,20	2,70	3,50	4,00	4,90	-	-	-	-

Tableau 11 : Valeurs de désalignement pour version DKM

Taille		19	24	28	38	42	48	55	65	75	90
Décolignement aviel may	D		+1,4	+1,5	+1,8	+2,0	+2,1	+2,2	+2,6	+3,0	+3,4
Désalignement axial max	c. Ana [mm]	-1,0	-1,0	-1,4	-1,4	-2,0	-2,0	-2,0	-2,0	-3,0	-3,0
Désalignement radial max.	1500 tr/min	0,45	0,59	0,66	0,77	0,84	0,91	1,01	1,17	1,33	1,48
∆Kr [mm] à	3000 tr/min	0,40	0,53	0,60	0,70	0,75	0,82	0,81	1,05	1,19	1,33
Désalignement angulaire max.	1500 tr/min	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
∆Kw [degré] à	3000 tr/min	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 14 de 22 Edition: 22

Mise en service

Avant l'utilisation de l'accouplement vérifier le serrage des goupilles dans les moyeux et de l'ensemble des vis ainsi que l'alignement et la cote E et corriger si nécessaire.

5

En milieu explosible, les vis de fixation des moyeux et des brides doivent être collées avec de la colle Loctite (force moyenne).

A la fin, il faut protéger l'accouplement contre tout contact inopiné.

Le carter doit être conducteur électrique et limiter les différences de potentiel. Les lanternes en aluminium avec un taux de magnésium < 7,5 % et les anneaux amortisseurs en perbunan (NBR) sont acceptés comme pièces de liaison entre pompe et moteur électrique. Le carter ne peut être enlevé qu'à l'arrêt.

En service, bien repérer :

- les variations de bruit
- l'apparition de vibrations éventuelles

Si les accouplements sont utilisés dans des zones à particules volatiles, il est impératif <u>d'éviter toute accumulation de particules</u> entre carter de protection et accouplement. Les accouplements ne doivent pas travailler dans la poussière.

Pour des carters ouverts sur le dessus, éviter les alliages légers avec les accouplements (appareils du groupe II), *privilégier l'acier inox*.

Si les accouplements sont utilisés dans le secteur minier (appareils du groupe I M2), le carter doit non seulement être en métal lourd mais aussi supporter des charges mécaniques supérieures à celles imposées au groupe II.

Il faut respecter les valeurs d'espacement minimales ci-dessous pour la cote "Sr" relative à la sécurité des machines tournantes.

Pour éviter tout risque d'explosion, les perçages du carter ne doivent pas dépasser les dimensions suivantes :

Ouvertures	Capotage [mm]					
Ouvertures	Dessus	Côté	Espacement "Sr"			
Circulaire - diamètre maxi	4	8	≥ 10			
Carré - côté maxi	4	8	≥ 10			
Formes droites ou courbes - côté maxi	non autorisé	8	≥ 20			

Le poste de commande est à débrancher dès l'apparition d'anomalies. Se reporter au tableau "pannes" pour le diagnostic. Les pannes possibles sont affichées à titre indicatif. L'examen de la machine dans son ensemble s'impose pour pouvoir détecter le problème.

Traitement de surface de l'accouplement

En milieu explosible, si les accouplements utilisés sont traités en surface (peinture, laquage), faire attention à l'effet électrostatique. Il n'y a pas de risque pour les traitements ≤ 200 µm. Pour le groupe d'explosion IIC, tout traitement de surface > 200 µm est interdit.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace :	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 15 de 22 Edition: 22

6 Problèmes de fonctionnement, causes et solutions

Parallèlement au respect de la notice d'utilisation, les défauts cités ci-dessous doivent être évités car compromettant le bon fonctionnement du **ROTEX**[®].

Les défauts cités sont là pour faciliter le diagnostic. Un contrôle plus large des pièces environnantes est à prévoir pour trouver l'origine de la panne.

Si l'accouplement n'est pas utilisé dans des conditions normales, il peut devenir une source d'étincelle.

Fabricant et utilisateur doivent respecter soigneusement les consignes de la Directive Européenne 2014/34/UE.

Défauts habituels dus à une utilisation non conforme :

- Certaines informations importantes n'ont pas été fournies lors de la sélection de l'accouplement.
- Il n'a pas été tenu compte du couple transmissible par la liaison arbre/moyeu.
- · Composants endommagés durant le transport.
- Dépassement de la température autorisée lors du montage à chaud du moyeu.
- Les tolérances des éléments à monter ne sont pas compatibles.
- Les couples de serrage sont sous/surévalués.
- Les composants ont été inversés/mal montés.
- Absence d'anneau ou d'éléments DZ ou bien montage d'anneau ou d'éléments DZ non conformes.
- Les pièces utilisées ne sont pas des pièces KTR.
- Utilisation d'anneau/d'éléments DZ usés ou stockés depuis longtemps.
- ②: L'accouplement/le carter utilisé n'est pas adapté au milieu explosible et donc non conforme à la Directive Européenne 2014/34/UE.
- La maintenance n'est pas effectuée selon la cadence requise.

Pannes	Causes	Dangers en milieu explosible	Solutions
	Défauts d'alignement	Augmentation de la température de l'anneau avec risque d'inflammation en cas de surchauffe	Arrêter la machine Réviser l'alignement/le réglage (vis de l'assise non serrées, fixation du moteur défectueuse, effets de la dilatation sur la machine, modification de l'encombrement E de l'accouplement) Usure > Contrôles
Modification des bruits de fonctionnement et/ou apparition de vibrations	Usure de l'anneau, brève transmission du couple par contact métallique	Risque d'inflammation par formation d'étincelles	Arrêter la machine Démonter l'accouplement et dégager les parties de l'anneau Vérifier les éléments de l'accouplement et les changer si besoin Insérer l'anneau, monter les composants de l'accouplement Vérifier l'alignement et corriger éventuellement
	Desserrer les vis servant au maintien axial	Risque d'inflammation par surchauffe et formation d'étincelles	Arrêter la machine Vérifier l'alignement de l'accouplement Serrer les vis de fixation des moyeux et protéger contre l'autodesserage Usure > Contrôles
Punturo dos deisto	Usure de l'anneau, transmission du couple par contact métallique	Risque d'inflammation par	Arrêter la machine Remplacer l'accouplement complet Vérifier l'alignement Arrêter la machine
Rupture des doigts	Rupture des doigts par surcharge ou excès de secousses	formation d'étincelles	 Arrêter la machine Remplacer l'accouplement complet Vérifier l'alignement Rechercher le motif de surcharge

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 16 de 22 Edition: 22

6 Problèmes de fonctionnement, causes et solutions

Pannes	Causes	Dangers en milieu explosible	Solutions
Rupture des doigts	Paramètres d'utilisation ne sont pas en rapport avec la capacité de l'accouplement Défaut de fonctionnement de la	Risque d'inflammation par formation d'étincelles	 Arrêter la machine Vérifier les paramètres de fonctionnement et sélectionner une autre taille d'accouplement (attention à l'encombrement) Monter un accouplement de taille différente Vérifier l'alignement Arrêter la machine Remplacer l'accouplement complet Vérifier l'alignement
	machine Défauts d'alignement	Augmentation de la température de l'anneau avec risque d'inflammation en cas de surchauffe	Former le personnel utilisateur Arrêter la machine Réviser l'alignement/le réglage (vis de l'assise non serrées, fixation du moteur défectueuse, effets de la dilatation sur la machine, modification de l'encombrement E de l'accouplement) Usure > Contrôles
Usure prématurée de l'anneau	Contact avec des fluides ou des lubrifiants agressifs, effet de l'ozone, température ambiante trop importante/trop faible modifiant les caractéristiques physiques de l'anneau		 Arrêter la machine Démonter l'accouplement et dégager les parties de l'anneau Vérifier les éléments de l'accouplement et les changer si besoin Insérer l'anneau, monter les composants de l'accouplement Vérifier l'alignement et corriger éventuellement S'assurer que l'anneau ne subit pas d'autres modifications physiques
	Température ambiante trop élevée pour l'anneau. Maxima autorisées exemple : T-PUR [®] T4 = - 50 °C/ + 120°C	Danger d'inflammation par étincelle au contact des doigts	Arrêter la machine Démonter l'accouplement et dégager les parties de l'anneau Vérifier les éléments de l'accouplement et les changer si besoin Insérer l'anneau, monter les composants de l'accouplement Vérifier l'alignement et corriger éventuellement Vérifier et régler la température ambiante ou de contact après contrôle (utiliser éventuellement d'autres anneaux)
Usure précoce de l'anneau (matière moins dure à l'intérieur des doigts)	Entraînement avec vibrations		 Arrêter la machine Démonter l'accouplement et dégager les parties de l'anneau Vérifier les éléments de l'accouplement et les changer si besoin Insérer l'anneau, monter les composants de l'accouplement Vérifier l'alignement et corriger éventuellement Rechercher la cause des vibrations (utilisation d'anneaux de dureté plus ou moins faible)

L'utilisation d'un anneau/d'éléments DZ usé (10.3) avec contact avec les parties métalliques de l'accouplement est contraire aux dispositions antidéflagrantes de la Directive Européenne 2014/34/UE.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 17 de 22

Edition: 22

7 Traitement résiduel

L'emballage et le produit résiduel doivent être rebutés selon les directives légales en vigueur pour la sauvegarde de l'environnement.

Métal

Les composants à rebuter doivent être préalablement nettoyés.

• Matières plastiques

Les composants plastiques doivent être récupérés par un service de recyclage.

8 Maintenance et entretien

Le **ROTEX**[®] est un accouplement nécessitant peu d'entretien. Nous recommandons **au moins** un contrôle visuel de l'accouplement **par an**. Bien vérifier l'état de l'anneau.

- Les roulements côté moteur et récepteur se tassant avec l'augmentation du temps de sollicitation, l'alignement de l'accouplement est à vérifier et l'accouplement à remplacer si nécessaire.
- Vérifier si les composants de l'accouplement sont en bon état.
- Faire un contrôle visuel des vis de fixation.

Les couples de serrage des vis sont à vérifier régulièrement après la mise en service de l'accouplement.

Voir chapitre 10.2 Contrôles des accouplements pour applications en milieu explosible.

9 Maintenance et service après-vente

Pour optimiser l'utilisation de l'accouplement, le mieux est de prévoir un stock de composants.

Vous trouverez les adresses des distributeurs KTR sur le site internet de KTR : www.ktr.com.

KTR ne garantit pas les pièces d'un autre fournisseur et décline toute responsabilité en cas de dommage.

ROTEX[®] Notice d'utilisation/de montage

KTR-N 40210 FR Page: 18 de 22 Edition: 22

10 Annexe A

Conseils et recommandations pour applications en milieu explosible

	Туре	Type de moyeu	Taille	Matière
		1.0, 1.1, 1.3	38 - 90	Fonte grise (GJL)
001	Standard	1a (gros moyeu)	100 - 180	Fonte sphéroïdale (GJS)
		Bague de serrage 4.1, 4.2, 4.3	14 - 180	
	Douille de serrage	Bague taperlock	24 - 125	
019	Moyeu à frette de serrage	6.0, 6.5	19 - 90	- Acier
	Moyeu fendu	2.0, 2.1, 2.3	19 - 180	Aciei
018	DKM	1.0, 1.1 Entretoise pour longueur de 10 à 40 mm	19 - 90	

 $ROTEX^{\$}$ DKM et $ROTEX^{\$}$ ZS-DKM seulement avec entretoise acier ou aluminium H, limite élastique $R_{p0,2} \ge 250 \text{ N/mm}^2$.

Moyeux, moyeux fendus ou autre variante sans rainure de clavette : à utiliser <u>uniquement</u> en catégorie 3.

Conditions d'utilisation en milieu explosible

L'accouplement **ROTEX**® est recommandé pour les applications conformes à la Directive Européenne 2014/34/UE.

1. Industrie (hors mine)

- Appareil du groupe II des catégories 2 et 3 (accouplement non autorisé en catégorie 1)
- Matière du groupe G (gaz, vapeurs) : zone 1 et 2 (accouplement non autorisé en zone 0)
- Matière du groupe D (poussières): zone 21 et 22 (accouplement non autorisé en zone 20)
- Explosion du groupe IIC (IIA et IIB inclus dans IIC)

Classe de température :

T-PUR [®]			PUR		
Classe de température	Temp. ambiante/ Temp. de fonctionnement T _a	Température de surface maxi	Classe de température	Temp. ambiante/ Temp. de fonctionnement T _a	Température de surface maxi
T3, T2,T1	- 50 °C à + 120 °C ¹⁾	+ 140 °C ²⁾	T4, T3, T2, T1	- 30 °C à + 90 °C ¹⁾	+ 110 °C ²⁾
T4	- 50 °C à + 115 °C	+ 135 °C	T5	- 30 °C à + 80 °C	+ 100 °C
T5	- 50 °C à + 80 °C	+ 100 °C	T6	- 30 °C à + 65 °C	+ 85 °C
T6	- 50 °C à + 65 °C	+ 85 °C			

Explication:

Les températures de surface maximales s'obtiennent à partir des seuils maxi autorisés pour la température ambiante ou la température de fonctionnement T_a et de l'augmentation maximale de température ΔT de 20 K.

- 1) Température ambiante et température de fonctionnement T_a sont plafonnées par la température d'utilisation permanente des anneaux : + 90 °C (pour T-PUR® : + 120 °C).
- 2) Le seuil maximum de température de surface de 110 °C (pour T-PUR® : + 140 °C) est autorisé également en milieu explosible.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 19 de 22

Edition: 22

10 Annexe A

Conseils et recommandations pour applications en milieu explosible

2. Mine

Appareils du groupe I de la catégorie M2 (l'accouplement n'est pas autorisé en catégorie M1). Température ambiante autorisée: entre - 30 °C et + 90 °C (pour T-PUR[®] : - 50 °C à + 120 °C).

10.2 Contrôles des accouplements pour applications en milieu explosible

Groupe d'explosion	Grille des contrôles		
3G 3D	Pour les accouplements des catégories 3G ou 3D, suivre la notice de montage et d'entretien valable pour une utilisation normale. En utilisation normale, avec analyse du risque d'étincelle systématique, les accouplements ne sont pas inflammables. Il s'agit simplement de vérifier l'augmentation de la température due à l'échauffement et au type de l'accouplement : ROTEX® : $\Delta T = 20 \text{ K}$		
II 2GD c IIB T4, T5,T6	Le jeu de torsion et l'usure de l'anneau/des éléments DZ sont à contrôler après 3.000 heures d'utilisation, au plus tard dans les 6 mois qui suivent. Si le premier contrôle ne révèle aucun signe d'usure particulier, l'anneau élastique/les éléments DZ devront être révisés régulièrement au rythme de 6.000 heures de service, de 18 mois au plus tard sinon. Si le premier contrôle révèle une usure exceptionnelle justifiant le renouvellement de l'anneau élastique/des éléments DZ, se reporter au tableau "pannes" pour en vérifier la cause. Réajuster la périodicité des contrôles en fonction des nouveaux paramètres.		
II 2GD c IIC T4, T5,T6	Le jeu de torsion et l'usure de l'anneau/des éléments DZ sont à contrôler après 2.000 heures d'utilisation, au plus tard dans les 3 mois qui suivent. Si le premier contrôle ne révèle aucun signe d'usure particulier, l'anneau élastique/les éléments DZ devront être révisés régulièrement au rythme de 4.000 heures de service, de 12 mois au plus tard sinon. Si le premier contrôle révèle une usure exceptionnelle justifiant le renouvellement de l'anneau élastique/des éléments DZ, se reporter au tableau "pannes" pour en vérifier la cause. Réajuster la périodicité des contrôles en fonction des nouveaux paramètres.		

Moyeux, moyeux fendus ou autre variante sans rainure de clavette : à utiliser <u>uniquement</u> en catégorie 3.

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace:	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 20 de 22

Edition: 22

10 Annexe A

 $\langle \epsilon_x \rangle$

Conseils et recommandations pour applications en milieu explosible

Accouplement ROTEX®

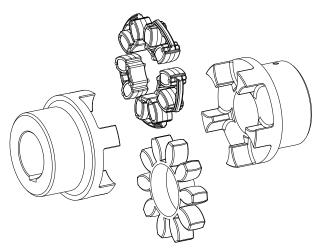


Fig. 17.2 : ROTEX® Anneau

Fig. 17.1 : ROTEX® Eléments DZ

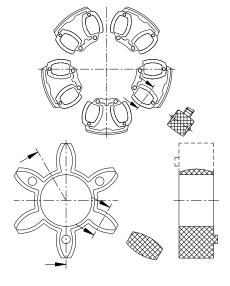


Fig. 16: ROTEX® Accouplement

Le jeu entre les doigts de l'accouplement et l'anneau élastique/les élémentz DZ se vérifie avec une jauge. Au seuil d'usure maximal, changer l'anneau/les élémentz DZ sans tenir compte de la grille de contrôle.

10.3 Valeurs d'usure de référence

Pour un jeu > X mm, changer l'anneau/les éléments DZ.

Le programme de maintenance est à mener indépendamment des conditions d'utilisation.

L'alignement des bouts d'arbres doit être très précis pour prolonger la durée de vie de l'accouplement et éviter les risques d'explosion.

Respecter impérativement les valeurs de désalignement préconisées (tableau 9 à 11). Si ces valeurs sont dépassées, l'accouplement risque d'être endommagé.

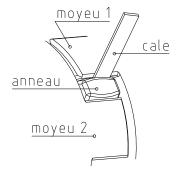


Fig. 18 : Contrôle du seuil d'usure

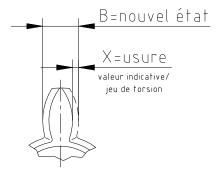


Fig. 19 : Usure de l'anneau

Droit de protection des	Dessiné par :	06/09/2017 Pz/Bru	Remplace :	KTR-N du 02/01/2017
documents selon ISO 16016.	Contrôlé par :	06/09/2017 Shg	Remplacé par :	

KTR-N 40210 FR Page: 21 de 22

Edition: 22

Annexe A 10

Conseils et recommandations pour applications en milieu explosible

10.3 Valeurs d'usure de référence

Tableau 12:

Taille	Seuils d'usure	Taille	Seuils d'usure
raille	X _{max.} [mm]	Talle	X _{max.} [mm]
9	2	65	5
14	2	75	6
19	3	90	8
24	3	100	9
28	3	110	9
38	3	125	10
42	4	140	12
48	4	160	14
55	5	180	14

Matières préconisées pour les accouplements utilisés en milieu explosible

Les groupes d'explosion IIA, IIB et IIC autorisent les associations de matière suivantes :

EN-GJL-250

(GG 25)

EN-GJS-400-15

(GGG 40)

Acier Inox

Les Aluminium H avec un taux de Magnésium jusqu'à 7,5 % et une limite élastique R_{p0.2} ≥ 250 N/mm² sont compatibles avec les milieux explosibles.

Les Aluminium D sont exclus des milieux explosibles.

Caractéristiques de l'accouplement pour applications en milieu explosible

Les accouplements utilisés en milieu explosible reçoivent le marquage complet sur un composant au moins. Les autres composants reçoivent le symbole 🖨 sur le diamètre extérieur ou la face frontale du moyeu. Pas de marquage sur l'anneau ou sur l'élément DZ. Seul le symbole le figure jusqu'à la taille 19 pour des raisons de place.

Marquage réduit :

(Standard)

II 2GD c IIC T X/I M2 c X

Marquage complet:

(Uniquement T-PUR®)

II 2G c IIC T6, T5, T4 resp. T3 - 50 °C \leq T_a \leq + 65 °C, + 80 °C,

+ 115 °C resp. + 120 °C II 2D c T 140 °C/I M2 c - 50 °C \leq T_a \leq + 120 °C

Marquage complet: (Uniquement PUR)

II 2G c IIC T6, T5 resp. T4 - 30 °C \leq T_a \leq + 65 °C, + 80 °C resp.

II 2D c T 110 °C/I M2 c - 30 °C \leq T_a \leq + 90 °C

Le groupe d'explosion IIC dans le marquage englobe les groupes d'explosion IIA et IIB.

Le symbole 🗟 ajouté au marquage 🛈 signifie que l'accouplement est fourni par KTR non alésé ou préalésé.

Droit de protection o	des Dessiné par	: 06/09/2017 Pz/Bru	Remplace :	KTR-N du 02/01/2017
documents selon ISO	16016. Contrôlé par	: 06/09/2017 Shg	Remplacé pa	ar:

KTR-N 40210 FR Page: 22 de 22 Edition:

22

10 Annexe A

Conseils et recommandations pour applications en milieu explosible

10.6 Déclaration UE de conformité

Déclaration UE de conformité

Selon les termes de la Directive Européenne 2014/34/UE du 26/02/2014 et les dispositions légales en vigueur nécessaires à son application

Le fabricant KTR Systems GmbH, D-48432 Rheine déclare que :

les accouplements elastiques ROTEX®

décrits dans cette notice technique et destinés au domaine antidéflagrant sont des équipements conformes à l'article 2, 1. de la Directive Européenne 2014/34/UE et aux normes de sécurité et de santé décrites en annexe II de ladite Directive.

L'accouplement mentionné ici est conforme aux normes / directives suivantes :

DIN EN 1127-1 DIN EN 1127-2 DIN EN 13463-1 DIN EN 13463-5 CLC/TR 50404

L'accouplement ROTEX[®] est conforme aux normes de la Directive 2014/34/UE. Une ou plusieurs normes inscrites dans le Certificat de Premier Echantillon IBExU13ATEXB016 X ont été partiellement revues et remplacées.

Le fabricant KTR Systems GmbH déclare que le produit précité est en conformité avec ces nouvelles dispositions également.

Conformément à l'article 13 (1) b ii) de la Directive Européenne 2014/34/UE, la documentation technique est déposée auprès de l'institut suivant :

IBExU

Institut für Sicherheitstechnik GmbH

Fuchsmühlenweg 7

09599 Freiberg

Rheine, 02/01/2017 Place Date

Reinhard Wibbeling Responsable R & D

Michael Brüning Chef de Produit