
1

Mise en œuvre de ROS2 pour le

contrôle d’une voiture CoVAPSy

simulée sous Webots et réelle

Anthony JUTON1 – Sergio RODRIGUEZ2

Jules FARNAULT3 - Mathis GOUPILLON3

Édité le
03/02/2026

1 Professeur agrégé à l’ENS Paris Saclay, DER Sciences de l’Ingénierie Électrique et Numérique
2 Maître de conférences au laboratoire SATIE, ENS Paris Saclay
3 Elève normalien à l’ENS Paris Saclay, DER Sciences de l’Ingénierie Électrique et Numérique

Cette ressource fait partie du N°118 de La Revue 3EI du premier trimestre 2026.

Cette ressource fait suite à la ressource « ROS2 : bibliothèques et outils pour le développement

logiciel en robotique » [1]. Pour les étudiants participant à la course de voitures autonomes de

Paris Saclay CoVAPSy [13], elle guide dans la mise en œuvre de ROS2 pour la conduite d’une voiture

réelle ou simulée sous Webots. Pour les autres, c’est un exemple de mise en œuvre de ROS2 pour

le contrôle d’un robot réel contrôlé par Raspberry Pi et simulé sous Webots. Webots fournit un

autre exemple d’utilisation de ROS2 sur un robot, pour le contrôle d’un drone simulé [10].

Voiture autonome contrôlée par ROS2 ayant participé à la course de Paris-Saclay CoVAPSy

ROS2 est utilisé sur les voitures de la course CoVAPSy par plusieurs équipes pour plusieurs raisons :

• Les fournisseurs des capteurs fournissent les nœuds, écrits en C et optimisés, permettant

l’acquisition des informations des capteurs (Slamtec fournit un nœud pour son LiDAR et Intel

pour la caméra Realsense D435i notamment) ;

• Les fournisseurs de nano-ordinateurs embarqués (raspberry, nvidia, qualcomm) fournissent

une implémentation de ROS2 fonctionnelle pour leurs cartes ;

• ROS2 est multiprocessing de par sa conception, ce qui permet d’utiliser au mieux les

différents cœurs du microprocesseur du nano-ordinateur (RPI5 ou autre) ;

• Les messages ROS2 pouvant être transmis par IP, cela permet de superviser le

fonctionnement de la voiture depuis un PC déporté, avec les outils de monitoring ROS2. Le

nano-ordinateur n’a alors pas besoin d’une interface graphique, ce qui allège l’OS ;

• Les nœuds ROS2 peuvent être portés du simulateur vers la voiture simplement ;

https://eduscol.education.fr/sti/si-ens-paris-saclay
https://eduscol.education.fr/sti/si-ens-paris-saclay/revue-3ei

2

• ROS2 étant très utilisé en robotique, on y trouve des nœuds permettant de mettre en œuvre

des solutions avancées, comme le SLAM (Simultaneous Localization and Mapping) utilisé par

l’équipe Sorbonne Université [12].

1 - Mise en œuvre de ROS2 pour le contrôle d’une voiture 1/10ème de

type CoVAPSy

Cette partie présente la mise en place d’un contrôle simple de la voiture par ROS2, avec un nano-

ordinateur Raspberry Pi et un LiDAR Slamtec S2. Un LiDAR (light detection and ranging) est un

télémètre laser tournant, permettant d’obtenir en 2 ou 3D une cartographie des obstacles autour

du véhicule.

Figure 1 : Nœuds et topics ROS2 utilisés pour la conduite autonome de la voiture type CoVAPSy

1.1 - Installation ubuntu 24.04 server et ROS2 jazzy

La ressource « ROS2 : bibliothèques et outils pour le développement logiciel en robotique » [1]

présente l’installation de ROS2 jazzy. Sur la raspberry Pi5, il est possible d’installer Ubuntu Desktop

(avec la gourmande interface graphique gnome). Sinon, une version server, sans interface

graphique est suffisante, ROS2 fournissant les outils pour le monitoring à distance.

Attention, un changement d’adresse de dépôt de ros2 a eu lieu (repo.ros2.org/ubuntu désormais),

il faut peut-être modifier celle-ci dans /etc/apt/sources.list.d/ros2.list :

La conduite de la voiture utilise des messages de type ackermannDrive, dont la définition est

installable avec l’instruction :

sudo apt install ros-jazzy-ackermann-msgs

3

1.2 - Nœud slamtec RpLidar

Pour utiliser le LiDAR RpLidar-S2 (ou le RpLidar-A2 très similaire) de Slamtec, on utilise le package

sllidar_ros2 [6]. Ce package a été créé par le constructeur et est donc optimisé pour fonctionner

avec tous les LiDARs slamtec RpLidar. Il permet de lire les données du capteur et de les publier

dans un topic nommé /scan sous le format sensor_msgs/LaserScan [7].

L’intérêt est que ce nœud a été écrit en C++ et compilé, il est plus rapide que les nœuds en python.

Ainsi il permet de suivre la cadence de 1Mbits/s imposé par le RpLidar S2. Ces données peuvent

ensuite être utilisées pour cartographier l’environnement et pour localiser la voiture.

Installation du package rplidar_ros

Pour installer le package rplidar_ros (via le paquet linux sllidar_ros2), suivre les instructions

fournies par Slamtec [6].

Figure 2 : extrait de la section installation du dépôt git du noeud ROS2 pour RpLidar

La section installation propose :

• De se placer dans le dossier src du dossier de travail : cd ~/ros2_ws/src

• D’y copier les fichiers source du nœud :
git clone -b ros2 https://github.com/Slamtec/rplidar_ros.git

• Depuis le dossier de travail ros2_ws, compiler le nœud :

source ./install/setup.bash puis colcon build --symlink-install

Quelques warnings apparaissent :

Le package rplidar_ros2 nécessite des permissions en lecture et en écriture pour le port série. Pour

lui ajouter ses permissions, on utilise la commande suivante :

4

sudo chmod 777 /dev/ttyUSB0

On peut également éviter ce changement de permissions nécessaire à chaque connexion sur le port

série en ajoutant l’utilisateur dans le groupe DIALOUT et en redémarrant la session (ou en

redémarrant le nano-ordinateur).

sudo usermod -aG dialout $USER

Utilisation du package rplidar_ros2

Pour utiliser le package rplidar_ros2, on utilise, comme indiqué dans les instructions du dépôt, les

commandes suivantes (en remplaçant nom du LiDAR par a2, a3 ou s2:

• ros2 launch rplidar_ros view_rplidar_<nom du LiDAR>_launch.py

• ros2 launch rplidar_ros rplidar_<nom du LiDAR>_launch.py

Les deux commandes permettent de d’exécuter le nœud du capteur et publier les données dans le

topic /scan. La première ajoute l’ouverture de Rviz2 pour avoir un affichage graphique des données

du capteur, ce qui fonctionne uniquement si le nano-ordinateur dispose d’un environnement

graphique.

Il est possible d’avoir certains problèmes lors de l’utilisation du package. La principale erreur est

un arrêt du LiDAR au bout d’une dizaine de secondes, dû au mode de scan utilisé. Il est possible de

revenir à un fonctionnement plus stable en modifiant le fichier launch correspondant au LiDAR, en

remplaçant la ligne suivante :

scan_mode = LaunchConfiguration('scan_mode', default='DenseBoost')

par :

scan_mode = LaunchConfiguration('scan_mode', default='Standard')

Le LiDAR utilise alors, avec robustesse, le mode ‘Standard’ à son prochain lancement.

On peut observer les messages publiés par le LiDAR dans une 2nde console, en utilisant les

commandes suivantes :

ros2 topic list

ros2 topic echo /scan

5

1.3 - Création du nœud de commande de la voiture

Le nœud de commande de la voiture, comme indiqué sur la Figure 1, reçoit un topic de type

AckermannDrive et envoie ensuite les consignes de vitesse et direction au microcontrôleur via la

liaison USB-série.

Figure 3 : Messages impliqués dans la transmission des consignes de vitesse et direction du topic ROS

jusqu'aux moteurs

Ackermann fait référence à une modélisation des véhicules automobiles classiques. Le topic

cmd_ackermann, de type AckermannDrive, contient 5 informations, dont seulement 2 (steering

angle et speed) seront utilisées dans cette ressource :

• float32 steering_angle # consigne d’angle de direction (radians)

• float32 steering_angle_velocity # consigne de vitesse de direction (radians/s)

• float32 speed # consigne de vitesse (m/s)

• float32 acceleration # consigne d’acceleration (m/s^2)

• float32 jerk # consigne de jerk (m/s³)

La trame envoyée au microcontrôleur dépend du code de réception implantée dans le

microcontrôleur. Ici, a été choisie la forme d’une trame ASCII (plus facile à lire pour le débogage)

avec le format suivant : « v12345d678\r ».

• ‘v’ marque le début de la trame,

Fourche optique
(pour la mesure de
vitesse)

Commande du
variateur+moteur de
propulsion

Commande du
servomoteur de
direction

Liaison USB-série
Trame de commande vitesse direction

impulsions

pwm

pwm

Nano-ordinateur
Raspberry Pi Carte

microcontrôleur

v04000d090\n

Nœud
commande

voiture Asserv.
vitesse

Direction

Topic cmd_ackermann
vitesse direction

6

• 12345 est un nombre entier sur 5 chiffres indiquant la consigne de vitesse en mm.s-1 avec

un offset de 4000 (04000 correspond à 0 m.s-1, 05000 correspond à 1 m.s-1 et 03000

correspond à 1 m.-1 en marche arrière).

• ‘d’ marque la transition entre les consignes de vitesse et de direction

• 678 est un nombre entier sur 3 chiffres indiquant la consigne de direction en degré, avec un

offset de 90° (072 correspond à une consigne de -18° donc la rotation maximale dans le sens

horaire, vers la droite et 108 correspond à une consigne de +18° donc la rotation dans le

sens trigonométrique, vers la gauche.

• ‘\r’ est le caracère de « retour chariot » indiquant la fin de la transmission.

La trame envoyée au repos est donc « v04000d090\r ». Le très léger logiciel minicom (sudo apt

install minicom) permet de tester l’envoi des commandes par la liaison USB-série.

Création du paquet monPaquetCoVAPSyR

L’instruction suivante, comme indiqué dans le tutoriel ros2/jazzy, crée le paquet ROS2

monPaquetCoVAPSyR et le nœud CoVAPSy_cmdR avec l’ajout en dépendance des messages

ackermann. Il faut l’exécuter depuis le dossier ros2_ws/src, où sont réunis les paquets personnels.

ros2 pkg create --build-type ament_python --license Apache-2.0 --node-

name CoVAPSy_cmdR monPaquetCoVAPSyR --dependencies rclpy

geometry_msgs ackermann_msgs

Codage du nœud de commande de la voiture

Coder le nœud de commande de la voiture, en remplissant le fichier CoVAPsy_cmdR.py situé dans

le dossier ros2_ws/src/monPaquetCoVAPSyR/monPaquetCoVAPSyR avec le code suivant (disponible

aussi en annexe). Pour faciliter l’édition des fichiers distants, il est possible d’utiliser le mode

remote de VsCode (avec le plugin remote-ssh).

from ackermann_msgs.msg import AckermannDrive

import rclpy
from rclpy.node import Node

import serial as s

port_serie = s.Serial(port='/dev/ttyACM0', baudrate=115200, bytesize=8, parity='N',
 stopbits=1, timeout=None, write_timeout=None,
 xonxoff=False, rtscts=False, dsrdtr=False)

class NoeudCommande(Node):
 def __init__(self):
 super().__init__('CoVAPSy_cmdR')
 self.__vitesse_m_s = 0.0
 self.__direction_degre = 0
 self.create_subscription(AckermannDrive, 'cmd_ackermann', self.__cmd_ackermann_callback, 1)
 self.get_logger().info('noeud cree')

 def __cmd_ackermann_callback(self, message):
 self.__vitesse_m_s = message.speed
 self.__direction_degre = message.steering_angle
 if self.__direction_degre > 25:
 self.__direction_degre = 25
 elif self.__direction_degre < -25:
 self.__direction_degre = -25
 try:
 direction = int(float(90 + self.__direction_degre))
 except:
 self.get_logger().warn('Bug direction:{},{}'.format(direction, type(direction)))
 vitesse = int(4000 + self.__vitesse_m_s*1000) # 4000 vitesse nulle
 port_serie.write(str.encode('v{0:05}d{1:03}\r'.format(vitesse, direction)))
 self.get_logger().info('v{0:05}d{1:03}'.format(vitesse, direction))

7

def main(args=None):
 rclpy.init(args=args)
 noeud = NoeudCommande()
 rclpy.spin(noeud)
 rclpy.shutdown()

if __name__ == '__main__':
 main()

Après l’initialisation du port série, la fonction constructeur __init__() crée les attributs privés de

l’objet, dont self.__vitesse_m_s et self.__direction_degre, crée le nœud et le fait souscrire au

topic /cmd_ackermann (le topic utilisé par le nœud de conduite pour transmettre les consignes de

vitesse et direction).

A chaque réception d’un message du topic /cmd_ackermann, la fonction

__cmd_ackermann_callback() est appelée et les valeurs des attributs self.__vitesse_m_s et

self.__direction_degre y sont mises à jour puis envoyées au moteur de propulsion (vitesse_m_s) et

au moteur de direction (direction_degre).

Déclaration des fichiers ajoutés au projet

Dans ros2_ws/src/monPaquetCoVAPSyR/setup.py, ajouter les liens vers les noeuds nécessaires. Le

fichier est aussi donné en annexe [14], il faut juste mettre en commentaire, pour l’instant, la ligne

concernant le nœud de conduite

from setuptools import find_packages, setup

package_name = 'monPaquetCoVAPSyR'

setup(
 name=package_name,
 version='0.0.0',
 packages=find_packages(exclude=['test']),
 data_files=[
 ('share/ament_index/resource_index/packages',
 ['resource/' + package_name]),
 ('share/' + package_name, ['package.xml']),
],
 install_requires=['setuptools'],
 zip_safe=True,
 maintainer='voituremaxime',
 maintainer_email='voituremaxime@todo.todo',
 description='TODO: Package description',
 license='Apache-2.0',
 tests_require=['pytest'],
 entry_points={
 'console_scripts': [
 'CoVAPSy_cmdR = monPaquetCoVAPSyR.CoVAPSy_cmdR:main'
 # 'CoVAPSy_conduiteR = monPaquetCoVAPSyR.CoVAPSy_conduiteR:main'
],
 },
)

Test du nœud CoVAPSy_cmdR

Une fois le nœud créé, il est possible de tester sa syntaxe :

colcon test-result --all --verbose

Le nœud testé et le paquet configuré dans setup.py, on construit le paquet et on lance le nœud,

depuis le dossier ros2_ws :

colcon build --packages-select monPaquetCoVAPSyR

source install/local_setup.bash

ros2 run monPaquetCoVAPSyR CoVAPSy_cmdR

8

Pour tester le bon fonctionnement, il est possible d’envoyer des messages avec consignes de vitesse

et de direction sur le topic /cmd_ackermann auquel le nœud CoVAPSy_cmd est abonné.

ros2 topic pub /cmd_ackermann ackermann_msgs/msg/AckermannDrive

"{steering_angle: 5.0, steering_angle_velocity: 0.0, speed: 1.0,

acceleration: 0.0, jerk: 0.0}"

Dans une nouvelle console, on affiche également, en guise de monitoring, les messages du topic

/cmd_ackermann avec la commande :

ros2 topic echo /cmd_ackermann

La voiture répond bien aux commandes du topic /cmd_ackermann, le nœud de commande est

fonctionnel.

1.4 - Création du nœud de conduite

Le nœud d’acquisition des données LiDAR et le nœud de commande étant fonctionnels, il reste à

créer le nœud de conduite où sera codé l’algorithme de contrôle de la voiture. Ce nœud est abonné

au topic de type LaserScan (nommé /scan) du LiDAR et émet le topic de type AckermannDrive

(nommé /cmd_ackermann) destiné à commander le véhicule.

Figure 4 : Topics reçus et émis par le nœud conduite

Pour faire simple, l’algorithme de conduite est extrêmement simple : la vitesse est de 0,5 m.s-1 et

la direction est proportionnelle à la différence entre la distance à l’obstacle à gauche et la distance

à l’obstacle à droite.

Vitesse = 0,5

Direction = tableauDesValeursLidar[indexAngle 60°] - tableauDesValeursLidar[indexAngle -60°]

Ajouter un fichier CoVAPSy_conduiteR.py au dossier ros2_ws/src/monPaquetCoVAPSyR/

monPaquetCoVAPSyR et y copier le contenu suivant (le fichier est aussi fourni en annexe.

cd src/monPaquetCoVAPSyR/monPaquetCoVAPSyR/

nano CoVAPSy_conduite.py

import rclpy
from ackermann_msgs.msg import AckermannDrive
from sensor_msgs.msg import LaserScan
from rclpy.node import Node

Topic LaserSacn
Valeurs du lidar

+ min, max, freq...

Topic AckermannDrive
vitesse/direction

Nœud
conduite

9

class Noeudconduite(Node):
 def __init__(self):
 super().__init__('CoVAPSy_conduiteR')

 # ROS interface
 self.__ackermann_publisher = self.create_publisher(AckermannDrive, 'cmd_ackermann', 1)
 self.create_subscription(LaserScan, 'scan', self.__on_lidar_acquisition, 1)
 self.get_logger().info('noeud cree')

 def __on_lidar_acquisition(self, message):
 tableauLidar = list(message.ranges)
 self.get_logger().info(f'60 {tableauLidar[533]:.2f} et -60 {tableauLidar[2666]:.2f}')
 command_message = AckermannDrive()
 command_message.speed = 1.0
 try:
 command_message.steering_angle = 100 * (tableauLidar[533] - tableauLidar[2666])
 except IndexError:
 command_message.steering_angle = 0.0
 if command_message.steering_angle > 18.0:
 command_message.steering_angle = 18.0
 if command_message.steering_angle < -18.0:
 command_message.steering_angle = -18.0
 self.__ackermann_publisher.publish(command_message)
 self.get_logger().info(f'v={command_message.speed:.2f} m/s,d= {command_message.steering_angle:.2f} rad')

def main(args=None):
 rclpy.init(args=args)
 noeud = Noeudconduite()
 rclpy.spin(noeud)
 rclpy.shutdown()

if __name__ == '__main__':
 main()

La fonction constructeur __init__() crée le nœud, crée le topic /cmd_ackermann pour publier les

consignes de vitesse et direction et souscrit au topic /scan où publie le LiDAR.

Grâce à cette souscription, quand un message est publié par le LiDAR, la fonction

__on_lidar_acquisition() s’exécute. Les 3200 données de distance (en m) acquises sur un tour

(attribut range du message) sont stockées dans un tableau. Sont utilisées dans cet exemple très

simple seulement la valeur à 60° (devant à gauche, index 533 du tableauLidar) et devant à droite

(index 2666 du tableauLidar). On crée ensuite un message de type AckermannDrive dont on met

l’attribut vitesse à 1 et la direction proportionnelle à la différence des deux distances citées ci-

dessus, ce qui est suffisant pour une conduite simple. Le message est ensuite publié.

Une fois le nœud enregistré, il faut l’ajouter au fichier setup.py.

 entry_points={

 'console_scripts': [

 'CoVAPSy_cmdR = monPaquetCoVAPSyR.CoVAPSy_cmdR:main'

 'CoVAPSy_conduiteR = monPaquetCoVAPSyR.CoVAPSy_conduiteR:main'
],

On peut alors tester et construire le nœud et le lancer pour vérifier qu’il s’exécute.

cd

cd ros2_ws/

colcon test-result --all --verbose

colcon build --packages-select monPaquetCoVAPSyR

source install/local_setup.bash

ros2 run monPaquetCoVAPSyR CoVAPSy_conduiteR

10

1.5 - Test de la conduite du véhicule

Les trois nœuds construits, il est possible de tester la conduite du véhicule, en ouvrant trois

consoles pour lancer les trois nœuds.

ros2 launch rplidar_ros rplidar_s2_launch.py

ros2 run monPaquetCoVAPSyR CoVAPSy_cmdR

ros2 run monPaquetCoVAPSyR CoVAPSy_conduiteR

La voiture parcourt la piste ou un couloir.

1.6 - Utilisation d’un PC stationnaire pour la visualisation et le monitoring et/ou le

calcul déporté

Les messages ROS2 pouvant utiliser UDP pour être transmis, il est possible de déporter le nœud de

conduite sur un PC stationnaire plus puissant. Pour cela, le PC doit être sur le même réseau wifi

que la voiture, avoir la même version de ROS2 et utiliser le même ROS_DOMAIN_ID.

Figure 5 : Nœuds et topic ROS2 dans le cas d'un contrôle déporté et d'un monitoring déporté

11

Quel que soit la machine sur laquelle est exécuté le nœud de conduite, il est possible d’utiliser le

PC stationnaire pour le monitoring avec les outils ROS2 : rviz et rqt. Cela a l’intérêt notamment de

dispenser le nano-ordinateur d’un environnement graphique, ce qui améliore ses performances,

tout en permettant de superviser le bon fonctionnement.

Commencer par vérifier que la voiture et le PC stationnaire sont dans le même réseau (ip a pour

afficher l’adresse IP) et ont le même ROS_DOMAIN_ID (echo $ROS_DOMAIN_ID pour l’afficher).

Les nœuds exécutés sur la voiture, il est alors possible de lancer rqt sur le PC stationnaire :

Figure 6 : Graphe des nœuds ROS2 exécutés dans la voiture, affiché sur le PC stationnaire

Figure 7 : Supervision des messages échangés dans la voiture sur les topics /cmd_ackermann et /scan, par

rqt depuis le PC stationnaire

Pour afficher les données du LiDAR dans rviz2, il faut situer le LiDAR dans la carte. Pour un usage

avancé, pour faire du SLAM par exemple, on situe le LiDAR par rapport à l’origine de la voiture et

la voiture dans l’espace. Ici, juste pour afficher les données du LiDAR, on le place à l’origine. Le

LiDAR est associé au repère (frame_id dans ROS2) ‘laser’, comme l’indique la supervision du topic

/scan ci-dessus.

La commande ROS2 pour placer le repère laser à l’origine du monde (!) est la suivante :

ros2 run tf2_ros static_transform_publisher 0 0 0 0 0 0 laser world

Nom du repère des données du LiDAR

12

Figure 8 : Consoles exécutées sur le PC stationnaires pour la supervision du comportement de la voiture

avec rqt et rviz2

Figure 9 : Affichage des données du LiDAR de la voiture dans rviz2 depuis le PC stationnaire

2 - Mise en œuvre de ROS2 pour le contrôle d’une voiture 1/10ème de

type CoVAPSy simulée sous Webots

Pour développer les algorithmes de conduite sans les contraintes matérielles de la voiture (espace

pour la piste, recharge des batteries…), il est intéressant de pouvoir travailler sur un simulateur.

Cela devient indispensable lorsqu’on souhaite faire de l’apprentissage par renforcement [8], la

voiture nécessitant un nombre d’essais et de chocs incompatible avec la robustesse de sa

mécanique. Webots est le simulateur choisi pour sa popularité en robotique, sa facilité de mise en

œuvre, et sa faculté à fonctionner sur un ordinateur sans carte graphique [2].

Webots peut être utilisé sans ROS2 pour simuler la voiture [2]. Cependant, si la voiture réelle est

prévue pour fontionner avec ROS2, simuler avec ROS2 est un atout important, très utilisé en

robotique. Webots-ROS2 fournit un nœud rpLidar émettant un topic similaire au nœud slamtec et

le topic de type AckermannDrive est facilement accepté pour commander la voiture simulée. Le

nœud de conduite sera alors identique de toute part au nœud de la voiture physique. Il est alors

possible de développer ce nœud sur la voiture simulée pour ensuite le copier sur la voiture réelle.

Cette partie présente pas à pas l’installation de ROS2 pour webots, l’exploitation des messages

LiDAR et l’écriture du nœud de commande pour mener à la conduite basique, avec le même nœud

que dans la partie précédente.

1. Choisir world pour le
repère d’origine de la visu
(Fixed Frame)

2. Cliquer sur Add pour
ajouter un topic à visualiser

3. Dans la fenêtre Add, choisir dans l’onglet By topic le topic
/scan et cliquer sur OK

13

Figure 10 : Nœuds et topic ROS2 dans le cas de la conduite d'une voiture simulée sur webots

2.1 - Installation de webots R2025a

La ressource « CoVAPSy : Mise en œuvre du simulateur Webots » [2] permet de faire les premiers

pas avec webots (attention elle a été écrite pour webots 2023a, quelques ajustements mineurs sont

à prévoir pour fonctionner avec webots R2025a) et les voitures CoVAPSy.

Sur ubuntu 24 (sur une machine physique ou virtuelle), quelques paquets sont à installer avant

webots :

sudo apt install make g++ ffmpeg libfreeimage3 libssh-dev libzip-dev

libxcb-xinerama0 libxcb-cursor0

Si un problème de dépendances persiste, la commande suivante résoud habituellement les soucis,

avant de relancer la ligne d’installation précédente :

sudo apt --fix-broken install

Le paquet webots_2025a_amd64.deb se télécharge depuis la page d’accueil de webots et s’installe

avec la commande suivante.

sudo dpkg -i webots_2025a_amd64.deb

Depuis le dépôt git de la course [9], copier le dossier Simulateur_CoVAPSy_Webots2025a_Base.zip

(1,1 Mo), en extraire le contenu dans le dossier Documents par exemple. Depuis webots, ouvrir le

monde (Documents/Simulateur_CoVAPSy_Webots2025a_ROS2/worlds/Piste_CoVAPSy_2025a.wbt)

et tester le bon fonctionnement du simulateur.

14

Figure 11 : Test du monde de base de la simulation CoVAPSy sous webots R2025a

2.2 - Suivi du tutoriel ros2 pour webots

Les liens [3], [4] et [5] permettent de prendre en main ROS2 pour webots.

Figure 12 : Copie d'écran de la page web du tutoriel ROS2 jazzy

15

Le tutoriel [3], onglet Simulators/webots/Installation (Ubuntu) donne les indications pour

l’installation du paquet ROS2 pour webots et le lancement d’un exemple :

sudo apt-get install ros-jazzy-webots-ros2

source /opt/ros/jazzy/setup.bash

export WEBOTS_HOME=/usr/local/webots

cd ~/ros2_ws

source install/local_setup.bash

ros2 launch webots_ros2_universal_robot multirobot_launch.py

Figure 13 : Exemple ros2 pour webots

2.3 - Création du package et du nœud de commande de la voiture

ROS2 pour webots installé, il s’agit désormais de créer le package monPaquetCoVAPSy avec le

monde associé et d’écrire le nœud de commande de la voiture. L’onglet Setting up a robot

simulation du tutoriel enseigne cela.

16

Figure 14 : Copie d'écran du tutoriel de création du package pour utiliser ros2 et un environnement webots

Création du paquet monPaquetCoVAPSy

L’instruction suivante, issue du tutoriel, avec l’ajout en dépendance des messages ackermann, crée

le paquet ROS2 monPaquetCoVAPSy qui sera utile pour s’interfacer avec webots. Il faut l’exécuter

depuis le dossier ros2_ws/src, où sont réunis les paquets personnels.

ros2 pkg create --build-type ament_python --license Apache-2.0 --node-

name CoVAPSy_cmd monPaquetCoVAPSy --dependencies rclpy geometry_msgs

webots_ros2_driver ackermann_msgs

Ajout du monde CoVAPSy au package

Ensuite, dans le dossier ros2_ws/src/monPaquetCoVAPSy, copier les dossiers worlds, protos et

controllers du dossier Simulateur_CoVAPSy_Webots2025a_Base_v2 disponible sur le dépôt git de la

course [11] et en annexe de cette ressource.

Figure 15 : Arborescence du dossier ros2_ws/src/monPaquetCoVAPSy

17

Lancer alors le logiciel webots et ouvrir le fichier monde suivant :

ros2_ws/src/monPaquetCoVAPSy/worlds/Piste_CoVAPSy_2025a.wbt

Dans l’arborescence du projet webots, au temps 0 et en pause, modifier le contrôleur de la voiture

jaune pour un contrôleur externe (la voiture jaune n’est plus contrôllée par le programme python

d’exemple) puis fermer webots. Depuis l’arborescence, supprimer également la voiture bleue, non

utilisée ici. Enregistrer le monde (File > Save World) et fermer

Figure 16 : Modification du type de contrôleur pour la voiture TT02_jaune_python

Création du nœud de commande de la voiture

Créer le nœud de commande de la voiture, en remplissant le fichier CoVAPsy_cmd.py situé dans le

dossier ros2_ws/src/monPaquetCoVAPSy/monPaquetCoVAPSy avec le code suivant (disponible aussi

en annexe) :

import rclpy
from ackermann_msgs.msg import AckermannDrive

class CoVAPSy_cmd:

 def init(self, webots_node, properties):
 self.__robot = webots_node.robot
 self.__vitesse_m_s = 0.0
 self.__direction_degre = 0
 # ROS interface
 rclpy.init(args=None)
 self.__node = rclpy.create_node('CoVAPSy_cmd')
 self.__node.create_subscription(AckermannDrive,'cmd_ackermann', self.__cmd_ackermann_callback, 1)

 self.__node.get_logger().info("noeud cree")
 self.__robot.setCruisingSpeed(self.__vitesse_m_s*3.6)
 self.__robot.setSteeringAngle(-self.__direction_degre*3.14/180)

 def __cmd_ackermann_callback(self, message):
 self.__vitesse_m_s = message.speed
 self.__direction_degre = message.steering_angle
 # self.__node.get_logger().info(

 # f"[CoVAPSy_cmd] Reçu : vitesse = {self.__vitesse_m_s} m/s, direction = {self.__direction_degre}°")

 def step(self):
 rclpy.spin_once(self.__node, timeout_sec=0)
 self.__robot.setCruisingSpeed(self.__vitesse_m_s*3.6)
 self.__robot.setSteeringAngle(-self.__direction_degre*3.14/180)

La fonction constructeur init() crée les attributs privés de l’objet, dont self.__vitesse_m_s et

self.__direction_degre, crée le nœud et le fait souscrire à cmd_ackermann (le topic utilisé par le

nœud de conduite pour transmettre les consignes de vitesse et direction). Ensuite, dans

l’initialisation puis dans la fonction step() appelée à chaque pas du simulateur, les valeurs de vitesse

18

et direction sont envoyées au moteur de propulsion (setCruisingSpeed) et au moteur de direction

(setSterringAngle).

Lorsqu’un message du topic cmd_ackermann arrive, la fonction __cmd_ackermann_callback() est

appelée et les attributs self.__vitesse_m_s et self.__direction_degre sont mis à jour avec les

valeurs speed et steering_angle du topic.

Création du lien entre le nœud de commande et la voiture webots

Créer ensuite le lien entre le nœud ROS2 CoVAPSy_cmd et l’objet webots TT02_jaune_python en

créant dans le dossier /ros2_ws/src/monPaquetCoVAPSy/ressource un fichier texte

TT02_jaune_python.urdf avec le contenu suivant (disponible aussi en annexe) :

<?xml version="1.0"?>
<robot name="TT02_jaune_python">
 <webots>
 <plugin type="monPaquetCoVAPSy.CoVAPSy_cmd.CoVAPSy_cmd" />

 </webots>
</robot>

Création du fichier de lancement

Le fichier launch est un fichier regroupant l’ensemble des instructions à effectuer pour démarrer

un système ROS2. Créer un dossier launch dans /ros2_ws/src/monPaquetCoVAPSy/ et, dans ce

dossier launch, un fichier monPaquetCoVAPSy_launch.py, avec le contenu suivant (aussi fourni en

annexe, il faut juste mettre en commentaire les 4 lignes concernant le nœud de conduite) :

import os
import launch
from launch_ros.actions import Node
from launch import LaunchDescription
from ament_index_python.packages import get_package_share_directory
from webots_ros2_driver.webots_launcher import WebotsLauncher
from webots_ros2_driver.webots_controller import WebotsController

def generate_launch_description():
 package_dir = get_package_share_directory('monPaquetCoVAPSy')
 robot_description_path = os.path.join(package_dir, 'resource', 'TT02_jaune_python.urdf')

 webots = WebotsLauncher(world=os.path.join(package_dir, 'worlds', 'Piste_CoVAPSy_2025a.wbt'))

 CoVAPSy_cmd = WebotsController(

 robot_name='TT02_jaune_python', parameters=[{'robot_description': robot_description_path},]

)

CoVAPSy_conduite = Node(

package='monPaquetCoVAPSy',
executable='CoVAPSy_conduite',

)

 return LaunchDescription([
 webots,
 CoVAPSy_cmd,
 #CoVAPSy_conduite,

 launch.actions.RegisterEventHandler(
 event_handler=launch.event_handlers.OnProcessExit(
 target_action=webots,
 on_exit=[launch.actions.EmitEvent(event=launch.events.Shutdown())],
)
)
])

Dans ce fichier, on retrouve dans generate_launch_description(), le lien entre le projet webots et

le nœud CoVAPSy_cmd.

19

Via LaunchDescription() sont lancés webots et le nœud CoVAPSy_cmd. Le nœud de conduite n’est

pour l’instant pas exécuté et reste en commentaire.

Déclaration des fichiers ajoutés au projet

Dans ros2_ws/src/monPaquetCoVAPSy/setup.py, ajouter les liens vers les fichiers .proto et .stl

nécessaire au projet webots. Le fichier est donné en annexe [14], il faut juste mettre en

commentaire la ligne concernant le nœud de conduite

from setuptools import find_packages, setup

package_name = 'monPaquetCoVAPSy'

data_files = []
data_files.append(('share/ament_index/resource_index/packages', ['resource/' + package_name]))
data_files.append(('share/' + package_name + '/launch', ['launch/monPaquetCoVAPSy_launch.py']))
data_files.append(('share/' + package_name + '/worlds', ['worlds/Piste_CoVAPSy_2025a.wbt']))
data_files.append(('share/' + package_name + '/worlds', ['worlds/ImageToStl_virage.obj']))
data_files.append(('share/' + package_name + '/resource', ['resource/TT02_jaune_python.urdf']))
data_files.append(('share/' + package_name + '/protos', ['protos/TT02_2025a.proto']))
data_files.append(('share/' + package_name + '/protos', ['protos/TT02Wheel.proto']))
data_files.append(('share/' + package_name + '/protos', ['protos/ChevroletCamaroLight.stl']))
data_files.append(('share/' + package_name + '/controllers/controller_violet',
 ['controllers/controller_violet/controller_violet.py']))
data_files.append(('share/' + package_name, ['package.xml']))

setup(
 name=package_name,
 version='0.0.0',
 packages=find_packages(exclude=['test']),
 data_files=data_files,
 install_requires=['setuptools'],
 zip_safe=True,
 maintainer='webotsros2',
 maintainer_email='webotsros2@toto.fr',
 description='paquet de commande de la voiture CoVAPSy simulee',
 license='Apache-2.0',
 tests_require=['pytest'],
 entry_points={
 'console_scripts': [
 'CoVAPSy_cmd = monPaquetCoVAPSy.CoVAPSy_cmd:main',
 #'CoVAPSy_conduite = monPaquetCoVAPSy.CoVAPSy_conduite:main'
],
 },
)

Test du nœud CoVAPSy_cmd

Le nœud et l’environnement configurés, on construit le nœud et on le lance, depuis le dossier

ros2_ws :

colcon build --packages-select monPaquetCoVAPSy

source install/local_setup.bash

ros2 launch monPaquetCoVAPSy monPaquetCoVAPSy_launch.py

20

La fenêtre webots doit alors se lancer. Pour tester le bon fonctionnement, il est possible d’envoyer

des messages sur le topic cmd_ackermann auquel le nœud CoVAPSy_cmd est abonné. Pour cela on

utilise l’outil rqt de ROS2.

En plus du terminal de lancement du nœud, un terminal permet de lancer rqt et un terminal permet

de lancer l’affichage des messages du topic /cmd_ackermann avec la commande :

ros2 topic echo /cmd_ackermann

Dans rqt, on choisit d’afficher les nœuds (Plugins > Introspection > Node Graph) et de publier des

messages sur le topic /cmd_ackermann (Plugins > Topics > Message Publisher). Rqt a d’autres

fonctionnalités. Ne pas hésiter à les explorer.

Dans le simulateur webots, la voiture violette qui sert de sparring partner à la voiture jaune (celle

que l’on contrôle) peut être démarrée en cliquant dans la vue 3D et en appuyant sur la touche ‘a’.

On peut alors depuis rqt contrôller la voiture jaune pour concourir contre la voiture automatique

violette.

Figure 17 : Test du nœud CoVAPSy_cmd avec la publication par rqt de messages sur le topic
cmd_ackermann

Nœud
TT02_jaune_
python qui
publie les
message du
lidar

Nœud CoVAPSy_cmd qui
contrôle les moteurs de vitesse
et direction de la voiture

Topic
/cmd_ackermann
véhiculant les
consignes de
vitesse et direction

Publication de
message sur le topic
cmd_ackermann pour
commander la voiture
jaune

21

2.4 - Les messages RpLidarA2 publiés par la voiture simulée

Le nœud TT02_jaune_python publie des messages de type LaserScan avec les données du LiDAR de

la voiture. On peut retrouver le nom du topic et les valeurs publiées dans rqt > Topics > Topic

Monitor.

L’attribut ranges contient les distances mesurées par le LiDAR, avec le nombre de points

correspondant à ce qui a été défini dans les attributs. Dans le projet de base fourni, la fréquence

de rotation est de 12 Hz avec 360 points par tour. Il est possible de modifier ces paramètres pour

se rapprocher du LiDAR réel (1600 points par tour annoncés pour le A2M12 et 3200 points pour le

S2). On se limite ici à 360 points, suffisants pour développer un nœud fonctionnel. Attention, à

chaque modification, il faut reconstruire le paquet (colcon build...).

Figure 18 : Paramètres du LiDAR RpLidarA2 de la voiture TT02_jaune_python dans webots

On peut afficher aussi les messages depuis une console avec les commandes suivantes :

ros2 topic list

ros2 topic echo /TT02_jaune_python/RpLidarA2

22

Figure 19 : Affichage des messages du topic RpLidarA2 depuis une console

Pour afficher les données du LiDAR dans rviz2, il faut situer le LiDAR dans la carte. Ici, on le place

à l’origine. Le LiDAR est associé au repère (frame_id dans ROS2) RpLidarA2, comme l’indique la

figure ci-dessous.

Figure 20 : Repère (frame_id) dans lequel sont données les valeurs du LiDAR

La commande ROS2 pour placer le repère RPLidarA2 à l’origine du monde est la suivante :

ros2 run tf2_ros static_transform_publisher 0 0 0 0 0 0 RpLidarA2 world

Pour afficher les données dans rviz2, lancer le paquet monPaquetCoVAPSy, lancer la transformée

tf ci-dessus et lancer rviz2 (on tape rviz2 dans une console) et suivre les instructions ci-dessous :

23

Figure 21 : Affichage des données du LiDAR de la voiture jaune simulée dans rviz2

2.5 - Création du nœud de conduite

La voiture publie les données du LiDAR dans le topic /TT02_jaune_python/RpLidarA2 et consomme

(via le nœud CoVAPSy_cmd) les données du topic /cmd_ackermann pour ses consignes de vitesse

et de direction.

Il est donc possible d’installer le même nœud que dans la voiture réelle qui, à partir des données

du LiDAR élabore des consignes de vitesse et de direction.

Figure 22 : Topics reçus et émis par le nœud conduite

Pour créer le nœud, créer un fichier CoVAPSy_conduite.py dans le dossier

ros2_ws/src/monPaquetCoVAPSy/monPaquetCoVAPSy avec le code suivant, identique au nom des

messages prêts à celui de la voiture réelle :

import rclpy

from sensor_msgs.msg import LaserScan
from ackermann_msgs.msg import AckermannDrive
from rclpy.node import Node

class CoVAPSy_conduite(Node):
 def __init__(self):
 super().__init__('CoVAPSy_conduite')

 # ROS interface
 self.__ackermann_publisher = self.create_publisher(AckermannDrive, 'cmd_ackermann',1)
 self.create_subscription(LaserScan, 'TT02_jaune_python/RpLidarA2', self.__on_lidar_acquisition,1)
 self.get_logger().info(f"[CoVAPSy_conduite] noeud cree")

 def __on_lidar_acquisition(self, message):
 tableauLidar = list(message.ranges)
 self.get_logger().info(f'60 {tableauLidar[120]:.2f} et -60 {tableauLidar[240]:.2f}')
 command_message = AckermannDrive()

1. Choisir world pour le
repère d’origine de la visu
(Fixed Frame)

2. Cliquer sur Add pour
ajouter un topic à visualiser

3. Choisir dans l’onglet By
topic le topic
/RPLidarA2/LaserScan et
cliquer sur OK

Topic LaserSacn
Valeurs du lidar

+ min, max, freq...

Topic AckermannDrive
vitesse/direction

Nœud
conduite

24

 command_message.speed = 1.0
 try:
 command_message.steering_angle = 100 * (tableauLidar[120] - tableauLidar[240])
 except IndexError:
 command_message.steering_angle = 0.0
 if command_message.steering_angle > 18.0:
 command_message.steering_angle = 18.0
 if command_message.steering_angle < -18.0:

 command_message.steering_angle = -18.0

 self.__ackermann_publisher.publish(command_message)
 self.get_logger().info(f"v= {command_message.speed:.2f} m/s, dir= {command_message.steering_angle:.2f} rad")

def main(args=None):
 rclpy.init(args=args)
 controller = CoVAPSy_conduite()
 rclpy.spin(controller)
 rclpy.shutdown()

if __name__ == '__main__':
 main()

On ajoute alors le nœud au fichier monPaquetCoVAPSy_launch.py et au fichier setup.py. Il suffit

d’ôter les commentaires de ces fichiers décrit dans la partie 2.3. Les fichiers sont aussi fournis en

annexe de cette ressource [14].

On construit de nouveau le paquet et on lance le nœud.

Il est possible bien sûr de limiter le bavardage du nœud en commentant les lignes get_logger()…

dans les fichiers python.

Figure 23 : Sur Webots, la Voiture jaune est contrôlée par le nœud ROS2 « CoVAPSy_conduite », la voiture

violette est contrôlée par un algorithme basique pour représenter les voitures adverses

25

3 - Conclusion

Cette ressource permet de mettre en œuvre une conduite basique avec ROS2 sur la voiture réelle

et sur le simulateur et également de manipuler quelques outils de monitoring ROS2 (rviz2 et rqt).

Aux étudiants de se l’approprier pour programmer une voiture performante et innovante.

Cette ressource est appelée à s’améliorer, ne pas hésiter à envoyer des commentaires

(anthony.juton@ens-paris-saclay.fr).

26

Références :

[1]: ROS2 : bibliothèques et outils pour le développement logiciel en robotique, J. Farnault,

S. Rodriguez, A. Juton, 2026, https://sti.eduscol.education.fr/si-ens-paris-

saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-

robotique

[2]: CoVAPSy : Mise en œuvre du simulateur Webots, T. Boulanger, E. Délégue , K. Hoarau,

A. Juton, 2023, https://sti.eduscol.education.fr/si-ens-paris-

saclay/ressources_pedagogiques/covapsy-mise-en-oeuvre-du-simulateur-webots

[3]: Tutoriel ROS2 pour webots

https://docs.ros.org/en/jazzy/Tutorials/Advanced/Simulators/Webots/Simulation-Webots.html

[4]: Playlist Webots ROS2 Tutorial de la chaîne YouTube Soft illusion

https://www.youtube.com/playlist?list=PLt69C9MnPchkP0ZXZOqmIGRTOch8o9GiQ

[5]: La documentation webots ROS2 https://github.com/cyberbotics/webots_ros2 avec

notamment les types de messages envoyés par les différents capteurs.

https://github.com/cyberbotics/webots_ros2/wiki/References-Nodes

[6]: Dépôt git du package « ROS2 node for SLAMTEC LiDAR » et les instructions associées :

https://github.com/Slamtec/sllidar_ros2

[7]: Détails du format des messages LaserScan :

https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html

[8]: Apprentissage par renforcement et transfert simulation vers réalité pour la conduite de

voitures autonomes, R. Bennani, K. Hoarau, A. Juton, 2024, https://sti.eduscol.education.fr/si-

ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-

realite-pourla-conduite-voitures-autonomes

[9]: Dépôt git de la course de voiture autonomes, dossier simulateur : https://github.com/ajuton-

ens/CourseVoituresAutonomesSaclay/tree/main/Simulator

[10]: https://github.com/cyberbotics/webots_ros2/wiki/Example-Mavic-2-Pro

[11]: Dépôt git de la course de voitures autonomes : https://github.com/ajuton-

ens/CourseVoituresAutonomesSaclay

[12]: Dépôt git de l’équipe de Sorbonne Université (ROS2 et SLAM) : https://github.com/SU-Bolides

[13]: Course de Voitures Autonomes Paris-Saclay (CoVAPSy) : Travaux pratiques autour des

voitures autonomes, T. Boulanger, E. Délégue , K. Hoarau, A. Juton, 2023,

https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-tp-autour-

des-voitures-autonomes

[14]: Annexes de : Mise en œuvre de ROS2 pour le contrôle d’une voiture CoVAPSy simulée sous

Webots et réelle, J. Farnault, S. Rodriguez, A. Juton, M. Goupillon, 2026,

https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-

ros2-pour-controle-voiture-autonome-1-10e

• Remarques sur l’installation de webots sur une machine virtuelle

• Configuration du wifi sur une machine ubuntu server (sans interface graphique)

• Fichiers simulateur

• Fichiers voiture

Ressource publiée sur Culture Sciences de l’Ingénieur : https://eduscol.education.fr/sti/si-ens-paris-saclay

https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-mise-en-oeuvre-du-simulateur-webots
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-mise-en-oeuvre-du-simulateur-webots
https://discourse.ros.org/
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Simulators/Webots/Simulation-Webots.html
https://www.youtube.com/playlist?list=PLt69C9MnPchkP0ZXZOqmIGRTOch8o9GiQ
https://github.com/cyberbotics/webots_ros2
https://github.com/cyberbotics/webots_ros2/wiki/References-Nodes
https://github.com/Slamtec/sllidar_ros2
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-realite-pourla-conduite-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-realite-pourla-conduite-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-realite-pourla-conduite-voitures-autonomes
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay/tree/main/Simulator
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay/tree/main/Simulator
https://github.com/cyberbotics/webots_ros2/wiki/Example-Mavic-2-Pro
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay
https://github.com/SU-Bolides
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-tp-autour-des-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-tp-autour-des-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://eduscol.education.fr/sti/si-ens-paris-saclay

