Mise en oceuvre de ROS2 pour le Culture Sciences
N : . de I’'Ingénieur
controle d’'une voiture CoVAPSy

° Vé 4 Revue
simulee sous Webots et reelle L?:EI
Anthony JUTON' - Sergio RODRIGUEZ? Edité le i
Jules FARNAULT? - Mathis GOUPILLON? 03/02/2026 x| oiap 5

" Professeur agrégé a I’ENS Paris Saclay, DER Sciences de [’Ingénierie Electrique et Numérique
2 Maitre de conférences au laboratoire SATIE, ENS Paris Saclay
3 Eléve normalien a ’ENS Paris Saclay, DER Sciences de [’Ingénierie Electrique et Numérique

Cette ressource fait partie du N°118 de La Revue 3El du premier trimestre 2026.

Cette ressource fait suite a la ressource « ROS2 : bibliothéques et outils pour le développement
logiciel en robotique » [1]. Pour les étudiants participant a la course de voitures autonomes de
Paris Saclay CoVAPSy [13], elle guide dans la mise en ceuvre de ROS2 pour la conduite d’une voiture
réelle ou simulée sous Webots. Pour les autres, c’est un exemple de mise en ceuvre de ROS2 pour
le controle d’un robot réel controlé par Raspberry Pi et simulé sous Webots. Webots fournit un
autre exemple d’utilisation de ROS2 sur un robot, pour le controle d’un drone simulé [10].

Voiture autonome contrélée par ROS2 ayant participé a la course de Paris-Saclay CoVAPSy

ROS2 est utilisé sur les voitures de la course CoVAPSy par plusieurs équipes pour plusieurs raisons :

e Les fournisseurs des capteurs fournissent les noeuds, écrits en C et optimisés, permettant
’acquisition des informations des capteurs (Slamtec fournit un noeud pour son LiDAR et Intel
pour la caméra Realsense D435i notamment) ;

e Les fournisseurs de nano-ordinateurs embarqués (raspberry, nvidia, qualcomm) fournissent
une implémentation de ROS2 fonctionnelle pour leurs cartes ;

e ROS2 est multiprocessing de par sa conception, ce qui permet d’utiliser au mieux les
différents coeurs du microprocesseur du nano-ordinateur (RPI5 ou autre) ;

e Les messages ROS2 pouvant étre transmis par IP, cela permet de superviser le
fonctionnement de la voiture depuis un PC déporté, avec les outils de monitoring ROS2. Le
nano-ordinateur n’a alors pas besoin d’une interface graphique, ce qui allege ’OS ;

e Les nceuds ROS2 peuvent étre portés du simulateur vers la voiture simplement ;

1

https://eduscol.education.fr/sti/si-ens-paris-saclay
https://eduscol.education.fr/sti/si-ens-paris-saclay/revue-3ei

e ROS2 étant tres utilisé en robotique, on y trouve des noeuds permettant de mettre en ceuvre
des solutions avancées, comme le SLAM (Simultaneous Localization and Mapping) utilisé par
[’équipe Sorbonne Université [12].

1 - Mise en ceuvre de ROS2 pour le contirole d’'une voiture 1/10eme de
type CoVAPSy

Cette partie présente la mise en place d’un controle simple de la voiture par ROS2, avec un nano-
ordinateur Raspberry Pi et un LiDAR Slamtec S2. Un LiDAR (light detection and ranging) est un
télémetre laser tournant, permettant d’obtenir en 2 ou 3D une cartographie des obstacles autour
du véhicule.

(Graphe ROS2 exécuté par Raspberry Pi embarquée .4

Neoeud LiDAR .I;?aﬁ::ul;: Sdirﬁ:acp cglr?zﬁﬁe Topic AckermannDrive commande
vitesse/direction voiture

(SLAMTEC) + min, max, freq... (CULENS) (COVAPSY)

4

Liaison série)
t

Chassis voiture réelle TT-02 48 a‘ D Microcontraleur commandant
_ e variateur de propulsion et
RPLIDARAZM12 . 4 Servo-moteur de direction

Déplacements

Obstacles percus par le LiDAR

Piste et voitures adverses

Environnement : piste + voiture réelle

Figure 1 : Noeuds et topics ROS2 utilisés pour la conduite autonome de la voiture type CoVAPSy
1.1 - Installation ubuntu 24.04 server et ROS2 jazzy

La ressource « ROS2 : bibliotheques et outils pour le développement logiciel en robotique » [1]
présente U'installation de ROS2 jazzy. Sur la raspberry Pi5, il est possible d’installer Ubuntu Desktop
(avec la gourmande interface graphique gnome). Sinon, une version server, sans interface
graphique est suffisante, ROS2 fournissant les outils pour le monitoring a distance.

Attention, un changement d’adresse de dépot de ros2 a eu lieu (repo.ros2.org/ubuntu désormais),
il faut peut-étre modifier celle-ci dans /etc/apt/sources.list.d/ros2.list :

$ sudo nano /etc/apt/sources.list.d

voituremaxime@voituremaxime: ~fros2_ws

GNU nano 7.2 /etc/apt/sources.list.d/ros2.list

La conduite de la voiture utilise des messages de type ackermannDrive, dont la définition est
installable avec l’instruction :

sudo apt install ros-jazzy-ackermann-msgs

$ sudo apt install ros-jazzy-ackermann-msgs

1.2 - Neeud slamtec Rplidar

Pour utiliser le LiDAR RpLidar-S2 (ou le RpLidar-A2 tres similaire) de Slamtec, on utilise le package
sllidar_ros2 [6]. Ce package a été créé par le constructeur et est donc optimisé pour fonctionner
avec tous les LiDARs slamtec RpLidar. Il permet de lire les données du capteur et de les publier
dans un topic nommé /scan sous le format sensor_msgs/LaserScan [7].

L’intérét est que ce nceud a été écrit en C++ et compilé, il est plus rapide que les nceuds en python.
Ainsi il permet de suivre la cadence de 1Mbits/s imposé par le RpLidar S2. Ces données peuvent
ensuite étre utilisées pour cartographier l’environnement et pour localiser la voiture.

Installation du package rplidar_ros

Pour installer le package rplidar_ros (via le paquet linux sllidar_ros2), suivre les instructions
fournies par Slamtec [6].

Compile & Install sllidar_ros2 package

1. Clone sllidar_ros2 package from github

Ensure you're still in the ros2_ws/src directory before you clone:

git clone https://github.com/Slamtec/sllidar_ros2.git
Figure 2 : extrait de la section installation du dépét git du noeud ROS2 pour RpLidar

La section installation propose :
e De se placer dans le dossier src du dossier de travail : cd ~/ros2_ws/src

e D’y copier les fichiers source du nceud :
git clone -b ros2 https://github.com/Slamtec/rplidar_ros.git

e Depuis le dossier de travail ros2_ws, compiler le nceud :

source ./install/setup.bash puis colcon build --symlink-install

Quelques warnings apparaissent :

S git clone -b ros2 https://github.com/Slamtec/rplidar_ros.git

Cloning into 'rplidar_ros'...

remote: Enumerating objects: 1248, done.
remote: Counting objects: 100% (627/627), done.

remote: Compressing objects: 100% (172/172), done.

remote: Total 1240 (delta 540), reused 455 (delta 455), pack-reused 613 (from 2)
Receiving objects: 100% (1240/1240), 647.66 KiB | 1.60 MiB/s, done.

Resolving deltas: 100% (823/823), done.

$cd ..
S source ./install/setup.bash
$ colcon build --symlink-install
Starting >>> rplidar_ros
- stderr: rplidar_ros
Jhome /voituremaxime/ros2_ws/src/rplidar_ros/sdk/src/arch/linux/net_serial.cpp: In member function ‘bool rp::arch::net::ra
/home /voituremaxime/ros2_ws/src/rplidar_ros/sdk/src/arch/linux/net_serial.cpp:97:74: unused parameter ‘flags’ [
97 | bool raw_serial::open(const char * portname, uint32_t baudrate,)

Finished <<< rplidar_ros [23.95]

Summary: 1 package finished [24.1s]
1 package had stderr output: rplidar_ros

Le package rplidar_ros2 nécessite des permissions en lecture et en écriture pour le port série. Pour
lui ajouter ses permissions, on utilise la commande suivante :

sudo chmod 777 /dev/ttyUSBO

On peut également éviter ce changement de permissions nécessaire a chaque connexion sur le port
série en ajoutant l'utilisateur dans le groupe DIALOUT et en redémarrant la session (ou en
redémarrant le nano-ordinateur).

sudo usermod -aG dialout $USER

3 $ sudo usermod -aG dialout SUSER

Utilisation du package rplidar_ros2

Pour utiliser le package rplidar_ros2, on utilise, comme indiqué dans les instructions du dépot, les
commandes suivantes (en remplacant nom du LiDAR par a2, a3 ou s2:

ros2 launch rplidar_ros view_rplidar_<nom du LiDAR>_1launch.py
e ros2 launch rplidar_ros rplidar_<nom du LiDAR>_launch.py

Les deux commandes permettent de d’exécuter le noeud du capteur et publier les données dans le
topic /scan. La premiére ajoute |’ouverture de Rviz2 pour avoir un affichage graphique des données
du capteur, ce qui fonctionne uniquement si le nano-ordinateur dispose d’un environnement
graphique.

Il est possible d’avoir certains problemes lors de l'utilisation du package. La principale erreur est
un arrét du LiDAR au bout d’une dizaine de secondes, dii au mode de scan utilisé. Il est possible de
revenir a un fonctionnement plus stable en modifiant le fichier launch correspondant au LiDAR, en
remplacant la ligne suivante :

scan_mode = LaunchConfiguration('scan_mode', default='DenseBoost')

scan_mode = LaunchConfiguration('scan_mode', default='Standard')

Le LiDAR utilise alors, avec robustesse, le mode ‘Standard’ a son prochain lancement.

On peut observer les messages publiés par le LiDAR dans une 2nde console, en utilisant les
commandes suivantes :

ros2 topic list

ros2 topic echo /scan

$ ros2 launch rplidar_ros rplidar_s2 launch.py

[INFQ] [launch]: All log flleb can be found below /home/voituremaxime/.ros/log/2026-01-22-00-15-50-856487-voituremaxime-3032
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [rplidar_node-1]: process started with pid [3036]
[rplidar_node-1] [INFO] [1769040950.994800993] [rplidar_node]:
[rplidar_node-1] [INFO] [1769040951.011953632] [rplidar_node]:
[rplidar_node-1] [INFO] [1769040951.012007076] [rplidar_node]:
[rplidar_node-1] [INFO] [1769040951.012027836] [rplidar_node]:
[rplidar_node-1] [INFO] [1769040951
[rplidar_node-1] [INFO] [1769040951.

RPLidar running on R0OS2 RPLIDAR SDK Version:2.1.
RPLidar S/N: AADDECF8C4E699D7BBEB99F926024717

Firmware Ver: 1.01

Hardware Rev: 18

RPLidar health status : @

RPLidar health status : OK.

package rplidar_ros.

013801631] [rplidar_node]:

[rplidar_node-1] [INFO]
[rplidar node-1] [INFO]
[rplidar node-1] [INFO]
[

[1769040951.
[1769040951.
[1769040953.

015755463]
180077574]
301341506]

rplidar_node]:
rplidar_node]:
rplidar_node]:

[
[
[
.013766612] [rplidar_node]:
[
[
[
[

Start
current scan mode: DenseBoost, sample rate: 32 Khz,
set lidar scan frequency to 10.0 Hz(600.0 Rpm)

max_distance:

S : S ros2 topic list
/clicked point
/goal_pose
/initialpose
/parameter_events
/rosout
/scan
/tf
Jtf_static
S ros2 topic echo /scan

sec: 1769041086

nanosec: 346143364
[frame_id: laser
[angle_min: -3.1241390705108643
rangle max: 3.1415927410125732
[angleiincrement: 0.0019344649044796824
[time_increment: 3.049539191124495e-05
scan_time: 0.09877457469701767
[range_min: 0.15000000596046448

: 30.0

[- ©.5989999771118164
[- 0.6050000190734863

1.3 - Création du noeud de commande de la voiture

Le noeud de commande de la voiture, comme indiqué sur la Figure 1, recoit un topic de type
AckermannDrive et envoie ensuite les consignes de vitesse et direction au microcontroleur via la
liaison USB-série.

impulsionsFourche optique
(pour la mesure de

Topic'cmd vitesse)

R commande
viteSSe direction §

- b 52 5,
Vs K% P
/ Asserv. &”' o

vitesse ';.A 4
i i E,"“‘ L

Commande du
variateur+moteur de
propulsion

-~

Liaison USB-série
Trame de commande vitesse direction

pwm Commande du
—— P servomoteur de
v04000d090\n Carte direction
microcontrdleur

Nano-ordinateur
Raspberry Pi

Figure 3 : Messages impliqués dans la transmission des consignes de vitesse et direction du topic ROS
jusqu'aux moteurs

Ackermann fait référence a une modélisation des véhicules automobiles classiques. Le topic
cmd_ackermann, de type AckermannDrive, contient 5 informations, dont seulement 2 (steering
angle et speed) seront utilisées dans cette ressource :

o float32 steering_angle # consigne d’angle de direction (radians)

o float32 steering_angle_velocity # consigne de vitesse de direction (radians/s)

o float32 speed # consigne de vitesse (m/s)
o float32 acceleration # consigne d’acceleration (m/s"2)
o float32 jerk # consigne de jerk (m/s3)

La trame envoyée au microcontroleur dépend du code de réception implantée dans le
microcontroleur. Ici, a été choisie la forme d’une trame ASCII (plus facile a lire pour le débogage)
avec le format suivant : « v12345d678\r ».

e ‘v’ marque le début de la trame,

e 12345 est un nombre entier sur 5 chiffres indiquant la consigne de vitesse en mm.s" avec
un offset de 4000 (04000 correspond a 0 m.s™, 05000 correspond a 1 m.s' et 03000
correspond a 1 m.-1 en marche arriere).

¢ ‘d’ marque la transition entre les consignes de vitesse et de direction

e 678 est un nombre entier sur 3 chiffres indiquant la consigne de direction en degré, avec un
offset de 90° (072 correspond a une consigne de -18° donc la rotation maximale dans le sens
horaire, vers la droite et 108 correspond a une consigne de +18° donc la rotation dans le
sens trigonométrique, vers la gauche.

e “\r’ est le caracére de « retour chariot » indiquant la fin de la transmission.

La trame envoyée au repos est donc « v04000d090\r ». Le trés léger logiciel minicom (sudo apt
install minicom) permet de tester I’envoi des commandes par la liaison USB-série.

Création du paquet monPaquetCoVAPSyR

L’instruction suivante, comme indiqué dans le tutoriel ros2/jazzy, crée le paquet ROS2
monPaquetCoVAPSyR et le nceud CoVAPSy_cmdR avec l’ajout en dépendance des messages
ackermann. Il faut ’exécuter depuis le dossier ros2_ws/src, ou sont réunis les paquets personnels.

ros2 pkg create --build-type ament_python --license Apache-2.0 --node-
name CoVAPSy_cmdR monPaquetCoVAPSYR --dependencies rclpy
geometry_msgs ackermann_msgs

Codage du nceud de commande de la voiture

Coder le nceud de commande de la voiture, en remplissant le fichier CoVAPsy_cmdR.py situé dans
le dossier ros2_ws/src/ monPaquetCoVAPSyR/ monPaquetCoVAPSyR avec le code suivant (disponible
aussi en annexe). Pour faciliter ’édition des fichiers distants, il est possible d’utiliser le mode
remote de VsCode (avec le plugin remote-ssh).

from ackermann_msgs.msg import AckermannDrive

import rclpy
from rclpy.node import Node

import serial as s

port_serie = s.Serial(port='/dev/ttyACMO', baudrate=115200, bytesize=8, parity='N",
stopbits=1, timeout=None, write_timeout=None,
xonxoff=False, rtscts=False, dsrdtr=False)

class NoeudCommande(Node):
def __init_ (self):
super().__init__ ('CoVAPSy_cmdR")
self.__vitesse_m_s = 0.0
self.__direction_degre = 0
self.create_subscription(AckermannDrive, 'cmd_ackermann', self.__cmd_ackermann_callback, 1)
self.get_logger().info('noeud cree')

def _ cmd_ackermann_callback(self, message):
self.__vitesse_m_s = message.speed
self.__direction_degre = message.steering_angle
if self.__direction_degre > 25:
self.__direction_degre = 25
elif self.__direction_degre < -25:

self.__direction_degre = -25
try:

direction = int(float(90 + self.__direction_degre))
except:

self.get_logger().warn('Bug direction:{},{}'.format(direction, type(direction)))
vitesse = int(4000 + self.__vitesse_m_s*1000) # 4000 vitesse nulle
port_serie.write(str.encode('v{0:05}d{1:03}\r'.format(vitesse, direction)))
self.get_logger().info('v{0:05}d{1:03}'.format(vitesse, direction))

def main(args=None):
rclpy.init(args=args)
noeud = NoeudCommande()
rclpy.spin(noeud)
rclpy.shutdown()

if __name__ == '__main__':

main()

Aprées initialisation du port série, la fonction constructeur __init__ () crée les attributs privés de
’objet, dont self._ vitesse_m_s et self.__direction_degre, crée le nceud et le fait souscrire au
topic /cmd_ackermann (le topic utilisé par le nceud de conduite pour transmettre les consignes de
vitesse et direction).

A chaque réception d’un message du topic /cmd_ackermann, la fonction
__cmd_ackermann_callback() est appelée et les valeurs des attributs self._ vitesse_m_s et
self.__direction_degre y sont mises a jour puis envoyées au moteur de propulsion (vitesse_m_s) et
au moteur de direction (direction_degre).

Déclaration des fichiers ajoutés au projet

Dans ros2_ws/src/ monPaquetCoVAPSyR/setup.py, ajouter les liens vers les noeuds nécessaires. Le
fichier est aussi donné en annexe [14], il faut juste mettre en commentaire, pour U'instant, la ligne
concernant le nceud de conduite

from setuptools import find_packages, setup
package_name = 'monPaquetCoVAPSyR'

setup(
name=package_name,
version='0.0.0",
packages=find_packages(exclude=["'test']),
data_files=[
('share/ament_index/resource_index/packages',
['resource/' + package_name]),
('share/' + package_name, ['package.xml']),
1,
install requires=['setuptools'],
zip_safe=True,
maintainer="voituremaxime',
maintainer_email="voituremaxime@todo.todo',
description='TODO: Package description',
license="'Apache-2.0",
tests_require=['pytest'],
entry_points={
'console_scripts': [
'CoVAPSy_cmdR = monPaquetCoVAPSyR.CoVAPSy_cmdR:main'
'CoVAPSy_conduiteR = monPaquetCoVAPSYyR.CoVAPSy conduiteR:main'
1,
3
)

Test du nceud CoVAPSy_cmdR

Une fois le nceud créé, il est possible de tester sa syntaxe :

colcon test-result --all --verbose

Le nceud testé et le paquet configuré dans setup.py, on construit le paquet et on lance le noeud,
depuis le dossier ros2_ws :

colcon build --packages-select monPaquetCoVAPSyR
source install/local_setup.bash
ros2 run monPaquetCoVAPSyR CoVAPSy_cmdR

Pour tester le bon fonctionnement, il est possible d’envoyer des messages avec consignes de vitesse
et de direction sur le topic /cmd_ackermann auquel le nceud CoVAPSy_cmd est abonné.

ros2 topic pub /cmd_ackermann ackermann_msgs/msg/AckermannDrive
"{steering_angle: 5.0, steering_angle_velocity: 0.0, speed: 1.0,
acceleration: 0.0, jerk: 0.0}"

Dans une nouvelle console, on affiche également, en guise de monitoring, les messages du topic
/cmd_ackermann avec la commande :

ros2 topic echo /cmd_ackermann

Last login: Fri Jan 23 68
n build --packages-select monPaquet |

not follow the naming ¢
0, steering_an

only contain lower cas : o\ S ackermann ar g_angle=5.0,

$ ros2 topic echo /cmd_ackermann

La voiture répond bien aux commandes du topic /cmd_ackermann, le nceud de commande est
fonctionnel.

1.4 - Création du noceud de conduite

Le noeud d’acquisition des données LiDAR et le nceud de commande étant fonctionnels, il reste a
créer le noeud de conduite ou sera codé ’algorithme de controle de la voiture. Ce noeud est abonné
au topic de type LaserScan (nommé /scan) du LiDAR et émet le topic de type AckermannDrive
(nommé /cmd_ackermann) destiné a commander le véhicule.

Topic LaserSacn Neeud Topic AckermannDrive

conduite vitesse/direction

Valeurs du lidar
+ min, max, freq...

Figure 4 : Topics recus et émis par le nceud conduite

Pour faire simple, [’algorithme de conduite est extrémement simple : la vitesse est de 0,5 m.s" et
la direction est proportionnelle a la différence entre la distance a l’obstacle a gauche et la distance
a Uobstacle a droite.

Vitesse = 0,5
Direction = tableauDesValeursLidar[indexAngle 60°] - tableauDesValeursLidar[indexAngle -60°]

Ajouter un fichier CoVAPSy_conduiteR.py au dossier ros2_ws/src/monPaquetCoVAPSyR/
monPaquetCoVAPSyR et y copier le contenu suivant (le fichier est aussi fourni en annexe.

cd src/monPaquetCoVAPSYR/monPaquetCoVAPSyYR/
nano CoVAPSy_conduite.py

import rclpy

from ackermann_msgs.msg import AckermannDrive
from sensor_msgs.msg import LaserScan

from rclpy.node import Node

class Noeudconduite(Node):
def _ init_ (self):
super().__init__ ('CoVAPSy_conduiteR')
ROS interface

self.__ackermann_publisher = self.create_publisher(AckermannDrive, 'cmd_ackermann', 1)

self.create_subscription(LaserScan, 'scan', self.__on_lidar_acquisition, 1)
self.get_logger().info('noeud cree')

def _ on_lidar_acquisition(self, message):
tableaulLidar = list(message.ranges)

self.get_logger().info(f'60 {tableauLidar[533]:.2f} et -60 {tableauLidar[2666]:.2f}")

command_message = AckermannDrive()
command_message.speed = 1.0
try:

command_message.steering_angle = 100 * (tableauLidar[533] - tableaulLidar[2666])

except IndexError:
command_message.steering_angle = 0.0

if command_message.steering_angle > 18.0:
command_message.steering_angle = 18.0

if command_message.steering_angle < -18.0:
command_message.steering_angle = -18.0

self.__ackermann_publisher.publish(command_message)

self.get_logger().info(f'v={command_message.speed:.2f} m/s,d= {command_message.steering_angle:.2f} rad')

def main(args=None):
rclpy.init(args=args)
noeud = Noeudconduite()
rclpy.spin(noeud)
rclpy.shutdown()

if __name__ == '__main__':
main()

La fonction constructeur __init__() crée le nceud, crée le topic /cmd_ackermann pour publier les

consignes de vitesse et direction et souscrit au topic /scan ou publie le LiDAR.

Grace a cette souscription, quand un message est publié par le LiDAR,

la fonction

__on_lidar_acquisition() s’exécute. Les 3200 données de distance (en m) acquises sur un tour
(attribut range du message) sont stockées dans un tableau. Sont utilisées dans cet exemple tres
simple seulement la valeur a 60° (devant a gauche, index 533 du tableauLidar) et devant a droite
(index 2666 du tableauLidar). On crée ensuite un message de type AckermannDrive dont on met
Uattribut vitesse a 1 et la direction proportionnelle a la différence des deux distances citées ci-

dessus, ce qui est suffisant pour une conduite simple. Le message est ensuite publié.

Une fois le nceud enregistré, il faut l’ajouter au fichier setup.py.

entry_points={
'console_scripts': [
'CoVAPSy_cmdR = monPaquetCoVAPSyR.CoVAPSy_cmdR:main'
'CoVAPSy_conduiteR = monPaquetCoVAPSyR.CoVAPSy conduiteR:main'
1,

On peut alors tester et construire le nceud et le lancer pour vérifier qu’il s’exécute.

cd

cd ros2_ws/

colcon test-result --all --verbose

colcon build --packages-select monPaquetCoVAPSyR
source install/local_setup.bash

ros2 run monPaguetCoVAPSYyR CoVAPSy_conduiteR

1.5 - Test de la conduite du véhicule

Les trois noeuds construits, il est possible de tester la conduite du véhicule, en ouvrant trois
consoles pour lancer les trois nceuds.

ros2 launch rplidar_ros rplidar_s2_launch.py
ros2 run monPaquetCoVAPSYR CoVAPSy_cmdR
ros2 run monPaquetCoVAPSYyR CoVAPSy_conduiteR

voituremaxime@voituremaxime: ~/ros2_ws Q S = o

$ ros2 run monPaquetCoVAPSyR CoV

: noeud cree
050004108

voituremaxime@voituremaxime: ~

ros2 launch rplidar_ros rplidar_s2_launch.py
[INFO] [launch]: All log files can be found below /home/voituremaxime/.ros/log/2026-01-23-18-23-34-993057-voituremaxime-1941
[INFO] [launch]: Default logging set to INFO
[INFO] [rplidar_node-1]: t pid [1945]
[rplidar_node-1] [INFO] 919 € [rplidar_node]: RPLidar running on kage rplidar_ros. RPLIDAR SDK Version:2.1.0
[rplidar_node-1] [INFO] . [rplidar_node]: RPLidar S/N: AADDECF8C4E699D7BBEB99F926024717
[rplidar_node-1] [INFO] 31 3 [rplidar_node]: Firmware \ 1.01
[rplidar_node-1] [INFQ] [rplidar_node]: Hardware Rev:
[rplidar_node-1] [INFO] [1 1 [rplidar_node]: RPLidar health
[rplidar_node-1] [INFO] T 1 914] [rplidar_node]: RPLidar health
[rplidar_node-1] [INFO] 7 [rplidar_node]: Start
[rplidar_node-1] [INFO] 769 1 £ [rplidar_node]: current scan mode: DenseBoost, sample rate: 32 Khz, max_distance: 30.8 m, scan frequency:10.0 Hz,
Lrplidarinnde—lj [INFO] t 389] [rplidar_node]: set lidar scan frequency to 10.0 Hz(600.0 Rpm)

La voiture parcourt la piste ou un couloir.

1.6 - Utilisation d’un PC stationnaire pour la visualisation et le monitoring et/ou le
calcul déporté

Les messages ROS2 pouvant utiliser UDP pour étre transmis, il est possible de déporter le nceud de
conduite sur un PC stationnaire plus puissant. Pour cela, le PC doit étre sur le méme réseau wifi
que la voiture, avoir la méme version de ROS2 et utiliser le méme ROS_DOMAIN_ID.

[Nceud ROS2 exécuté par un PC stationnaire
Neceud de

Neeud de monitoring

visualisation
RVIZ2
(outil ROS)

Neceud qt
(outil ROS)

conduite
(étudiants)

Topic LaserSacn

+V"a:llgu:'s;atiu :2:{" Réseau TCP/IP vitesse/direction

Topic AckermannDrive

Noeuds ROS2 exécutés par
/ Raspberry Pi embarquée #

Neceud Lidar g 0
(SLAMTEC) &

A

UsB Liaison série
= v
Microcontroleur commandant
variateur de propulsion et

RPLIDARA2M12 Servo-moteur de direction

Déplacements

Obstacles pergus par le LiDAR

Piste et voitures adverses

Environnement : piste + voiture réelle

Figure 5 : Noeuds et topic ROS2 dans le cas d'un contréle déporté et d'un monitoring déporté

10

Quel que soit la machine sur laquelle est exécuté le noeud de conduite, il est possible d’utiliser le
PC stationnaire pour le monitoring avec les outils ROS2 : rviz et rqt. Cela a 'intérét notamment de
dispenser le nano-ordinateur d’un environnement graphique, ce qui améliore ses performances,
tout en permettant de superviser le bon fonctionnement.

Commencer par vérifier que la voiture et le PC stationnaire sont dans le méme réseau (ip a pour
afficher I’adresse IP) et ont le méme ROS_DOMAIN_ID (echo SROS_DOMAIN_ID pour |’afficher).

[voiturenaxine@voiturenaxine: /ros2 ws$ ipa | webotsrosz@Webotskosz:-$ipa |
3: wlan®: <BROADCAST ,MULTICAST,UP, LOL-.'EP UF’) mtu 1500 qd‘LSC . enp@sB: <BROADCA5T,MULTI(AST,UP,LOL-JER_UP->
link/ether 2c:cf:67 brd ff:ff:ff:ff:ff:ff oup default qlen 1000
inet 10.10.10.108,24 metric 600 brd 10.160.10.255 scope link/ether 08:00:27: brd ff:ff:ff
valild_LTt 8/816sec preferred_Lft 82816sec inet 10.10.10.111,24 brd 10.10.10.255 sco

$ echo $ROS_DOMAIN_ID :-$ echo SROS_DOMAIN_ID

||94

Les nceuds exécutés sur la voiture, il est alors possible de lancer rqt sur le PC stationnaire :

test-rqt —ox
File Plugins Running Perspectives Help

$¢Node Graph DIZ® - 0®
& | | Nodes/Topics (active) - | / B35 | @
Group: |2 |-| Namespaces V| Actions v/ tf Iv/Images | I Highlight [vIFit |[Z

Hide: v Deadsinks |/ Leaf topics v/ Debug [| tf V| Unreachable VI Params

Figure 6 : Graphe des nceuds ROS2 exécutés dans la voiture, affiché sur le PC stationnaire

) @iTopic Monitor DE® -0
Topic Type Bandwidth Hz = Value
~ | femd_ackermann ackermann_msgs/msg/AckermannDrive 238.03B/s 9.94
steering_angle float 8.100000381469727
steering_angle_velocity float 0.0
speed float 1.0
acceleration float 0.0
jerk float 0.0
- ¥ fscan sensor_msgs/msg/Laserscan 257.56KB/s 9.94
~ header std_msgs/Header 3 0355522540048696& 05
» stamp builtin_interfaces/Time @214382172
frame_id string
angle_min float) - 1390705108643
angle_max [U 796999590940094, 0.7950000166893005, 0.7960000...
angle_increment float [47.0,47.0, 47.0,47.0,47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 4.
time_increment float 40.41B/s 3.0380513635464013e-05
scan_time float 0.0984024852514267
range_min float 0.15000000596046448
range_max float 30.0
ranges sequence<float> [0.796999990940094, 0.7950000166893005, 0.7950000...
intensities seauence<float> [47.0.47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 4.
nitored
Nom du repere des données du LIDAR
nitored
e EaEs SR et rrocrronitored

Figure 7 : Supervision des messages echanges dans la voiture sur les toplcs /cmd_ackermann et /scan, par
rqt depuis le PC stationnaire

Pour afficher les données du LiDAR dans rviz2, il faut situer le LiDAR dans la carte. Pour un usage
avanceé, pour faire du SLAM par exemple, on situe le LiDAR par rapport a l’origine de la voiture et
la voiture dans espace. Ici, juste pour afficher les données du LiDAR, on le place a 'origine. Le
LiDAR est associé au repéere (frame_id dans ROS2) ‘laser’, comme U’indique la supervision du topic
/scan ci-dessus.

La commande ROS2 pour placer le repere laser a I’origine du monde (!) est la suivante :

ros2 run tf2_ros static_transform_publisher © © © © 0@ 0 laser world

11

m webotsros2@WebotsROS2: ~ Q X o webotsros2@WebotsROS2: ~

[INFO] [1769194470.1 ’ Stereo is NOT SUPPORTED
[INFO] [1769194470.1 £ OpenGl version: 4.5 (GLSL 4.5)
[INFO] [1769194470.2 Stereo is NOT SUPPORTED

1 webotsros2@WebotsROS2: ~

:-$ ros2 run tf2_ros static_transform_publisher © @ @ @ @ @ laser world

[INFO] [1769193517.751164910] [static_transform_publisher_HFVppEi6y0ZUbdHh]: Spinning until stopped - publishing transform
translation: ('0.000000', '©.000000', '0.000000')

rotation: ('0.000000', '0.000000', '0.000000', '1.000000')

from 'laser' to 'world'

Figure 8 : Consoles exécutées sur le PC stationnaires pour la supervision du comportement de la voiture
avec rqt et rviz2

50 @
Hle poncs o 1. Choisir world pour le
Bt e s trncene = | rap@re d'origine de la visu .
O pisplays . e Views. (@]
~® clobalOptions [| (Fixed Frame) ype: [orbi i defau] _zero
Fixed Frame world
Background Color 48, 95, 48 ~ Current View Orbit (rviz)
Frame Rate 30 Near Clip... 0.01
~ v/ Clobal Status: Ok Invert Z Axis |1
V/ Fixed Frame oK Elr?::;ra... ::I;:i Frame>
» & Grid v)
Focal shap... 0.05
~ ~. LaserScan vl Focal Shap... ¥
~ v/ Status: Ok Yaw 0785398
¥ Topic 8681 messages received at 8.7 hz. Pitch 0.785398
¥ Points Showing [1764] points from [1] messages » FocalPoint 0;0;0
+ Transform
~ Topic
Depth
History Policy Keep Last
Reliability Policy Reliable
Durability Policy volatile
Filter size 10
selectable v
A .. y . .
yle oints .
e point 3. Dans la fenétre Add, choisir dans I'onglet By topic le topic
.
pha 1 /scan et cliquer sur OK
Decay Time 0
Position Transformer XyzZ
Color Transformer Intensity
size (Pixels)

Point size in pixels.

2. Cliquer sur Add pour
ads ajouter un topic a visualiser

© Time o]

Save Remove Rename

Figure 9 : Affichage des données du LiDAR de la voiture dans rviz2 depuis le PC stationnaire

2 - Mise en ceuvre de ROS2 pour le coniréle d’une voiture 1/10eme de
type CoVAPSy simulée sous Webots

Pour développer les algorithmes de conduite sans les contraintes matérielles de la voiture (espace
pour la piste, recharge des batteries...), il est intéressant de pouvoir travailler sur un simulateur.
Cela devient indispensable lorsqu’on souhaite faire de ’apprentissage par renforcement [8], la
voiture nécessitant un nombre d’essais et de chocs incompatible avec la robustesse de sa
mécanique. Webots est le simulateur choisi pour sa popularité en robotique, sa facilité de mise en
ceuvre, et sa faculté a fonctionner sur un ordinateur sans carte graphique [2].

Webots peut étre utilisé sans ROS2 pour simuler la voiture [2]. Cependant, si la voiture réelle est
prévue pour fontionner avec ROS2, simuler avec ROS2 est un atout important, tres utilisé en
robotique. Webots-R0OS2 fournit un nceud rpLidar émettant un topic similaire au noeud slamtec et
le topic de type AckermannDrive est facilement accepté pour commander la voiture simulée. Le
nceud de conduite sera alors identique de toute part au nceud de la voiture physique. Il est alors
possible de développer ce noeud sur la voiture simulée pour ensuite le copier sur la voiture réelle.

Cette partie présente pas a pas l'installation de ROS2 pour webots, ’exploitation des messages
LiDAR et ’écriture du noeud de commande pour mener a la conduite basique, avec le méme nceud
que dans la partie précédente.

12

/Graphe ROS2 exécuté par le PC de simulation

Neeud de Neceud de

. m monitoring
visualisation

rqt
RVIZ2 _
(outil ROS) (outil ROS)

Neeud

; Neeud
: conduite
T@;’.&'}:ﬁﬁ%ﬂ (identique a Topic AckermannDrive commande

: i vitesse/direction CoVAPSy_cmd
i s

i Fonctions Webots setSteering et setCruinsingSpeed:

\voiture simulée TT02_2025a .

Chéassis de type Ackermann

RPLiDAR

F 3
Obstacles pergus par le LiDAR

Déplacements
v

Piste et voitures adverses simulées

Environnement simulé : piste + voitures Webots

Figure 10 : Noeuds et topic ROS2 dans le cas de la conduite d'une voiture simulée sur webots
2.1 - Installation de webots R2025a

La ressource « CoVAPSy : Mise en ceuvre du simulateur Webots » [2] permet de faire les premiers
pas avec webots (attention elle a été écrite pour webots 2023a, quelques ajustements mineurs sont
a prévoir pour fonctionner avec webots R2025a) et les voitures CoVAPSy.

Sur ubuntu 24 (sur une machine physique ou virtuelle), quelques paquets sont a installer avant
webots :

sudo apt install make g++ ffmpeg libfreeimage3 libssh-dev libzip-dev
libxcb-xinerama®@ libxcb-cursor®

Si un probléeme de dépendances persiste, la commande suivante résoud habituellement les soucis,
avant de relancer la ligne d’installation précédente :

sudo apt --fix-broken install

Le paquet webots_2025a_amdé4.deb se télécharge depuis la page d’accueil de webots et s’installe
avec la commande suivante.

sudo dpkg -i webots_2025a_amd64.deb

Depuis le dépot git de la course [9], copier le dossier Simulateur_CoVAPSy_Webots2025a_Base.zip
(1,1 Mo), en extraire le contenu dans le dossier Documents par exemple. Depuis webots, ouvrir le
monde (Documents/Simulateur_CoVAPSy_Webots2025a_R0S2/worlds/Piste_CoVAPSy_2025a.wbt)
et tester le bon fonctionnement du simulateur.

13

/home/webotsros2/Documents/Simulateur_CoVAPSy_Webots2025a_Base/worlds/Piste_CoVAPSy_2025a.wbt (Simulateu

File Edit View Simulation Build Overlays Tools Help

Simulation View

©o 0 o w8 o CENZNE M« b

IMPORTABLE EXTERMPROTO

enter
ureuBackground

uredBac ndLight

cliguer pour comm
m pour mode mant pour mode
les fl
) pour commen

n pour stop
3D pour commer

aches pour a

p, L pour affichage données lidar

lérer, freiner et diriger

jaune), n pour stop

Figure 11 : Test du monde de base de la simulation CoVAPSy sous webots R2025a

2.2 - Suivi du tutoriel ros2 pour webots

Les liens [3], [4] et [5] permettent de prendre en main ROS2 pour webots.

B Tutorials
Beginner: CLI tools
Beginner: Client libraries
Intermediate
B Advanced
Enabling topic statistics (C++)

Using Fast DDS Discovery Server as
discovery protocol [community-
contributed]

Implementing a custom memory
allocator

Ament Lint CLI Utilities

Unlocking the potential of Fast DDS
middleware [community-contributed]

Improved Dynamic Discovery
Recording a bag from a node (C++)
Recording a bag from a node (Python)
Reading from a bag file (C++)

How to use ros2_tracing to trace and
analyze an application

Creating an rmw implementation
B Simulators
B Webots

Installation (Ubuntu}

& / Tutorials / Advanced / Simulators / Webots / Installation (Ubuntu)

You're reading the documentation for an older, but still supported, version of R{
have a look at Kilted.

Installation (Ubuntu)

Goal: Install the webots_ros2z package and run simulation examples on Ubuntu.
Tutorial level: Advanced
Time: 10 minutes

Contents

+ Background
Prerequisites

Multiple Installations of Webots
* Tasks

1 Install webots_ros2

2 Launch the webots ros2 universal robot example

Background

Figure 12 : Copie d'écran de la page web du tutoriel ROS2 jazzy

14

Le tutoriel [3], onglet Simulators/webots/Installation (Ubuntu) donne les indications pour
’installation du paquet ROS2 pour webots et le lancement d’un exemple :

sudo apt-get install ros-jazzy-webots-ros2
source /opt/ros/jazzy/setup.bash

export WEBOTS HOME=/usr/local/webots

cd ~/ros2_ws

source install/local_setup.bash

ros2 launch webots_ros2_universal_robot multirobot_Tlaunch.py

WebotsROS2 [En fonction] - Oracle VirtualBox

Fichier Machine Ecran Entrée Périphériques Aide

/Jtmp/tmp500bpmbz_world_with_URDF_robot.wbt (No Project) - Webots R2025a

ulation Build Qverlays Tools Help

°o e o = B O [N

M
H » rosZ Launcn Verse 0T MULTLroootT_Launcn.py
[INFO] [launch]: ALl log files can be found b otsros2/.ros/log/2026-01-18-14-56-3

Figure 13 : Exemple ros2 pour webots
2.3 - Création du package et du nceud de commande de la voiture

ROS2 pour webots installé, il s’agit désormais de créer le package monPaquetCoVAPSy avec le
monde associé et d’écrire le nceud de commande de la voiture. L’onglet Setting up a robot
simulation du tutoriel enseigne cela.

15

Intermediate
B Advanced
Enabling topic statistics (C++)

Using Fast DDS Discovery Server as
discovery protocol [community-
contributed]

Implementing a custom memory
allocator

Ament Lint CLI Utilities

Unlocking the potential of Fast DDS
middleware [community-contributed]

Improved Dynamic Discovery
Recording a bag from a node (C++)
Recording a bag from a node (Python)
Reading from a bag file (C++)

How to use ros2_tracing to trace and
analyze an application

Creating an rmw implementation
3 Simulators

E Webots

/ Tutorials / Advanced / Simulators / Webots / Setting up a robot simulation (Basic)

You're reading the documentation for an older, but still supported, version of ROS 2. For
have a look at Kilted.

Setting up a robot simulation (Basic)
Goal: Setup a robot simulation and control it from ROS 2.

Tutorial level: Advanced

Time: 30 minutes

Contents

+ Background
* Prerequisites
* Tasks

1 Create the package structure

2 Setup the simulation world
3 Edit the my robot d

4 Create the my

Installation (Ubuntu)

r plugin

Installation [Windows) T file
robot.urd

Installation (macOs) 5 Create the launch file
6 Edit additional files
7 Test the code

o Summary

Figure 14 : Copie d'écran du tutoriel de création du package pour utiliser ros2 et un environnement webots

Setting up a robot simulation (Basic)

Setting up a robot simulation
{Advanced)

Création du paquet monPaquetCoVAPSy

L’instruction suivante, issue du tutoriel, avec l’ajout en dépendance des messages ackermann, crée
le paquet ROS2 monPaquetCoVAPSy qui sera utile pour s’interfacer avec webots. Il faut ’exécuter
depuis le dossier ros2_ws/src, ou sont réunis les paquets personnels.

ros2 pkg create --build-type ament_python --license Apache-2.0 --node-
name CoVAPSy cmd monPaquetCoVAPSy --dependencies rclpy geometry_msgs
webots_ros2_driver ackermann_msgs

Ajout du monde CoVAPSy au package

Ensuite, dans le dossier ros2_ws/src/monPaquetCoVAPSy, copier les dossiers worlds, protos et
controllers du dossier Simulateur_CoVAPSy_Webots2025a_Base_v2 disponible sur le dépot git de la
course [11] et en annexe de cette ressource.

{ £;t Home / rosz_ws / src / monPaquetCoVAPSy

. controllers

. launch

. monPaquetCoVAPSY
. protos

. resource

. test

. worlds

LICENSE
package.xml
setup.cfg

@ | setup.py

Figure 15 : Arborescence du dossier ros2_ws/src/ monPaquetCoVAPSy

16

Lancer alors le logiciel webots et ouvrir le fichier monde suivant :
ros2_ws/src/monPaquetCoVAPSy/worlds/Piste_CoVAPSy_2025a.wbt

Dans ’arborescence du projet webots, au temps 0 et en pause, modifier le controleur de la voiture
jaune pour un controleur externe (la voiture jaune n’est plus controllée par le programme python
d’exemple) puis fermer webots. Depuis l’arborescence, supprimer également la voiture bleue, non
utilisée ici. Enregistrer le monde (File > Save World) et fermer

Controller choice

ct a controller from the list
a ext time step)

Figure 16 : Modification du type de contréleur pour la voiture TT02_jaune_python

Création du nceud de commande de la voiture

Créer le nceud de commande de la voiture, en remplissant le fichier CoVAPsy_cmd.py situé dans le
dossier ros2_ws/src/ monPaquetCoVAPSy/ monPaquetCoVAPSy avec le code suivant (disponible aussi
en annexe) :

import rclpy
from ackermann_msgs.msg import AckermannDrive

class CoVAPSy_cmd:
def init(self, webots_node, properties):

self.__robot = webots_node.robot
self.__vitesse_m_s = 0.0
self.__direction_degre = 0
ROS interface
rclpy.init(args=None)
self.__node = rclpy.create_node('CoVAPSy cmd")
self.__node.create_subscription(AckermannDrive, 'cmd_ackermann', self.__cmd_ackermann_callback, 1)
self.__node.get_logger().info("noeud cree")
self.__robot.setCruisingSpeed(self.__vitesse_m_s*3.6)
self.__robot.setSteeringAngle(-self.__direction_degre*3.14/180)

def _ cmd_ackermann_callback(self, message):
self.__vitesse_m_s = message.speed
self.__direction_degre = message.steering_angle
self.__node.get_logger().info(
f"[CoVAPSy_cmd] Recu : vitesse = {self.__vitesse_m_s} m/s, direction = {self.__direction_degre}°")

def step(self):
rclpy.spin_once(self.__node, timeout_sec=0)
self.__robot.setCruisingSpeed(self.__vitesse_m_s*3.6)
self.__robot.setSteeringAngle(-self.__direction_degre*3.14/180)

La fonction constructeur init() crée les attributs privés de l'objet, dont self._ vitesse_m_s et
self.__direction_degre, crée le noeud et le fait souscrire a cmd_ackermann (le topic utilisé par le
nceud de conduite pour transmettre les consignes de vitesse et direction). Ensuite, dans
Uinitialisation puis dans la fonction step() appelée a chaque pas du simulateur, les valeurs de vitesse

17

et direction sont envoyées au moteur de propulsion (setCruisingSpeed) et au moteur de direction
(setSterringAngle).

Lorsqu’un message du topic cmd_ackermann arrive, la fonction __cmd_ackermann_callback() est
appelée et les attributs self.__vitesse_m_s et self.__direction_degre sont mis a jour avec les
valeurs speed et steering_angle du topic.

Création du lien entre le nceud de commande et la voiture webots

Créer ensuite le lien entre le nceud ROS2 CoVAPSy_cmd et |’objet webots TT02_jaune_python en
créant dans le dossier /ros2_ws/src/monPaquetCoVAPSy/ressource un fichier texte
TT02_jaune_python.urdf avec le contenu suivant (disponible aussi en annexe) :

<?xml version="1.0"?>
<robot name="TT02_jaune_python">
<webots>
<plugin type="monPaquetCoVAPSy.CoVAPSy_cmd.CoVAPSy_ cmd" />
</webots>
</robot>

Création du fichier de lancement

Le fichier launch est un fichier regroupant ’ensemble des instructions a effectuer pour démarrer
un systéme ROS2. Créer un dossier launch dans /ros2_ws/src/monPaquetCoVAPSy/ et, dans ce
dossier launch, un fichier monPaquetCoVAPSy_launch.py, avec le contenu suivant (aussi fourni en
annexe, il faut juste mettre en commentaire les 4 lignes concernant le nceud de conduite) :

import os

import launch

from launch_ros.actions import Node

from launch import LaunchDescription

from ament_index_python.packages import get_package_share_directory
from webots_ros2_driver.webots_launcher import WebotsLauncher

from webots_ros2 _driver.webots_controller import WebotsController

def generate_launch_description():
package_dir = get_package_share_directory('monPaquetCoVAPSy")
robot_description_path = os.path.join(package_dir, 'resource', 'TT02_ jaune_python.urdf")

webots = WebotsLauncher (world=o0s.path.join(package_dir, 'worlds', 'Piste CoVAPSy 2025a.wbt'))

CoVAPSy_cmd = WebotsController(
robot_name='TT02_jaune_python', parameters=[{'robot_description': robot_description_path},]

)

CoVAPSy conduite = Node(
package="monPaquetCoVAPSy ',
executable="'CoVAPSy conduite’,

H OB H R

)

return LaunchDescription([

webots,

CoVAPSy_cmd,

#COVAPSy conduite,

launch.actions.RegisterEventHandler (

event_handler=1launch.event_handlers.OnProcesseExit(

target_action=webots,
on_exit=[launch.actions.EmitEvent (event=1launch.events.Shutdown())],

1

Dans ce fichier, on retrouve dans generate_launch_description(), le lien entre le projet webots et
le nceud CoVAPSy_cmd.

18

Via LaunchDescription() sont lancés webots et le nceud CoVAPSy_cmd. Le nceud de conduite n’est
pour l'instant pas exécuté et reste en commentaire.

Déclaration des fichiers ajoutés au projet

Dans ros2_ws/src/monPaquetCoVAPSy/setup.py, ajouter les liens vers les fichiers .proto et .stl
nécessaire au projet webots. Le fichier est donné en annexe [14], il faut juste mettre en
commentaire la ligne concernant le nceud de conduite

from setuptools import find_packages, setup
package_name = 'monPaquetCoVAPSy'

data_files = []
data_files.append(('share/ament_index/resource_index/packages', ['resource/' + package_name]))
data_files.append(('share/' + package_name + '/launch', ['launch/monPaquetCoVAPSy_ launch.py']))
data_files.append(('share/' + package_name '/worlds', ['worlds/Piste_CoVAPSy_2025a.wbt']))
data_files.append(('share/' + package_name '/worlds', ['worlds/ImageToStl_virage.obj']))
data_files.append(('share/' + package_name '/resource', ['resource/TT02_jaune_python.urdf']))
data_files.append(('share/' + package_name '/protos', ['protos/TT02_2025a.proto']))
data_files.append(('share/' + package_name '/protos', ['protos/TTO2Wheel.proto']))
data_files.append(('share/' + package_name '/protos', ['protos/ChevroletCamaroLight.stl']))
data_files.append(('share/' + package_name + '/controllers/controller_violet',
['controllers/controller_violet/controller_violet.py']))
data_files.append(('share/' + package_name, ['package.xml']))

+
+
+
+
+
+

setup(
name=package_name,
version='0.0.0",
packages=find_packages(exclude=["'test']),
data_files=data_files,
install_requires=['setuptools'],
zip_safe=True,
maintainer='webotsros2',
maintainer_email="webotsros2@toto.fr',
description="'paquet de commande de la voiture CoVAPSy simulee',
license="'Apache-2.0"',
tests_require=['pytest'],
entry_points={
'console_scripts': [
'CoVAPSy_cmd = monPaquetCoVAPSy.CoVAPSy cmd:main',
#'CoVAPSy conduite = monPaquetCoVAPSy.CoVAPSy conduite:main'
1
}

Test du noceud CoVAPSy_cmd

Le nceud et U’environnement configurés, on construit le noeud et on le lance, depuis le dossier
ros2_ws :

colcon build --packages-select monPaquetCoVAPSy
source install/local_setup.bash
ros2 launch monPaquetCoVAPSy monPaquetCoVAPSy_launch.py

19

WARNING:
rt with

==

WARNING:

S colcon build --packages-select monPaquetCoVAPSy

Package name "monPaquetCoVAPSy" does not follow the naming conventions. It should sta
a lower case letter and only contain lower case letters, digits, underscores, and dash

Package name "paquetR0OS2CoVAPSy" does not follow the naming conventions. It should st

art with a lower case letter and only contain lower case letters, digits, underscores, and das

hes.

Starting
Finished -

> monPaquetCoVAPSy
monPaquetCoVAPSy [0.98s]

Summary: 1 package finished [1.10s]
= S source install/local setup.bash

Elros2 launch monPaquetCoVAPSy monPaquetCoVAPSy launch.py

La fenétre webots doit alors se lancer. Pour tester le bon fonctionnement, il est possible d’envoyer

des messages sur le topic cmd_ackermann auquel le nceud CoVAPSy_cmd est abonné. Pour cela on
utilise U’outil rqt de ROS2.

En plus du terminal de lancement du nceud, un terminal permet de lancer rqt et un terminal permet
de lancer ’affichage des messages du topic /cmd_ackermann avec la commande :

ros2 topic echo /cmd_ackermann

Dans rqgt, on choisit d’afficher les noeuds (Plugins > Introspection > Node Graph) et de publier des

messages sur le topic /cmd_ackermann (Plugins > Topics > Message Publisher). Rqt a d’autres
fonctionnalités. Ne pas hésiter a les explorer.

Dans le simulateur webots, la voiture violette qui sert de sparring partner a la voiture jaune (celle
que ’on controdle) peut étre démarrée en cliquant dans la vue 3D et en appuyant sur la touche ‘a’.
On peut alors depuis rgt controller la voiture jaune pour concourir contre la voiture automatique

violette.

¢Node Graph

& | Nodes/Topics (active) ~ ||/

Group: |2 |5 Namespaces V| Actions [v/tF vIImages | v Highlight vIFit |[E3

Hide: | Dead sinks v/ Leaf topics v Debug tf v/ Unreachable ! Params

File Plugins Running Perspectives Help

Jtmp/tmpx75b6g2d_world_with_URDF_robot.wbt (No Project) - Webots R2025a

Edit View simulation Build OQverlays Tools Help

IR “
IMPORTABLE EXTERNPROTO .

> @ solid "sol_piste"

Publication de
message sur le topic

cmd_ackermann pour
commander la voiture

DIZ@® - 0© Qropic MonitorD/Z®@ - 0@ >Message Publisher
/ B3 3| @ [Topic =}

Jemd_ackermann

~ | Type |/LaserScan v|Hz | # | =][%

» [] /parameter_events type expression
» [Jrosout ~ ¥/ Jemd_ackermann AckermannDrive 1\00
+] /TT02_jaune python/R steering_angle float 4
» [| /TT02_jaune_pythen/R steering_angle velocity float 0.0
» [| /remove_urdf_robot
acceleration Float 0.0
jerk float 0.0

1 webotsros2@WebotsROS2: ~

“C :-$ ros2 topic echo /cmd_ackermann
steering_angle: -1.0

steering_angle_velocity: 0.0

speed: 0.10000000149011612

i

Nceud
TTO02_jaune_
python qui
publie les
message du

steering_angle: -1.0
steering_angle_velocity: 0.0

Topic Noeud CoVAPSy_cmd qui
/emd_ackermann contréle les moteurs de vitesse
vehiculant les et direction de la voiture

consignes de
vitesse et direction

lidar

Figure 17 : Test du nceud CoVAPSy_cmd avec la publication par rqt de messages sur le topic

cmd_ackermann

20

2.4 - Les messages RplidarA2 publiés par la voiture simulée

Le nceud TT02_jaune_python publie des messages de type LaserScan avec les données du LiDAR de
la voiture. On peut retrouver le nom du topic et les valeurs publiées dans rqt > Topics > Topic
Monitor.

Topic

File Plugins Running Perspectives Help
A Topic Monitor

~ v/ /TT02_jaune_python/RpLidarA2

time_increment
scan_time
ranges
range_min
range_max
intensities
header
angle_min
angle_max
angle_increment

test-rqt

Type
sensor_msgs/msg/LaserScan
float

float
sequence<float>
float

float
sequence<float>
std_msgs/Header
float

float

float

Bandwidth
5.83KB/s

Hz
3.85

_Dxl

DE® -00
~ Value

0.0

0.0

[8.179915428161621, 8....
0.10000000149011612
12.0

(]

0.7853999733924866
-0.7853999733924866
-0.004375487565994263

L’attribut ranges contient les distances mesurées par le LiDAR, avec le nombre de points
correspondant a ce qui a été défini dans les attributs. Dans le projet de base fourni, la fréquence
de rotation est de 12 Hz avec 360 points par tour. Il est possible de modifier ces parametres pour
se rapprocher du LiDAR réel (1600 points par tour annoncés pour le A2M12 et 3200 points pour le
$2). On se limite ici a 360 points, suffisants pour développer un noeud fonctionnel. Attention, a
chaque modification, il faut reconstruire le paquet (colcon build...).

lidarMmin
lidarm
lidar
lidar

lidarDefaultFrequency 12

Figure 18 : Parametres du LiDAR RpLidarA2 de la voiture TT02_jaune_python dans webots

On peut afficher aussi les messages depuis une console avec les commandes suivantes :

ros2 topic list

ros2 topic echo /TT02_jaune_python/RpLidarA2

21

webotsros2@WebotsrROS

1§ ros2 topic list
JTTO2_jaune python/RplLidarA2
JTTO2_ jaune python/RpLidarA2/point_cloud
Jcmd_ackermann
/parameter_events
J/remove_urdf_robot
Jrosout

15 ros2 topic echo /TT02_ jaune python/RplLidarA2

header:
stamp:
sec: 1768994662
nanosec: 972560595
frame_id: RplLidarA2
angle _min: 0.7853999733924866
angle max: -0.7853999733924866
angle_increment: -0.004375487565994263
time_increment: 0.0
scan_time: 0.0
range_min: 0.10000000149011612
range_max: 12.0
ranges:
- 4.67605447769165
- 4.686540603637695
- 4.70395040512085

Figure 19 : Affichage des messages du topic RpLidarA2 depuis une console

Pour afficher les données du LiDAR dans rviz2, il faut situer le LiDAR dans la carte. Ici, on le place

a Uorigine. Le LiDAR est associé au repére (frame_id dans ROS2) RpLidarA2, comme l’indique la
figure ci-dessous.

ass

HH test-rqt
File Plugins Running Perspectives Help

@i Topic Monitor

Topic Type Bandwidth Hz = Value
- || [TTOZ2_jaune_python/RpLidara2 sensor_msgs/msg/Laserscan 4.09KB/s 2.70
~ header std_msgs/Header
» stamp builtin_interfaces/Time
frame _id string 'RpLidarA2’

Figure 20 : Repere (frame_id) dans lequel sont données les valeurs du LiDAR

La commande ROS2 pour placer le repére RPLidarA2 a ’origine du monde est la suivante :
ros2 run tf2_ros static_transform_publisher © © © © © © RpLidarA2 world
S ros2 run tf2_ros static_transform_publisher @ 8 @ @ @ 0 RpLidarA2 world

[INFO] [1769007242.884092953] [static_transform_publisher_rC7Xj0JCQ68IwI2Z]: Spinning until stopped - publishing transform

translation: ('0.000000', '0.000000', '0.000000')
rotation: ('0.000000', '0.000000', '0.000000', '1.000000')
from 'RpLidarA2' to 'world'

Pour afficher les données dans rviz2, lancer le paquet monPaquetCoVAPSy, lancer la transformée
tf ci-dessus et lancer rviz2 (on tape rviz2 dans une console) et suivre les instructions ci-dessous :

22

File Panels Help
(" Interact

I Displays o (FIXed Frame) @ Views

~ & Global options Type: | Orbit (rviz_defau ~ Zero
Fixed Frame world
Background Color [l 48; 48; 48 - ulnentvjew orbit (rviz)
Frame Rate 30 Near Clip - 001

~ v Global Status: Ok

v Fixed Frame OK
» @ Grid v . .
- rlssesan @ topic le topic
» v Status: Ok .
~ Topic /TT02_jaune_python/... /RPLIdafAZ/LaSGFSCan et
Depth 5 .
History Policy Keep Last Cllquer sur OK
Reliability Po... Reliable
Durability Po... Volatile
Filter size 10
selectable v ¥ G

style

Alpha 1 N

Decay Time 0 By display type = By topic

Position Transfo... XYZ ~ /TT02_jaune_python e
Color Transformer FlatColor ~ /RpLidarA2

Color

Size (Pixels)
Point size in pixels.

¥ Move Camera

- o x

| with_URDF_robot.wbt (No Project) - Webots |

1. Choisir world pour le
repére d'origine de la visu

[lselect < Focus blish Point b =

3. Choisir dans l'onglet By

Points
Create visualization

LaserScan

v lrlickad naint

[1255; 255; 255

show unvisualizable topics
Description:

Displays the data from a sensor_msgs::LaserScan message as
points in the world, drawn as points, billboards, or cubes\More
Information.

Add\
() Time

ROS Time: |17¢

2. Cliquer sur Add pour
ajouter un topic a visualiser

Display Name

Laserscan

[65029151.88

Reset

Figure 21 : Affichage des données du LiDAR de la voiture jaune simulée dans rviz2
2.5 - Création du nceud de conduite

La voiture publie les données du LiDAR dans le topic /TT02_jaune_python/RpLidarA2 et consomme
(via le nceud CoVAPSy_cmd) les données du topic /cmd_ackermann pour ses consignes de vitesse
et de direction.

Il est donc possible d’installer le méme noeud que dans la voiture réelle qui, a partir des données
du LiDAR élabore des consignes de vitesse et de direction.

Topic LaserSacn N

conduite

Topic AckermannDrive
vitesse/direction

Valeurs du lidar
+ min, max, freq...

Figure 22 : Topics recus et émis par le nceud conduite

Pour «créer le noeud, créer un fichier CoVAPSy_conduite.py dans le dossier
ros2_ws/src/monPaquetCoVAPSy/ monPaquetCoVAPSy avec le code suivant, identique au nom des
messages préts a celui de la voiture réelle :

import rclpy

from sensor_msgs.msg import LaserScan

from ackermann_msgs.msg import AckermannDrive
from rclpy.node import Node

class CoVAPSy_conduite(Node):
def __init_ (self):
super().__init__ ('CoVAPSy_conduite')

ROS interface

self.__ackermann_publisher = self.create_publisher (AckermannDrive, 'cmd_ackermann',1)
self.create_subscription(LaserScan, 'TT02_jaune_python/RpLidarA2', self.__on_lidar_acquisition, 1)
self.get_logger().info(f"[CoVAPSy_conduite] noeud cree")

def _ on_lidar_acquisition(self, message):
tableauLidar list(message.ranges)
self.get_logger().info(f'60 {tableauLidar[120]:.2f} et -60 {tableauLidar[240]:.2f}")
command_message = AckermannDrive()

23

command_message.speed = 1.0
try:
command_message.steering_angle = 100 * (tableauLidar[120] - tableaulLidar[240])
except IndexError:
command_message.steering_angle 0.0
if command_message.steering_angle > 18.0:
command_message.steering_angle = 18.0
if command_message.steering_angle < -18.0:
command_message.steering_angle = -18.0
self.__ackermann_publisher.publish(command_message)
self.get_logger().info(f"v= {command_message.speed:.2f} m/s, dir= {command_message.steering_angle:.2f} rad")

def main(args=None):
rclpy.init(args=args)
controller = CoVAPSy_conduite()
rclpy.spin(controller)
rclpy.shutdown()

if __name__ == '_ _main__

main()

On ajoute alors le nceud au fichier monPaquetCoVAPSy_launch.py et au fichier setup.py. Il suffit
d’oter les commentaires de ces fichiers décrit dans la partie 2.3. Les fichiers sont aussi fournis en
annexe de cette ressource [14].

On construit de nouveau le paquet et on lance le nceud.

letter ntain lower

Starting monPaque tCoVAPSy
Finished monPaquetCoVAPSy [1.07s]

Summa 1 package finished [1.20s]
8 $ source install/local_setup.bash

E $ ros2 launch monPaquetCoVAPSy monPaquetCoVAPSy_launch.py
[INFO] [launch]: ALl log files can be found below /home/webotsros2/.ros/log/2026-01-2 05-45-469965-WebotsR0S2-14597
[INFO] [launch]: Default logging verbosity is set to INFO
WARNING: No valid Webots directory specified in "R0OS2_WEBOTS_HOME' and "WEBOTS_HOME', fallback to default installation folder /fusr/local/webots.

[INFO] [webots-1]: proce started with pid [14600]
[INFO] [webots_controller_TT02_jaune_python-2]: process started with pid [14601]
[INFO] [CoVAPSy conduite-3]: process started with pid [14602]
ntroller_TT02_jaune_python-2] The specified robot (at /tmp/webots/webotsros2/1234/ipc/TTO2_jaune_python/extern) is not in the list of robo
xtern> controllers, retrying for another 50 seconds...
[CoVAPSy_conduite-3] [INFO] [1769033145.912721664] [CoVAPSy_conduite]: [CoVAPSy_conduite] noeud cree
ntroller_TT®2_jaune_python-2] The Webots simulation world is not yet ready, pending until loading is done...
controller_TT02_jaune_python-2] [INFO] [1769033154.606303463] [CoVAPSy_cmd]: noeud cree
s_controller_TT02_jaune_python-2] [INFO] [1769033154.60661248¢ ssfully connected to robot in Webots

[CoVAPSy_conduite-3] [INFO] [1769033156.
CoVAPSy_conduite-3] [INFO] [1769033156.

Il est possible bien siir de limiter le bavardage du nceud en commentant les lignes get_logger()...
dans les fichiers python.

ftmp/tmp51ukuamc_world_with_URDF_robot.wbt (No Project) - We

Panels Help
teract MoveCamera [Jselect < FocusCamera T5Measure 7 2DPoseEstimate 7 2DGoalPose @ Publish Point
— [
iplays 19|
Global Optiens !
Fixed Frame world AR
Background Color [l 48; 48; 48
Frame Rate 30

Global Status: Ok
v Fixed Frame OK

Grid V]

Laserscan V!

¥ Status: Ok

Topic /TT02_jaune_python/...
Depth 5

History Policy ~ Keep Last
Reliability Po.... Reliable
Durability Po... Volatile

Filter size 10
Selectable v ‘
style Points

Alpha 1
Decay Time 0
Position Transfo... XYZ

sformer FlatColor RO P
[255; 255; 255

Figure 23 : Sur Webots, la Voiture jaune est contrblée par le nceud ROS2 « CoVAPSy_conduite », la voiture
violette est contrbolée par un algorithme basique pour représenter les voitures adverses

24

3 - Conclusion

Cette ressource permet de mettre en ceuvre une conduite basique avec ROS2 sur la voiture réelle
et sur le simulateur et également de manipuler quelques outils de monitoring ROS2 (rviz2 et rqt).
Aux étudiants de se |’approprier pour programmer une voiture performante et innovante.

Cette ressource est appelée a s’améliorer, ne pas hésiter a envoyer des commentaires
(anthony.juton@ens-paris-saclay.fr).

25

Références :

[1]: ROS2 : bibliotheques et outils pour le développement logiciel en robotique, J. Farnault,
S. Rodriguez, A. Juton, 2026, https://sti.eduscol.education.fr/si-ens-paris-
saclay/ressources pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-

robotique
[2]: CoVAPSYy : Mise en ceuvre du simulateur Webots, T. Boulanger, E. Délégue , K. Hoarau,

A. Juton, 2023, https://sti.eduscol.education.fr/si-ens-paris-
saclay/ressources pedagogiques/covapsy-mise-en-oeuvre-du-simulateur-webots

[3]: Tutoriel ROS2 pour webots
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Simulators/Webots/Simulation-Webots.html

[4]: Playlist Webots ROS2 Tutorial de la chaine YouTube Soft illusion
https://www.youtube.com/playlist?list=PLt69CIMNPchkP0ZXZOgmIGRTOch809GiQ

[5]: La documentation webots ROS2 https://github.com/cyberbotics/webots ros2 avec
notamment les types de messages envoyés par les différents capteurs.
https://github.com/cyberbotics/webots_ros2/wiki/References-Nodes

[6]: Dépbt git du package « ROS2 node for SLAMTEC LiDAR » et les instructions associées :
https://github.com/Slamtec/sllidar_ros2

[7]: Détails du format des messages LaserScan :
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html

[8]: Apprentissage par renforcement et transfert simulation vers réalité pour la conduite de
voitures autonomes, R. Bennani, K. Hoarau, A. Juton, 2024, https://sti.eduscol.education.fr/si-
ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-
realite-pourla-conduite-voitures-autonomes

[9]: Dépébt git de la course de voiture autonomes, dossier simulateur : https://github.com/ajuton-
ens/CourseVoituresAutonomesSaclay/tree/main/Simulator

[10]: https://github.com/cyberbotics/webots_ros2/wiki/Example-Mavic-2-Pro

[11]: Dépot git de la course de voitures autonomes : https://github.com/ajuton-
ens/CourseVoituresAutonomesSaclay

[12]: Dépot git de I’équipe de Sorbonne Université (ROS2 et SLAM) : https://github.com/SU-Bolides

[13]: Course de Voitures Autonomes Paris-Saclay (CoVAPSy) : Travaux pratiques autour des
voitures autonomes, T. Boulanger, E. Délégue , K. Hoarau, A. Juton, 2023,
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-tp-autour-
des-voitures-autonomes

[14]: Annexes de : Mise en ceuvre de ROS2 pour le contréle d’une voiture CoVAPSy simulée sous
Webots et réelle, J. Farnault, S. Rodriguez, A. Juton, M. Goupillon, 2026,
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-
ros2-pour-controle-voiture-autonome-1-10e

e Remarques sur installation de webots sur une machine virtuelle

Configuration du wifi sur une machine ubuntu server (sans interface graphique)
Fichiers simulateur

Fichiers voiture

Ressource publiée sur Culture Sciences de I’Ingénieur : https://eduscol.education.fr/sti/si-ens-paris-saclay

26

https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-mise-en-oeuvre-du-simulateur-webots
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-mise-en-oeuvre-du-simulateur-webots
https://discourse.ros.org/
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Simulators/Webots/Simulation-Webots.html
https://www.youtube.com/playlist?list=PLt69C9MnPchkP0ZXZOqmIGRTOch8o9GiQ
https://github.com/cyberbotics/webots_ros2
https://github.com/cyberbotics/webots_ros2/wiki/References-Nodes
https://github.com/Slamtec/sllidar_ros2
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-realite-pourla-conduite-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-realite-pourla-conduite-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/apprentissage-renforcement-transfert-simulation-vers-realite-pourla-conduite-voitures-autonomes
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay/tree/main/Simulator
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay/tree/main/Simulator
https://github.com/cyberbotics/webots_ros2/wiki/Example-Mavic-2-Pro
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay
https://github.com/ajuton-ens/CourseVoituresAutonomesSaclay
https://github.com/SU-Bolides
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-tp-autour-des-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/covapsy-tp-autour-des-voitures-autonomes
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://eduscol.education.fr/sti/si-ens-paris-saclay

