Modélisation du doigt

Vous devez préalablement à la modélisation compléter une FPM.

 

  • Utiliser l’esquisse parametrage pour la création du doigt.
  • Nommer le fichier doigt 602-10-XXX.
  • Modéliser le doigt (fig 1) en le créant dans l’assemblage partie fixe (fig 2).

 

Le jeu créé dans la semelle fixe doit être visible (fig 3). Celui sur le diamètre D p6 ne l’est pas (fig 4).

fig 1 : Le doigt modélisé et une proposition pour sa réalisation (autre modélisation acceptée).
fig 2 : Le doigt dans la partie fixe.
fig 3 : Le jeu logement / tête
fig 4 : Pas de représentation de jeu sur l'ajustement.
eDrawings - [doigt 620-10-XXX] Internet Explorer 5.5 (ou une version ultérieure) est requise pour visualiser ce fichier eDrawings. Généré avec eDrawings 2005 sp3. OzsgSFNGIFYxMC4wMiAKSQwAAABCAFtmgr3NzEy9NYLku/9RqDvl+Tc9whnlO1p42u18d3wUx7Juj1bSKqEISEJZKK3i5jSanQERTM4gMEkgCQSSAAUUkEHC5Ggbk5MBg8k2Bhu0Q2sHY4wJNslkMDkegsk28VXvMmJsP59373t/3N+7vysfaXqne6qrvqr6uqZ7Oe/fRQjVeaiVSm2KUpWq1Ll365XTYUR2Tn4xIj/VLPrbzz/fW/hiKZ0WOSFdvNcE/lJv3rz509DItLzCwfml2TmR+XmDirKKKtIKyHwDlAPe3g8qenlXG/NdxdOPM18XD0w/27fj8u4xtrkbvvY9v6SN0yD1rKDvRo5LaVHppHXLGFGYmzckRUkhmVpPU0HigKkTFBunH5UrTtDxjwdvX/4Z0UEJcwfBb7+hVBJc2AT5YPvTygRPRyOyMKsgp+cb9CYNIcWoBPeCrOLikUUjRhb3cHcmbUaZqlQa1UaDXqlX6wxKjV5j0GqSR4/ILy3IYYypf+nR5qQolfrkrKKcLPuTGq3aoIEhKrVKpdUodclDirJGDxicU1iSUzSgnEmBMVq9Rq3UGOF5gwoGqUx/GlNhH6M06FR6pU6nVhlUBqNBqfrTmErQQ2nQa4waoxZUMJqURj3Rw5ScX+6YRK1XGY0GrcmkAn3VoAvpqQANTXqd0mTUKo0anVKlVWvtj1QyyuSR5YwqlSit1KpUGqUWLNSpiFBDcn4FCCVKgcEGgwa6TSqdwag36UhXhb1LBffJH6PSpNWZtBr7U5VkQvgxGFWgrFpj0Ku1xuSRFYwhVaUCA1UatUGl0YEqJgeM+ZX2mYiSMJFGayLKwC/pIPPYzVIZDEaQYzKqtPYnKh2I6fVKo1ZvAuNAfb1Rp00eWemYSE0sMph0RLW385SXM/pUvUan0yk1SlDDSPQW+8AFqlSDHjQAQ8CfOpBZ31kJMIH1Oo1BqVbplEadykiEqtRgcPm/ebCiAmaEyNKo1Fot9JoA63p8wQR1qhpEqVR6rU6tVOu09k4itbL8n2esrPh3D1a+wxkQUeuNoJJDmzywH/qUGgMgajBpdBAnGqPYV0EmVBl0epXJqAT4VGqDWuyrJCaatGqjHnqVBvCNzuiYL6+i/J+fqyAyIVzVOo3GaNLDtEalfT4d9NmtN+hIHGt1GpVWqzOaDG+FVpb/84QO6//pwUpGnarTQCRpTEY9eBcCwOSYsSALkigvK5+J7pBVcgtapZHphSMKI4tH3hqcl5t3yxKtSHAtHpqTU6JM8LJfi3JG5+WUFXclfOf7luHE608HDzI9q4ECgU8SXMg4ZYJcnW2nu54X+vtEUVEJXkNH5OdEFmQVDc8pKn5LPgkuWeV5xcqxzjabTd4UZRdllUVqsiNHjsivyM8rzGGKy8it3BGFJeKtBk4oxQn18EPZecBhYAPJPEhYpTLBubgkq4hzV4wCSrPLVf0/y1X+Ra4iQZ6fVZFTlKKCu6WDlG9tG7t8JIDgTRYChvxR2HtV0t4373oTXHPz8vNzsnteGPAm6kGUXV8yXv0P4x3SNO96q6urJdLeqacA9TQO0BPc3i4xxF8UWZzQe87IGVEJ7nmF8EDh4BzlWJkgCLF/X+X+/ecEVWpq2t//95eVLa14KCwH2WmDRmRXKBPc7RcCWLePnBAa9e//KhTp//k5FPafBPeinNycohwwL8F5ZFbJ0HeLnBx6/rTsKcgte0grKKqbtwcxTg2/PwQl4rVuCpy/mOOvbo3Dl8MT8P7KKr6sKhl/uVGBtzV7YG08IRonoHgcy37K99yRglehRPx7sxjryYNhuAWOxYfuf1Z/HzWPMT84HYTn5cXgVhNW1cvZ0eyBOfBFAPYPaYqzji7mxXkLF3O0fKwP3nwjCnv0nFavw8HKKjpkoyceeykSL+s8kJfoQD/a5YY7BEfiD8+H8aIOh+9/Rtfcc8UuSyLw2FcrrRId6PmdXHHuqAj8i/uqraIOg44urh8//tVKs6iDZ89p9fInnA+r1+GzzgPpZefG4SUegQzBylJWhQc9DmQIVrciavCFIY0ZgtXI1uU4NCCYIVidwjV4hX9jhmCl+qgYo55NGIKVeJ9g1W5pId68LoQhWIlyCFaj6vKw+vdQhmAlzkuwutAsB89LCmcIVqIOBKtHI7LwD6oIhmAl0YE+MLE/fvZHBEOwEnUgWGV+3RezZZEMwUqiA/3Avy++sCKSIViJOhCsxPEEK1EHgpUon2Al6kCwovQQXG7aRspAVVBa45SGSf4K33jvWK+mHlFuEa5hziFOwagJFSoLd4mUR7vHeMY1SPBJ9EsOSG2kDJh8JEIY43yVFb71EfK7/sp+Gq4UOsfcZGuWvLG1iT/JNtjOCf073GZ7DbpoS2l/iHzmyOeSPrtsAx79wM4NV3JkfNvIlbZTB+tYkMcReae3jrfFMduJXI7Ijc1qaXu56ysilyVyqz52tt2wbWAzB11kidzOCRPrShevZUv77GKJXBTZxnxv0hdsu8iVLJHbPWGihfSf2TqeJXLHfuzMkufjs1qyRO5/FztQN29PwhcG+N02Tok72hJx6rFJ/LnlyXj6NwrcZfR6/odsDb44MQnPX2Dmd/4Wj5mSBLzt8x/4X1J1eAlKxtHf11m/XBON893jcWncGV7Yp8MRickYoauaW8AFKuCC4Us4Hr0KxS8mxOK54Vf5Z8AFfSMScOGYKn4g8Ig78Egt98DqB1wQC1zwHuSYKD/q+zqzD3DQcuAgz5Yx1tXqQPzjs6Z2OduBI1btjMXcb5/x4hj3ljFmUed5C8z0r8AXacAXGz5cxT+d4od7FUfb9RTn3cE9MN95HoD9gDu6Q05KcKAl+tO3LV54kluU3XY9cEpL4JRhPabVY9V59HpatKtgTBW9f7YcG/dG2DE0ANcYgWsWQw5LMKQl9tIPv5ThUhxux/8x8FRz4KnPzoZJbaQlONPzgePkwHEz/1hpvbgf4StPw+w+kthLSzCnZwNXDgOuJH4R7e0G+b+Ker0zvirM7kdR5ow/VpolNtKiPsvPhtES/GnRrkXACwcOvNz5edcwu3wJzvXyiR8lGNKizsRHIlYEQwkONNWacI2Pk3MDV1+vhn6BjUOaRIQ39fRx8ZS5U3Lk4dTAM6JpdHxcqkKVrElrEBUZFhoc1CjA39vHzcVHo0vTp2iT1AnKmMSo2MiAMz5thPwHEy3/c/3/6wok1YCQFA2/ab80xT8dbI+7h6/hPVIc7YLX6/g9neLt7QPDJvHHrzraRyJq+MTT4fZ24027+ddJjvaG+B/4D3MT7W3dIxPvdc7Rzvs6mf84OdjeTq88xY+bEGRv39pwmm/RMdneXvcEW4sXONpRR5ZZO/kE2NvcvCt8wGh/e/uDTVf4xIeOMb4N9uhWuaQ45Aybbjq718sx7/ir/LAWjvZ+/grv0s4x3r1LnfmPcEc76ellc8Nlrvb2YM1Zvr/W0XY9fppvNtChcztnM73unsLeHl3cnjacQg45jX7ku05ztF2H/sCvbe3ApFOfSfSzmXEO3ZrOpn2Knu0kbZbayGs9HO2GHdbzU5s6sI06to4e0DTa3tau3kI/fXzPPmY2PYV34h1tmp/E74h2YKs+t4defSnU3u6oOUhfXXzTPqbR9nT+xw8d7X0TzfzpKge2FZbT9HHnQHt76+Lz9PbNV+1jVG67rNPWO9q/4jrryFEObNdHXaGzD/va298FX6Nz+1yxj0Gv9n29I8OBpzXoCt18uoe9fanHZfrydceYSwfLzZUPHDILV2NzusmB54Wo03T7D5wdfhx5nC69dd0+ZmF+KD1RcOhcNtdEG+c68Gy/ZQ+95uQr+/30V3V07vA79vaw9cX0ln85MAmJmkSPSnHgWbN0Hb0m5bG9bXm9nKbGE1JzTU5TBCbEyhDlJGsaHSdrHOAvCwr2l2kNRhm8bsvSlIEyVw+5rEl4iLOXv7ubsynQbHR1dqG8nWQubv4uPt4unh7erjLnqJjAWBevBv6+fq4R4dGJcfEufg39GwW5qlLDUxKTXBr7hwWHukRGhQU2loc3UQXqTHoXY6BWqQkgOXXWpw33P9f/Ztdu3l6k3Rt+4yV86SvhS9T5HV/yEr5MkvDlUwlfjpHwZUMJX5ZK+PITCV+mSPhyqIQvyyR8qZfwpb+EL3dL+PKGhC/LJHz5su07vmwU8Y4vm0r4cryEL21Q1JmhqCs/6ihuV0PBpoLCrK+ERzEUjWehaFw338wLEk7dBgWbBQq2g1D4XYeidAUUpS576qzDJFyrknDtVijSxkCRVhZ7hv9AwrukME4mhTFwlcesdxx8+2UofgBFWhMoaJ+OesfHagkfi/OO2l1nrpJwcwsJN2+AwuwCFGZETusn73i6tYSnRRsvzDPTayScPV7C2ZeheOsBxRvRf7mEvzdJ+FvEM+DoJPqshMtvSrj8EhR7n0CxR3ArlPD6NxJez5fwuuiXg6Xr6ep/4Pj7Eo6vhaIxCYpG4sfu/wG+7yDhe9GnQ6AQZSTcP1TC/b0k3N9Ewv1nJdw/Q8L9WyXcfwKK2CFQxJJ4Oy1ZB15J1gExTs5CkXwKiuEnUAyT2BPj4Zuwq/Q1KJ7ToHgm8Sb6l9xfLxbbgInoLyJHHE/iRMSf2CjKJ34XcSM4i3oSP1JbyLok16s6KtsmJcoyenSTtejeU9aheYrMpI6UBYY4y+KifGRpujAZ0zbR2TVY1tg5Oc7fx7lBU1+FS+Z7PVu2cOnVPrPNe/KMVj1a92rX3qWrobO+o7O5i7GT3JzexdKtWYbcmQpEjZ1kzqHBclfniKZeDeRe7hFuIS7OcrlHqGeUt4/cPyA5SN0kUh7WKK2hws9XnpLaQdNJa5QnxjIxuvAweWS0Kb55Qoq8Bded7UobAlB0Q2HfqwtsdT9/4XCHC/Z382VhV9mOP0YJxduusn9schV+zT7DCiEuwrVtp9njZSnCsjU3WNvkNCHZ8yZbfOqh7aTTL+zsoN9sF7oeY1sZaGHjoVvs4k8Y4RF1mzVPPmVrnv4Tu+yP47Y2Mw6ypCzdt+A2y45vxa0ed5t10tfZmif+wD722mkrmLOHPM+R5yd/ZOSaT7jF+gV+bpvW1iZ917fvHYj6bumfwhF9RL1+XpbIrX56vV5fUZ9P5ky1DTi0g+1NTbEdGbaDfe/6fbu+4t6BqFffC6EcHX2lXl+3Xv1sqc5b2a0v+tiuH/m6Xj+YnyPzq7v6cLGRv9brPyA63jZAu5ldkBRrSw/ZTPSy67crxIUj+iT9SnGH6VP19jSsvlCX/sl6Vog5XxdUsb5enzbX77NEv/Dht9jxXxyp13vF1QF1Hp3XskO79rdfl/9xnCV6ivpcDz7Ertm8v34v44nXTpboJer/5Pk2dv83u9keu30smUe/YEd27W8hcsQ9D1HP0WWLWO39newM4w7LqXnr2N0x5y1Evz7UFJbocffGOLbLmm/ZRWMD2Lb8RnZhUiwb5PTO7m9e9GHJfEcC27LT4rbU2yPaKeot2iHq+dc9GFE/cV5RD1E+mZfMB8u2O1m2ycFE6blxONTTsR85uqwK33nk2I98GlGDLW/3I9e0Lsexb/cjT+AavPbtfmSnj4rxxrf7keJ9sh9ZubQQh6537EdmzqnGEfGxzBytmg/YVY2XescyF5GCb/HrWPz97lhmzcXe/IzpY/G107FM8OZ+fLfyGjx0YwzTOMSZT9xfgxdVxzATWx2zGpOr8PqqOKbN+gq+ttF4HJQZwwwrXGkV9ST7nZbTlbjsZBxTfqKG/0pRgWPaxTMhhil8YO/x+A9NDJP+3Md6LWc8Dk+JYbbrztbe3D4af/cwnlFEzuSn1OVh9u1e6bqHpXhbfAIzetMsXhz/g+6sSZTT4rmPWcSN7Kd+/HkRzvZQMFeez+YXZhXhzqEKZvOG2fV6FhauNIu2TG11zHylWQ72THbsv4b2H4H9/qVgEhvNqLc9KMSZ9g0vxAKXyKweO6XeL2SPVsTwMlLQG5l8XLMrkdkX/mE9znO1anrPiCwcoXbs41pShmGfTknMz+OKeIkfac+Bedh5UhIz5/iwel+svdibFn0RsrkfPWdif+z83LHv+/BCLv5IlcycfNCKDz2Qi2MMycwxQ0te9Eu79RW0GA9kb1j0RcWJGrr4l2x8FyczT86G8Oav+2Lt2z1j0Uehhin0vveycfcryUxuDw9eEj+06KPEyJl0l86D8fXYFCaq7Qmr6KOyTbPohIC++Obb/eabmwbhnl1SmOe2WVbRp2TveVbWIHwkJ4XpRfexiv66+nw2Lfrryw2zaVE3sj8t+ojsT4s4kP1pP79BOHdMin0uEWeyVy36ManRjHrfrRk7pX7eAXQfs+iv/eEf0qKer22zzKKPDo8rqrcxtu0Js+ijuceH1eMztIdHPZ7PzobQoi+OG1rSoo9OP2hFUyvsS2wrzsCqzEaZn79MFih3kTHN28laGRgXL3fkRjmrlYqmzg28nJCLyqjQqV3Cgl2DnF1k/i6NAl3atWFat3Lu2CmjpXN4mK+rc3xEYoJLkxjfqHCXhIjYxtFyU7rWQrdoJnfzoDxl3n7OelOKVh4YIg9tHBktD2roHODk00CuTG6a1CQuRp6YGp+WotHLW7zXrG1G+47yTp1bdmneoV3AlaooYYDLz+zD3/2EkvwfWba9Srj78AiLSp2EBcW72MUhzQSyZOY0vG5bvqWWXRLSjCOfx3vttT0ZtYWdFRUhkCVTlHMlM0CIu/1jvby+siThxSeH6+WaPpILfjd3sx1e64XO946yXHsVJ50ve9czm0xfVz/vIP8M4UXIu/lhGbC1Va+zb7dPM+5gB/tncKRf1Av04IgebWT7bGvub2H3WRx6dnyt56Tz+R+abOsycgX7eNQW2+41G4ieHNFTlA/6c0R/Ud7+Ngtt8R+tJvZyxN7+Lh1tF79bVC+HKnXiiP6971fb0p8tZ69mBnBvcbDLOVLqYfvii7ls7MtOtvgni+zPy84tInhwBI/chtdZYp8oZ0znMFvX4/NY7ajpdfc6f8Lm7HrGElwGnHHI+dBrL0vsEp/rdO9onfP+OfbjAoILWZqGpH9c/3xvWD6JXWe7dqtjjn3MtpXtYwk++y0OOYZR0y1kXMChySyx51ipB0vmEeUMdOnIEnvJWIKXKO9S124WIu9Am4UsweevcrreO2ohevW5X80SXLLOOOSO7RzGEvuIXIJD/MtOLMEFlkY3sjQ2oxB6/y2lGnRqviHQ7mag3XFvEng90GUd0OWHsHTNBbp8AHS5GpauTkDfJUDf54OceRXQ/UKg+55tj1nbAkVuBIo8uK6C3w1Lgj8sCV2KVlr7A0VWAkWyJ2t4zbpqfKVdAqP3TOQ/ixmHu1xKYA5f7cR/82EN3n8inglu8tK6F+gyBOiyAJa0SFiK5NoYJgr5Wi/BEhULS1Sm5Wxt10+qMP5YwVwzF/I3gsfjPpPimemvF1mvA43uAxqVR83klwN1bgHqfLFxFt9oawXe2TORCX9ew7+aWI339k1i+n8byl93H4cnX09iZs9n+fdzx+O+/eKZNcojtT071eBLvyUy6u43pfOaJPqY4zZU4SZTkxn9rPd56+ka/M2aRGbY6VnW1StGY6UiiekYM0Uq0zTHpRJ/Y0lhmswZwU8Dah4M1Oz3YjavjxyPn1UnMrGHhNo1QNPdgaY1sKyKGHYtWgkvhtXYs3kqk7TMgz8xayz+jU9lXpQr+GPnqvHCyymMbPxP1uDRVXhHuzSG1zTnW/WqwbIVQN+1VdadqjK8BKUyTr9V8v0qi/FEKpn5fNBUqe/Mog5xhwSTBE/zofBK3OZOGqP6Vzd+2VwYPy6FOTpxfW0DWAZe31YwaQ1nSOOBrtaOw6nXlMxXn920bm5TgqkfUxkl/QEfuv0DXNhOxfhovfmtadW4wVwlM6Foo/VVWCHeA0vI8HFT+GHLyvDt+Upm1dN+UjzN6x6PwY2/VzF3n0TX63Bs4npTXp+R+OTJZObSuol8xbxq/KKfkvH17m6VxJL55KsKfLStmjEfVfF791fjl82UzNoms2slcU5vgeWqHJaruVBeZHmV4ubvqZhurwfweUNH4Wkz05jY/qOleJol+ULPvlqGvzujZnawZl4SM2bJXKbHWz7AU1UapvnjbVbz1CrsVaNh3Jnz1vGLxuJWj9TMpqhJ1hn9C/DYz1OYvaZK/lbiGPzgVw3jPf6Vtad5HC74Uc2MfRRjleQOnVJdhJ8/VTFO93rzfXaW4u2FGibpMc33gyW2MSyxGdVFvLCqAte11jKbunjwddPH4aVfqxnmi/61EqzMkvgxT1hbiFPbKpmBS3L5RrAkN4Qlmf1lGM9T5Rhv1zLPL/jWy7F80d8kySNawhW0fGEx7ktpmTnn9VLeoCefHoOHNNIxL2eVWYd7j8E/tNMxa3vOt04rr8L7bmuZe+MNVklsmFO6j8bHEnXMVxp/ft7KYbjBwFRmjv9AfqbfSHxoqZr58kU7nsTn79NBZt4mKVbma9eqcMVPWibu80u1ktyhJZxDNwuowBuO6ZgaGlsnhX2Ap9dpmSxdUG1N03z8+1Ml835NR37QkzLMROqZdPUP1lnrS/CtJTrGh/HmxfGDdEGmqbNG4T4zQf+EJF706eaoSWYJt9BPoGSZCSVLz99a8ZIcMftCWaOGsmaVqSVfc2g0fl6oZ1Jcf7SK+sd/fskk4VX62okCvEOvYX5Zp+c1DYvxIXc9MzfGRcoJdLfaCny3Rs/0H/CiNrNrBZ66VM+cWB9s/Z4dir+VpTH9jjG80qMSt8zXM5m9rLW9NpZiZ6xnTs3/zvr5qXKcUqdn4oOUVkncmjc3q8TD++kZz4icWom/zL90LseTL+uZ9Qmc9Ua/Snyyh57pOHnRjvNfjsAbGuiY2lbBvISr6S9sZbjQ3cBkZ7SRrgu0+GznyYuMEq6gP/0tD/86U8V89DCV7zWvBI+TGxhj3LfWvMQyPFxlYHoEtrOKunlF5JgkMWb+fvkoPLdAz3w4+p5VwtX02nmjsUtvA1O9uKVVgoNJkpvmJ1eH46Y7NcwmoQk/EMrQM1CGxp4L4We6j8YnxxqYy4+M1o3zi/GBdgamfdgqq4j5gAEvTJLYNks4mZasa/TzBoV47gc65v4pig+bUoo/WGFgKpbFWiX+Mmvb5+IFU9OYvrUN+e+hLG4DZXFKTw9e5MN7T6LpToPKcES+gWn+bPbW/2n/17a/hPVo4/d6ZpnTfisdWIp5m4FhOnlZ29cW4d6TDYy3appVwu1mMdcSgpRmCY+ZJbUKHRgzFNPuauaZjzv/h7UEjzllYLpdPFsr5t2GBM4sqSvoktEl+PBtA5MXPr/2iw7DcEuFlskuf2j9QFaEA3YYmLsTMq2SHDRLONCs25GPFad1TED5AevVziPwTU8DU5SxTFpT0ZJ6gM5pX4JDnoI+14JrtfA6dwle5+ranajPzZ6B7cySNYiWrMV0G0sJvvaHAzdJPpolNRv9WdUorD5nYF6cbmgV5+pxLdgk5uCVR0azhJ/Nou3Dwuebfj6djX8BPaeXH7RK8ssswdAk+sjSycssTC/EPGdgri3uLa3faKtiFM5+aGBylsyvrf05F3+RrWbko3ZaJWsiLfJ2quuP5uvW4dgvTM/UnJtu3RORh5MrtcyWzWus9+E1uDe8Bg+vmyWtx+rrh1rWTEvqH3pvg1H1+Ej42TzfvxDHZBmYlivP186AV+5T8Mp9keljFfXMXTLfJFk3aQlnmiU1Jy2pM6U4myWcZo6JGI6Pt4L1qMTb2vTpYHxGoWRSTZ2lsWSWxLZZUofQu24V1OdFYu5QfGODlsn8XmH9/WUOvrREzWy8xVoltSgtWVtpSQ1GS2pIWrS91crzJsnaR6+8PQzf6q63zxXoNwjnj0mxtyV1CC2pV2mJr6VrhDlz3WBcYFHanx0TPxR/tVNrb0tywSzJcXPstzn45pdq+xhJPUZLalpaUqPSEjzNktqSltQPtMSn0lgyS2pUWsSz9/cKs2SdpSUxZpbUSLTEd9IcN0vWIFr0y6ZbrFlSi9JiTRi5KJeW1Ja0mO+2difMkjg3S+oTWlJD0pL1i5bwklmSp2Yxv9xG7ZSuv7Rk/aUltRktqQlpSR0lrbWk/ElL1lNpXUFL6iKa2uSCkK8fWoBK0Uo0Fs1E+agCZaORqC8qRIPQaFSApqKJaCuSIXfkBG/QMuSJKOQMV1/kguRw9UFuyBWuAcgPecE1FEUgf7iGIW8UBNdkFIyi4XoQTUPL4GpGOpQG13SUiJRwzUMt0PtkPPUGBVAyNAX1Q+XwuR3qgji4elCX0Gu43kBn0SoijwqlmsI4C0VTRrgORsWoF9znKDWVDp91lIZKg+sWNBt0l6Ev0afQckaPkIx6jvwoZ7QJLYR7s0Dv5egT9ANahH5En6G9aDfYsQ5aC+HOLOjxRFFgiwIsSkDhKAXFISPSoDZgdxTlRzWmZBT5DlkcFUUlwKcm8MkNpH+FLqKr6HfAazbMUg2SKkHWZJhrPmoAlkcBAgqkBpl6kMmAzPYgcwCMf4DcqIfInboHmt4Afc+C1hiNQx+igYAyB7i1g2ebw7PN4NmW8GxXeDYHnv0AbKmFv1XQ7g/S3gM9XREPn8fB54Hw2ROlUXGUDjRNAk0DQVMn6gH6F2jEAv4dwQtFaA5aik6jX9ETdB+9RL/BnEroTYfePtA7Bno/h97z0HsNes+Bv8nX6d1BdiAKQfEoFVlQa9Qb5aIyNAHNRYvRNhhTDn6fAt4/jB6jp8iLcqX8KU/Kh3qFKOomuo3Ww5hT6BK6A55uQEVQIVQ8FUnFUo2oYMqFcqZuoevoa7BmJ8x4Eeb9HXTzg4h4A+PDYHwKjFfB+EQYHwTjEXUdXUF7YIwcrPNFjVEkSkImlIG6oyw0Co1HH6MlaAXaj9bCGFd7BHugRqghaopikRbRqAPqhoajEWg6+gh9B9ZNBU+OBk8WgidHgicrwJMz4VkZZIQH2N8Q7I8F+2mwvxvYPwLs/wjs/x7GvA/RnAf2zwH7T4P9T5Ar9RJ5Ur+jVxAlN1EdzJ4OkcxRFoqh9JSSiqHCKV9KTv2B7qLL6AjI8IffUMivcNQEYjAGfKsCj7YFvw6B2JiEbNDflEqlkikzZaJYykBpKQUVTTWkvKkX6Bm6gM6gHTBmGeB8EHB+jBpQXoCzP+DsAzhTgPNtdAsJgJcRsscCcaKHOImBOPGFOPkD4uQyZPNKsPonsP0oxPIJyJuTkDfHIG9+Rl+A9AYwojFkfRIyANY9AOsSwHoeYH0AsD6ENsOYAMjdMNAzBfRUgZ6JoGcQ6IlAzyug52oYkwp5bAY8WMBDC3hEAx7egMczwOMM4PEtjHGGHPQE34aAb1PBt63Bt7ng2wng28Xg240wphfwx2DImJ6QMZ0gYzpDxmRCxgyDjKmBXNlu5ys3wNUHcG0EuDYFXLWAawfAdTjgOh3tgjHRwFPJkAWtIAuGQhbMgCzYB1lwHLLgF4jJNTBmA+j1M2B0DJA6CXl8Aj0ElO4BWjcAtVXAr37AhcGATjKg0wrQGQrozAB09gE6xwGdX5AVxpQCl40FrfNB62zQui9oPQi0LgCtJ4LW36AA6dY4feenP22Nd+n2563xfaf/vjVOtsRL+uxiva9HCrKY7ezDmkYCOd3tMDhZWJBl/dNW+bZbx+q3yo+HeQjklHHmRYOwf9VO+9Z51YLa+i3zouJXNvJN8ePnooUbMSvY1ucDhd6Gpey6FhlClx2YZXenCL3bfP6nrXUiv/a8lzB9yAJ2/TqjkNF7Dfuo/Lrt5dKV7PoWGRx5Tr6HEm6gOfVb7w0/yhD2F3xh34I/kvluC952J0Y4EDudlU9oIgzsMpkt75EmPA2cxSY5+QqvDo5nG6w2Cdj7IzYn7q7tW91MNrn9IVt64RL71j3BCeRyRO6siwaO2Jc0xEVophrDrnycIUR6fPy3Lf2+lfHC6nHD2OT+J2xPXSazS3aFCf3pwezvwSoh/80I+5Z/fPA6toZ6Yov9aQSxjyP21d4PEAr29WFXPc7giNyPp2y39Y6dx35aaxYKphSzHQcnc8QPs/7lLjTf05ltwLUQNONK7UcGxN/ikUH44V9td5cPZk8erLPdX1XNeq82ccQ+8SjhoeGNbdueliy3O4UjuIMcjshpdCRReH7Nws59HiUcHmZkO5RqhLs/Z7C5A5fbFj6ZzTaKCRYK+ynZScHpwprY1iROOBInvVbttcV592IfUbdtu/eb6o8oCL5Z0fGsDbcQ4m+/x86tNXPEjooeaRzBP7doja3/zZL6I4ywva7CvX+FkvEcGQ/xwpF4EY822iw7ZssYnmI/4iDxfOWzNOHiVwFseUaC0ETlzSZe0wsvnIIIzhzB2Rr63HZ0sh87ZMUk2/SMaWzKmC9tA6va2uN7QBc5sYMjdoxSWISL3zVhhTsxHIkTiHuOxH31iGBh6p3Xlh0FLYWj0aHs6Y4zbdsi8tifL/gJw0ffsZz88prt0gwXFvo50k++5TDmdCTbsVTDEdwgzjkS5+IRDMQFR+JCPMoheRNYeMoC83NkfvFoxu/RXFtBjYXlvzpk0z19YIG45UjcDttrEM53PWZZ8kwtdD13wOL2c29bms9E1jg/XdAbTluKfJ2Eace+szTqkyq8KITrkUSO+LPDwmbCrpjzFsCHI/hsOa4Qho/Ybhm0uJUwOeSCJWL7StvLiobsiTAPjuTxuW9ihXXn11vI0RDhg8GLW3FkHMQxR+K42Ysc2zcT+rNWj0c2Yc0Gy6hLUYImfKkF5uHIPOAXjviFxO+ao6cskMccyeMd08KFKQdnWkBfjugLccaROJM3Hm1b2ElTfwT1x5UQYVNylWXZpxdte258YgG7OWJ3RUYCR/wMccWRvBWPqNKNk20LrrixS4xNhBPZfQg+HMGHfNtCf6LafoQ1YdZckl8cya//zZfBuf+iz/+n6/+tfOE/0g8cZ9OXCxaCW8hSo2VZ/wO2SV1KLJDnHMlziCOOxBHJc5IvxcWvWMLjY16l2jSbe5BvAwljlgVavj6u4Eg8ue2hOMLHq5rGCGVTHjF3dqbbMi4r2E3sFlueR3MLxBVH4gryiiN5dedhF1vHPq8sMUMrbVMbrreQo0WybgC/coRfVRvVwqGc7xnxqLHoUhRH4oz4n/DK7H+5c4QHiT0tw7YytdPCORJf4pHkkK0zbSvD/S0ghyNyIK44EleHLvhxJH9BT47oefbu+Toy31JjE47ED/mWE7GLfCa4HM5U2a6Y5lsel19nyfqzgEm2MZuPM+f97tSN+bkj4S2O8BbJH5LPcX18bdPYu5aBLLK9WBptPxI9YPiErC8sWV8eGd6whH/HU09Ywv/kyJPoD/nLkfz9nKqtC1w7zSIenS5kklkyHx/6nCV8xns8YkneSY9UyXo3dOtMlti7/NOLLMmbzu3n1AW6X7GsujqgrsCvjN3MbmGJH5b3P8ASPz+mbrOEr8n8JB4uyMbXdb0Rxq5wK6wjPEn+FRhZB4HnWMJzEYd/Zcm6ktL/BEvWtbVUrYXoufOrQyzhKSInqPqCRTzCbbvsGEv4WjzCPZqpYgmOwAss4QUyrnJLqX3+4B6hbNzQSpbEAQNzkrgk9wtC27CZq/ayZH0hR8Bk3STPk3Wxe/s5FmIf+SYUWefIt6QI/4pHxAl9fFniB/Go+LJsvIXYF7l9JUv4jhwdE7+kjvmSJfauuzrAQnC697ALS+KSMU5mCa+scyu0kP4hA5ezZB0cUrSG7Qfr1l+PnLNYxBJ/+z+ayxL+lh5BE/65tzOdJflw6e55C4m3C353LCR+3BuPZhcA/4lH1Gc6zmTJOjN0xSSWrFviUbh4ZP3Bq1SW5B/5dpcB+C3jRQ67DfjY4+feLFkPEFXsA+9f5dJ/kuySmg0vH3lQvpZAYayHF0UlvGKq7H8z7f+lwgtKe3jh6wyFcHeEFMXO8Fh+9tkR+Hb3EIbIOBbYBGfVxWDSVhS7km7pFG+6rKXFdv5f/y9B3nRJSHc8J4e/mdIuRTHZPciXSlf39sM+WS3fzkT+bXamtDvzz/3efzP2TAa8DfcFY0ZAxVwKNXIOvKGVQAUdCe8ehVA/R4KxOXCnBCApBFCKYXQzuF9g/5wHn0vgvZa8p+TA80XQ29x+zYF7pfCpBN72IkH2CPvdYrgfCXey7M8UQP8/9URC9a6G/gJ7fz709kX/acegv9nr1QLe0XLtupWQES5ws7XsLz4BF9Dwa5W0zUgcKPUR6Xhd+ZJ+27aKbUUxGZkpDYk/uUVBvU++ZVjXRKJav8r/BZcL0uYA
eDRAWINGS du doigt de démoulage

Afin de tester la robustesse, modifier dans l'esquisse parametrage la longueur du doigt en la passant à 100mm. L'esquisse pilotante ainsi que le doigt doivent évoluer sans erreur de reconstruction. 

Cliquer l'image