La vis de retenue

  • La vis de retenue est une vis à bille. Est donnée dans le modèle numérique du tiroir (fig 1).
  • Il faut modéliser sur le tiroir le cône de réception de la bille de la vis de retenue (fig 2).
  • Suivre l'esquisse donnée pour la modélisation (fig 3).
  • Respecter le dimensionnement du cône (fig 4) et  n'utiliser qu'une fonction pour modéliser le cône.
  • fig 1 : La vis de retenue dans le moule
    fig 2 : Le cône de retenue du tiroir
    fig 3 : Esquisse de construction
    fig 4 : Dimension du cône
    Le tiroir est représenté en mode transparent.
     A :

    La distance cône / vis de retenue doit suivre la valeur de la course. L'équation permet de réaliser cette contrainte.

    Au terme de la modélisation, dans l'esquisse parametrage, faire varier la longueur du doigt (une valeur standard) et la hauteur du tiroir.

    Contrôler la bonne reconstruction en fonction de la valeur de la course (surtout la modification de course et la variation de la position du cône de réception de la vis de retenue).

     

    eDrawings - [tiroir] Internet Explorer 5.5 (ou une version ultérieure) est requise pour visualiser ce fichier eDrawings. Généré avec eDrawings 2005 sp3. OzsgSFNGIFYxMC4wMiAKSQwAAABCAPSdlL1xMKG7mnecvAAAAAB/arw8LNSaPFp42u1aeVxTV76/4SYhrCqgRUANIpKwZt9O8EZEJApuKC6oGCEgyiaIAp2q6KhjpVSt1qKdutHaRWpraas5QJCHbXXQSu1oZ6y1Y0VHp3WerbV+1KfvnHvOZaJ9dpb3b9PC75uz/dZ7vvFHcr5jGKbdV6NS6RJU6kSV3idrhjOzLN9ZXIkmXhw0xv35to2j7s8axKG3zODv3mv/fGeZO0D1Tit+n2L2487L89sbh03i5z8Q32izf7A5+c9fBSczzCouDI2JHj58yHi+5ElFpXnFVflOeXHRggpHRU1SCdaXq8ql46EV97/Tjeisub155oPK+dbzcybumjbCve2tQ/0vvGz3WqBpCO0sX5mQWuulk40pKy0oKkxQiRhWYwCiUGHBht8qD2z8zFt5FsTcyvtw125sgwrpDkU/cxeK4pDgFN55/G6Vwo8AeamjxJn9kHmYxDDKJQqfEkdlZXlFWXnldLkY42RVokpj1qt1BrXZqNXpDCaTyRi/rKy4qsSZrEl8bMbkTFCp9PGOCqcDb1QZ9Wq1UaXV641mtc6k0RjiCyscy3LznKVLnRW51ckJaJHOrNardGipRmXS6YwG7SNravA5ajWaMupNRo1Br0HKHj2mNjlBm2jU6/RGlcGg1epUJpVJTwwprkZKVIlms1ZjNJtVGqMaWaTVqPFEDdauVuuNaq1KZdAbENKp+Zla3naNVo/UqZFbRoNBo9Lo4surk3WJBp1aa1aZzTqNXqfT6Q1YkSG+uIZXpFJpNRq1UYODokEHoI14qoYEQ6tBClRq9FurNaHT8VQttsKMXgaj2YT8N+lMJq02vrwmWZ9o0qpNBpNOY9Rq0WkGDVVVy6tClhvMGhWyXmNCZhqNeKKGOqvXG0woXGjYpNPiCeKS0YDiazKgVKmRr1qTJr68NtmIEowc0RqQVSotskJN9VTz7iKrzWacOpxCs16YQ9HTJBq1JiPvj1qNtmv4SWRHdW2yOhHlymhCATBozFqzUW3Gc2bkcfUvbKypSTYg+zU6k9qgQSkzoI19AUaRMieiuKnwPNqq15hUanpqbfWTNdbW/NLGWhJns1atN5nMWq1WL/hfhPw3JWLn0ZBGb0JjBp1GmEOHqhMNWr0OhQydbNLr0VNAiq6oGh+Kngpkj85oVpnMGi0pSFN8Efb/iRuR/8ZEk8asMWkNaIFJYzL+Y64WB06N3DNojaj4UJmYDGZ6KvL/iRpra35pYy3yUYUfLVT/ZhRBVE06orHEgR6uIkdx8vBMx9JrCFXJraVlpfLK8mt5RQVF10YNVyqklQudzqUqhT8vK5zLipzLK6eii2ZVf3rxCfJkd3dy9ip0M6JrRiHB61QKb00+fwtmX5zXL1IUqfBfWFbslJc4KhY7KyrpnaSQOKqLKlUrxG632zuKya9wLJdr8+XlZcU1xUWlzuTK5XiooKx0qTAU4MUkeDHTBzD5RehqQz7wNwi67FUKceVSR4XNR7kE/afwLnbUOCsS1Gi0aoGK2rBiVzkyNhDf4/xlruRn1Z6zDz1mlegYLXFCIaM3OfZfhDmASRczYkak8CkqRXpL85yqFWzZw5povPMRcvgn7xXqxMSkn///GIEkVS5E125+0oKy/BqVwocX2LGsTV4Ms+T//1uptP77dij5l8KnwlngrHCiECjE5Y6lC//BN95o5hEGUuIhvoyUIlFWoB8OgBj9ZAStaZu4cw58vrPKuuLH59vKgtZYMX6+88dWYRxjYVwkRZtkYsZLxAaPZ49zJRHHuSdJJivQ9//Q0+qhp9VDT6uHnlaqR8QyXsF29rgbn/ckifRIBT0Oenb85zust36/tW3lolYeC2cLWBj/N/1hH9ezY/nLrYIejAU9AhbGqR4vhhX9K/74CHpWeOh5PG6eeh6LG+8PPuN8P7vtiTIr0P9xPZ514Bk3zzp4PG7/gh5vjGXop4zWwVhaB8UevmGMxz3jKayvpnbhNZ748TyLArAiqciLlXhLxRIvMRP85372DkvaTe4/lch8mWC+UK5jaQqKPVIgmO+ZdmF9NQ2fYL6Af1aO1HzWS8KIxRJW6h3MyO0Wvir+U5kVKMHmL0A/npF9em0Fj0Mcq+GR3QTfTquDF6aV8fj9vY3wvI7gxPodsMpcxeNnBmfALRMJLt1uh39bt5jH38maYV0ewb2tzbAZLOfx1qv+8PfpBB96yheasgt5fPaSC4aoCC6fAyH6sMFj2fwtLtVKgu/Pq3cNv7yAx+/BTjipjeAbdzvh038jay5kjTus/JbgVW/+QTMsex6PF0/qgveSCI6e1QXT1pA1b5rrLQKWLa23vNozi8djtrphfTPBs0rccEEmsXniPR/QkkHw93G+4DdPT+fxyHdbYMRsgqvmtUDJNBKTyUvs4O4Ugg++ZQety6eQuHk1wYrZBEt/uw9u2E9ifsxUByr3EXxreh0YdDWTx7v8GuA3Jwm+U/YcPDyX5GLN1kawfQbBh95tBJ7Vv/rqeB6LRYUw+AzBp/Y6YdRmkpeXHh4At39H8McRzUCxKZ3Hv9sYC/9cR/BCqRIOcZC8WL9xgSs0X+/cdoHo22k8/vvIHtfL3xJ87MeTrvz/Jnk5c6wTnKb5eudEJ/B8FFqjyfoFV/xdd+QE33lT6mrPIzliSrrASZq7hfO6gLC+tn+ARcBBD4IsqRdJjjKPuYGQO9s+d59t6xQ9FnCX4IV3zliObyA5Wn23pS93UR0tfb4HvhgLXttOcM7JOJCzluRoYm4TCKC5e8W/CZy5QuI5dmAh8LtJ8OvRC0HhFZKjS/0bwMwfCD66qgEMPzSJx+p9CutXX0zk8WnZSCszazKPS7zjrZeOEqy4l2RVfUn2rioYYR16MoPH7Lkoa2YvWTPOorPOa5vQt0bY+9MyU9+Z7y6yWg92jO/TVXzV3meDYM+NU1yfPZOKUqwNNnufPYINr/ilWt86l95nm2BPxM5U6+iW9J/Z47ke2yOc6WkP1iXYg2145Nrr4a+9yVkWndnA6hRKdkJcLBuTPZ3VDZOzMdHD2QlaDatTqaWDBsYEMQMkobqnmBAJmGC1c97jM0dNTJ5sEec65s+TZk3TzXDMkki8GBEr8fVhpBIJK2a8ZRKZH+PfTzIgkAnwlfTrzwSHSGblOObOk6SOsds4yZCwmMGDJKHhuohh4pSx9jRJ2jh7eqpEGa9LUEk0SRMS4yTANMGolQyPjBk6RDwlZup079w5jtkxM7Ml8ijdCIUsduSE6IyYSVMk40fZR6eIDTq9Opj59fXr69fXP15ZgfizJjPe44Mg/tC67MPpPE4y1cGI9wi+ml0Hs0um8rh8ayOcXUiw8r1G+JpjJo+3NdvhvHyCo8vt8LXdE3k8WdQMZY0EayKa4ZtzZvP441hf2DGX4EP3feCt8vE81ve6oLKQ4M23XHDCCzk83lVa7zpL8bO2etdaJo3HIcc7YeiPY3n8t+5OaL9P1viur2ppv0fw9CNppu7K0Tx+dXEXbC8gWD6/C/53A1kzLrfe4vcswZm5Wywf/93KY8sxN9z7F4Lf2uuG52cSm4vDfcHoCQQf6PUHVY0mHi+40wInbyT4eHsLXDCPxORigx18YCf47fAMkL5Nx+N0RxOMWk9wt38T9MiFNe8dEv/6cXUAbiP4g7zVYBar5nHN6gZ49raKx0OCG2CCk+Tl9q5GEDKWYP2zO4BMlEjyKF8ID91O4PHgkEJYsJ3k5aGsGaysJPjptmbg+Q/Bq/vj+HFVdxy07yY4c3MsDCogOcr9iws84AgePQeCKt9YHktunXGFSwmuVPe4vG6RHB050gm+O0mw6F4n6NAreay9GeQScMJNf5eG5ujY5C4w1Ebw+DldoEBN1ki2SS3Cet1Nf4uQo5Hb3QC2EXyt2A3O3ydr2FsnLYI94cN7LOdpjlLfawGRi2i+5rWAxs3Ex+9FSiD4u2dDLHib5ihd1AQmLiK4YN0+MOQbEs9PdjpB8k8Eu8WFwPETyUu5XwPI+YrgByXPecbWKtqFqVYSHhr/VAjLiFmWkUhZxt+PtXM21p4ymrWPS2cjB4dJTHZjpE4aFDmACQyQsIhPJRI/GeMtlkh9GN8A75Dg+P5MP39xgjJeIdGo4xMTJDGxkXFJkuFRkSNjJCZgt3KSJFWkVidRRMePkEtGj7InWyS2MfbUcZKggZGDBkvkw+IjwiXpafaxKd4Ws90Qr9dIwoZEDh3+z/9F+av8Vf47MisQ/8Oaqcd/h6JkcxmRjYWSzYsz6mAJJRtvRDYaSjaHDzXCNyjZ3HjDDmMo2RyssMMuSjbvI7J56yWCu8ObYT4lG6vCF+6lZJPN+MIBS8iFdfEbFwyjZHMUkY2REsz5knrXeoo7rPWu7ZRsij/uROvI5eWNyCaBkg3DdGkvULIZMCvNtJSSzZKSLniQXmR7crtg3PNkzWZHvSWJko3f7C2WNynZbPvIDV+jF9lnTW64n5LNpVBfsIWSzcCr/uB1Sjbtd1vgdHqR9SKyqadkM2+zHbxNycYvIgPYKNlcyG2CVnqRLfNrgsWUYI7Z68A+SjA7F6wG0ZRgXqprgO9QgglDBCOmBHN2TyPgKMFs2rADjKIE80dEMPspwbQHFcIhlGAcPs1gJyWY71qbwR8pqTR8Ggf96SWbsykWxlFSmX7JBeJtBIfNhcBCSeUCIpWvJASfjO9xRdJcvIxIZQ0llUZEKj2UGL7yCnbVUXzvJ3/XfJoL98QuMJ+SijSnC0RTUinYJ7UIewsu+luEXFRvc4O1lFS2lLjBOkoq1tsnLQmUVNbIeyxNNBe/P9QCplBSMSBSOUxJZbFYCXKovyPWx4IvaS5sXk1gLCWV79fuAzJKKjm7nCCNkkqVtBBMoqRy2acBDKSk0lv6HKim/SOUO7iZ9o8+stdB5XTSm0D5ggP1BKN8wTO0fxQQkQEdtH80f7Mdpqwn/QiUL7iE9o9utDbDQto/GnTVH3bT/tHlUF/I0H5E9iUXnEL7R+FzIZxG+0eBs7e4GNo/2uqod6XRfgTKF3yd9o923OuEh2j/aNWstMNetH+Enyk97UF0TOyCBhXB3jld8ADtGbVa6y1zKP6ipN7yB9qDqNnmhjm0f/RCiRt+QvtH0xhfsIH2jywKX3Cc9iBeOdQCl9H+EcoXzKD9o+YKOzhF+0ffvmEH79IexGivJriI9o9+WLsPLqb9I3SPgVzaP9o2ow5E0/5Rr08DtJwi+ErpczCF9o+kWxvBDNo/+vBQI4igPaPl0kKYQHtGc3c54bVNJBctomZwmvaM/hDeDFbRvsnI9bHwOdozKhEroZH2jL76xgW4GQR33HKBqUJfRt7jeov2jGy3T7qKac9o8ced4ArNkbS7E+ynvZ6Si/6ue7RPVLJP6mqkfSJ0v4G1NEe7c7v61t/6yd8i4C+8gi0raZ9o60duIOSop8kNWGrPifgeSy7tE/3p1hnLCtonarvbAmppji63twA19XfWplhwl/aJ6j+NAwNpn+jL3CbgoDmq8msC3bRP1BpUCPJon+iMfCH4I+0ToTsNjKd9InTXAdGL+AOZzQJWjarjfpuydszvxm5IfXb0Rtv65HXWNebVppX6Fbqn1bWq5QnL4iuVFYqy6NIRiyMXyQuHFETkDV4QmjtwXkjObHZ2yIBJswfM6J8dkOU/1WeSbKJkgng8M06U5pXO2qUZ3pm+k/2mBE7rNz1oZvCsQXOemhs2P9wxNH+Yc/jCqKKRxTElseVxSxKXJlVpqrU1ht8Yn7GsCv7sB8BdvHOQmz/TysuevxZx98e39MnPHwRwrdkHuLE7iJz97EZuQOYRbk8rkVmH20bdP/hGnxTf2MN90d3OTZDv5eXD3lGj/mvI69xHWcm8LBx2mPN9qYt7ewqRuId9Y91+buoY31YsT0w+xeX+5gQ3YM0pbvW2E9yd3lHteF/I0TReJqy+zLXMP83BK5e5czWnuUmH29qx3guvHm2XH3+DO9d7l+sMOssNDb3Hy54HAW5st+/mfm52wwHuaJPMNnTceU52TmZLmX+emzvT6sZ+b7+e7GaD3uEuyEJsx//nIjcChNi+HfQ1NzdzkRvH4cWLi91jnmnhbLuG2Z4WX+bW9xC5u3WjG8ehdW29e+bKI9w+fZztW8VVLrCOyPHyvW4ch4Jre93DHrZzEx8YbHenXOMO2428bJ5y2I3jcDzsiHvKiS4u4usU2+qC61xe0Bheznj/lBvHIT7jU/fxj09wJ+eO6cDjC4KIdF257MZxeP6ZXve9Lae5h08bO4Yu5s/vwOcPCb3nxnGw/OWe22fsWa66O66jf8pVLqAurgPb531O1oHjsA34dDhrznM3I+Qdrwzh/evA/kWBkA4ch4Z1IR39VV9zjdeTORwnoV5yMxfxdbL94mIOx8d/cz8Ox1moG6FO2tbWczg+l149OgrnSagXoU4Kr+3lcHzCjqbxdSLUjVAnJ8KOcDg+XWN8rbhOhLqZ+T6pk4SMTzkcH3dWMl8nQt0IdbLpmV4Ox0eoF0EKdYLiw+H4pOwg9SLUjVAnLwIfG47P6R8AXy9C3Qh1guJjw/H59K9FfL0IUqiT7yPkNhzXWc+SehHqRqiTmu44G84Le2MPXy9C3Qh1gvJqw3ktGEbqRagboU5QXfDy+ORTbvz89F9D6kaok/CvU3gZv/qyGz8/Qt0IdZL5wMDLs713+XoR6kaoE1TXvOxoknXg50eoG6FO0HPxSL18KQvpwM8R+lweiD+X469TpdL+dM0+hTXkT6Q/fUc20to7k/S2zbJ465u0533mXpI1kfaqxQUjrD3dpD/tey7KOp/2y9PNur71F5aZrItpr1pYX7DiQ37Nr/jnWIj58kVW61rav8e5mE779zhHQr6Mn3J9+TpclGJtob1/nC8hRwf8U6136N8HcO6EfL22M9Vqpn9PwHqFHHmux7kTzvS0B+sS7ME2iByYR9m4xAh2YIySjY4JY4fL+rPDfaNYxUh/9qmRUeyQyBFsdOAINiHeh00ISGIHJCax4lAJO0gmYUOk3mycn5L1YoexiuBYdigrZSODvFmxaDDbLz6W9QpnWLmICY65ns59VuXLveC7jpcfRkl5WX5z7Sgsg3bv59/jLw1gKUJXEZYlN9e2Y3n8pev8ePhYUweWI56S2rD85KXrbixXvRDDv1/5Qgw/v8V3HT+O/xrtub/jk0H8+/ejpPx8xFiTzVMP/jKBpx1ovc3TPsH+Abv3uz39YB5I+HOjr6e7Pe0X/BP8F/QK9gvnC/sEuwV/BD2CnYJ9yK9H/BfiIvgv2CP4y4gqvVCii6ectbUtUe2B+PrI+GhuW/e7B60YK/F3TZlqz66zxD+VucYUMA6milmKV+CvEc30PGDmoyf0/9kJYUuZIqaCKeN/JzJZTAaTykxmpjLT8Pp+P1v/0RjGwsxBa8qYPKS1hHEypUh3JSNHVpQy+UhmobGlDD63lClEM3OY0Wi8hH9fhN4vRZoc6LcT7a9Asym8dPJezEHj5eiMPHQ+Hq1E43I04uD3lKD5J83ImWxGg+ZL+PliNDuH+SXfRDn4qyjtYR7Oza39X1wrqKwA
    eDrawings du tiroir seul

    Cliquer l'image