- . . Culture Sciences
ROS2 : bibliotheques et outils pour de I'Ingénieur

le développement logiciel en J Revue
robotique 3E1I
école
Editele normae
Jules FARNAULT' - Sergio RODRIGUEZ? - Anthony JUTON? 02/02/2026 it

" Eléve normalien a [’ENS Paris Saclay, DER Sciences de [’Ingénierie Electrique et Numérique
2 Maitre de conférences au laboratoire SATIE, ENS Paris Saclay
3 Professeur agrégé a I’ENS Paris Saclay, DER Sciences de [’Ingénierie Electrique et Numérique

Cette ressource fait partie du N°118 de La Revue 3El du 1¢" trimestre 2026.

Cette ressource a pour but de présenter ROS (du sigle en anglais Robotics Operating System version
2), un ensemble de bibliotheques C/C++ et python et d’outils de développement open-source pour
la robotique, drones compris. Les laboratoires de robotique, les fabricants de matériel et les
industriels de la robotique partagent dans une communauté dynamique leurs développements ROS,
ce qui permet de réutiliser des briques logicielles de qualité [modules d’acquisition de capteurs
complexes (LiDAR-Light Detection And Ranging, caméra RGBD, GPS/GNSS...), de contrdle

a interfacer.

Cette ressource présente ROS et ses différents composants et guide le lecteur a travers la
documentation de la version ROS2 pour sa mise en ceuvre sur deux premiers exemples. Elle est
suivie de la ressource « Mise en ceuvre de ROS2 pour le contréle d’une voiture autonome simulée
sous Webots et réelle » [15] présentant la mise en ceuvre de ROS2 réelle et simulée.

Topic LaserSacn
Valeurs du LiDAR
+ min, max, freq...

Nceuds ROS2 exécutés par
Raspberry Pi embarqui

Nceud LiDAR
(SLAMTEC)

‘ '
USBE Liaison série ,
v
Microcontréleur commandant
variateur de propulsion et
Servo-moteur de direction

lDép!acemenis

Chassis voiture réelle TT-0
RPLIDARAZM12

Obstacles pergus par le LIDAR

Environnement : piste + voiture réelle

Figure 1 : Graphe ROS2 utilisé pour la conduite d'une voiture autonome 1/10¢m¢

1

https://eduscol.education.fr/sti/si-ens-paris-saclay
https://eduscol.education.fr/sti/si-ens-paris-saclay/revue-3ei

1 - ROS, un écosystéme de bibliotheques et outils pour la robotique

ROS (Robot Operating System), né en 2007, [1] constitue une surcouche logicielle d’Ubuntu destiné
au développement d’applications pour la robotique. Il offre des services standardisés essentiels tels
que la gestion des capteurs, la gestion des actionneurs, la gestion de la navigation, ainsi que
’enregistrement et le rejeu de données. En outre, ROS met a disposition des outils de visualisation,
de simulation, d’analyse et de débogage facilitant le développement et la maintenance des
systémes robotiques.

ROS est utilisé par de nombreux laboratoires de recherche et industriels pour le développement de
logiciels de robots. Dans une optique open-source, ils développent des paquets (ROS package) que
tout utilisateur peut ajouter a son installation afin de bénéficier de ses fonctionnalités. Des projets
open-source pour les drones (PX4 autopilot), les bras robotisés (ROS-industrial), la navigation des
robots (Nav2) sont basés sur ROS. De plus, les fabricants de capteurs (Intel Realsense pour les
caméras RGBD, Slamtec ou Velodyne pour les LiDARs, ainsi que Analog Device (centrales inertielles)
fournissent des paquets ROS permettant d’acquérir les données de leurs équipements. Par ailleurs,
les fabricants de robots (Boston Dynamics, Unitree Husarion...) proposent également des paquets
ROS permettant de s’interfacer avec leurs robots.

Un répertoire des paquets documentés disponibles est fourni par ROS :

La communauté des développeurs ROS [2] communique principalement a travers un forum [3], un
canal Discord [4] et se rassemble chaque année lors de conférences ROScon nationales [6] et une
conférence internationale [5]. L’acces public a ces discussions, ainsi qu’aux et les documentations
[7], tutoriels et wiki [8] facilitent une prise en main rapide de ROS et des paquets complémentaires.

ROS2, dont la premiére distribution date de 2017, est une évolution majeure rendant les paquets
ROS2 incompatibles avec les paquets ROS1. Aujourd’hui, la plupart des projets et paquets ont été
migrés sur ROS2 et le nom générique ROS désigne souvent des travaux sur ROS2. Les évolutions
mineures sont portées par des distributions (un ensemble de paquets compatibles entre eux). Pour
cette ressource, la distribution LTS (Long Term Support) Jazzy, compatible avec Ubuntu 24.04 LTS,
a été choisie. Elle est moderne et sera supportée jusqu’a mai 2029. Les paquets les plus populaires
sont disponibles pour Jazzy.

ROS2 et la plupart des paquets complémentaires sont développés en C++ pour des critéres de
performances. La suite montrera que la modularité de ROS2 permet d’écrire des programmes en
python s’interfacant avec ces bibliotheques en C++.

2 - Nodes, Topics, Services... les différents composants de ROS

Un systéme robotique fonctionnant sous ROS posséde une architecture construite en nodes qui
communiquent via des topics ou des services. Cette modularité, en nodes, permet de faire
cohabiter des nodes ROS officiels (par exemple, node fourni par le fabricant d’un capteur ou
développé par un laboratoire...) et des nodes développés spécifiquement pour répondre a des
besoins particuliers.

La messagerie (topics, services) s’appuie sur un middleware nommé DDS (de l’anglais Data
Distribution Service) utilisant des mécanismes d’échange par mémoire partagée ou les protocoles
IP [9]. Les nodes peuvent donc indifféremment étre sur la méme machine ou sur des machines
différentes, ce qui simplifie le calcul déporté pour des systémes embarqués aux ressources limitées.

https://index.ros.org/

Evidemment, si les nodes sont sur des machines différentes, la latence entre les envois et
réceptions de message sera plus importante.

NODE

Service

Request Message

Response

Figure 2 : Architecture d’un systéme robotique sous ROS, source : ROS.org

2.1 - Nodes (Nceuds)

Un node est un processus indépendant. Un nceud programmé en C++ peut donc cohabiter avec un
nceud programmeé en python. Les nodes s’exécutent en paralléle au sein du systeme d’exploitation,
chaque node pouvant ainsi utiliser une CPU différente sur un microprocesseur multicceurs.

Pour communiquer entre eux, les nodes utilisent des topics ou des services.
2.2 - Topics (canaux)

Les topics sont une communication en mode publisher/subscriber. Ce sont des canaux de
communication qui permettent a différents nodes d’échanger des messages. Un ou plusieurs nodes
peuvent publier des messages dans un topic, tandis qu’un ou plusieurs nodes peuvent s’abonner a
ce topic pour recevoir ces messages. La messagerie inter-processus TCP utilisée dans ROS1 et a été
remplacée dans ROS2 par une communication nommée DDS. Cette solution combine [’utilisation
conjointe des protocoles TCP, UDP et mémoire partagée selon les contraintes de I’application.

2.3 - Services et actions

Les services sont une communication en mode client serveur. Ils sont utilisés plutot pour la
modification de configuration d’un node, les topics étant plus adaptés pour les messages de process
(valeurs des capteurs et commandes des actionneurs).

Les actions sont similaires aux services mais avec une différence clé : elles renvoient un feedback
continu. C’est intéressant pour un service qui nécessite du temps pour s’exécuter. Par exemple si
on demande a un robot d’atteindre une position absolue, il est intéressant de pouvoir suivre
l’évolution de son déplacement.

Goal
Service NODE

Request Action Sever

Response

Feedback
Topic

Action Client

—
»

Result
Service

Request

Response

Figure 3 : Architecture d’un systéme robotique sous ROS utilisant les actions, source : ROS.org
2.4 - ROS bag, enregistrement de jeu de données

ROS permet d’enregistrer un jeu de données constitué des messages échangés sur les topics,
services et actions dans un format standardisé, appelé ROS bag. Cette fonctionnalité facilite la
collecte et rejoue des données. Par exemple, il est possible d’enregistrer des acquisitions capteurs
pour les traiter hors ligne (segmentation d’image, reconstruction cartographique...) ou d’enregistrer
des jeux de données (capteurs, actions) afin de réaliser de |’apprentissage supervisé.

3 - Premiers pas avec ROS2 sous Ubuntu 24.04

Un des points forts de ROS est la qualité de sa documentation. Celle-ci est concue pour vous guider
efficacement a travers ’ensemble de ressources disponibles, en insistant sur ’importance de suivre
toutes les étapes pour acquérir une connaissance approfondie du potentiel de ROS et une maitrise
minimale de ses fonctionnalités.

La solution la plus simple, celle retenue ici, est d’installer ROS2 Jazzy sur une distribution Ubuntu
24.04. Pour débuter, il est préférable d’utiliser Ubuntu 24.04 Desktop, afin de disposer d’un
environnement graphique pour les outils graphiques de ROS. Cet environnement peut étre installé
sur un PC, une machine virtuelle ou un nano-ordinateur Raspberry Pi. L’environnement graphique
par défaut de Ubuntu 24, Gnome, n’est pas tres fluide pour la Raspberry Pi4.

Pour le travail sur un systéeme embarqué, il peut étre intéressant d’utiliser Ubuntu 24 Server (sans
interface graphique, accessible par ssh) sur le systéeme embarqué (par exemple, un nano-ordinateur
Raspberry Pi). En complément, Ubuntu 24 Desktop peut étre installé sur un PC situé sur le méme
réseau, pour bénéficier des outils de visualisation/diagnostic.

3.1 - Installation d’'une machine Ubuntu 24.04 - ROS2

L’installation de la machine virtuelle Ubuntu 24.04 est indiquée en annexe 1 et 2 [16].

L’installation Desktop ou Sever sur un nano-ordinateur Raspberry Pi se fait via Raspberry Imager :

Raspberry Pi Imager v1.9.3 N (@ &

‘ Raspberry Pi

Modéle de Raspberry Pi Systéme d'exploitation Stockage

RASPBERRY F Raspberry PiImager v1.9.3

Systaéme d'exploitation
UDUNTU UESKIOp 24.U4.Z LIS (b3-DIT)
Desktop 0S for RPi 4/400/5 models with 4Gb+
@ Publié le : 2025-02-15
En ligne - 2.7 GO a télécharger

Ubuntu Server 24.04.2 LTS (64-bit)

Server 0S for RPi Zero 2W/3/4/400/5
@ Publié le : 2025-02-15

En ligne - 1.1 GO & télécharger

Figure 4 : Raspberry Imager : logiciel de création d’image disque pour Raspberry Pi
3.2 - Installation de ROS2 sur la machine Ubuntu 24.04

Les différentes étapes pour installer ROS2 sur Ubuntu 24.04 sont décrites sur la page web officielle :
https://docs.ros.org/en/Jazzy/Installation/Ubuntu-Install-Debs.html

ROS 2 Documentation: Jazzy

Installation / Ubuntu (deb packages)) Edit on GitHub

You're reading the documentation for an older, but still supported, version of ROS 2. For information on the latest version, please
have a look at Kilted.

Ubuntu (deb packages)
Table of Contents
B Installation « Resources
Ubuntu (deb packages) e System setup
Set locale
Windows (binary)

Enable required repositories

RHEL (RPM packages) Install development tools (optional)

Alternatives e Install ROS 2
Maintain source checkout Install additional RMW implementations (optional)
e Setup environment

Testing with pre-release binaries
e Try some examples

£ RMW implementations o Next steps

Figure 5 : Page d’accueil de ’installation de ROS2 Jazzy

Suivre scrupuleusement ce qui est demandé permet d’étre efficace. Pour ces premiers pas, sur le
PC comme sur la raspberry Pi, il est conseillé d’installer la version Desktop, ce qui permet d’avoir
quelques outils intéressants. Pour le bon fonctionnement d’un robot par la suite, il suffit d’installer
sur le systeme embarqué la version ROS-Base et de garder sur un PC la version Desktop pour les
outils de visualisation/diagnostic.

" Consulté le 19/01/2026

https://docs.ros.org/en/jazzy/Installation/Ubuntu-Install-Debs.html

Desktop Install (Recommended): ROS, RViz, demos, tutorials.

$ sudo apt install ros-jazzy-desktop

ROS-Base Install (Bare Bones): Communication libraries, message packages, command line tools. No GUI tools.

$ sudo apt install ros-jazzy-ros-base

Figure 6 : Lignes de commande pour installer la version desktop ou la version légére (ROS-base) de ROS2
Jazzy

Une fois ROS installé, il est proposé de tester sur un exemple :

webotsros2@WebotsROS2: ~ Q x [+1 webotsros2@WebotsROS2: ~

;% source [opt/ros/jazzy/setup.bash :-$ source [opt/ros/jazzy/setup.bash
:$ ros2 run demo_nodes_py listener :-$ ros2 run demo_nodes_cpp talker

[Hello World: 1 22 483646] [talker]: Publishing: 'Hello

[Hello World: 2 [talker]: Publishing: 'Hello

44833] [listener]: I heard: [Hello World: 3 1 [talker]: Publishing: 'Hello
95] [listener]: I heard: [Hello World: ¢ [INFO] [17535:] [talker]: Publishing: 'Hello

Figure 7 : Exemple de systeme ROS2 minimaliste lancé sur deux consoles : une pour le récepteur du
message (listener) et une pour ’émetteur du message (talker)

Pour permettre |’utilisation de plusieurs versions de ROS2 ou de différents jeux de paquets, il est
possible de créer plusieurs workspaces. Cependant, pour commencer, on se limite a un seul
workspace. Avant de lancer ’exemple sur chaque terminal, on configure l’espace de travail en
exécutant le fichier setup.bash.

Pour éviter de lancer cette ligne a chaque ouverture de terminal sur notre systeme dédié a ROS2,
il est conseillé de ’ajouter au fichier .bashrc. Ce fichier est automatiquement exécuté a chaque
ouverture de terminal, ce qui permet de générer une configuration automatique pour
’environnement ROS2 :

echo "source /opt/ros/Jazzy/setup.bash” >> ~/.bashrc

Pour que les nodes de différents équipements ROS2 puissent dialoguer, ils doivent étre dans le
méme domaine. Il est donc nécessaire d’ajouter une ligne de configuration pour utiliser domaine
spécifique, par exemple 94 :

echo "export ROS_DOMAIN_ID=94" >> ~/.bashrc

Les terminaux doivent alors tous étre fermés puis réouverts pour prendre en compte la modification
de configuration.

3.3 - Découverte des fonctionnalités de ROS2 avec le tutoriel Beginner : CLI tools
Une fois ROS2 installé, la documentation propose plusieurs tutoriels pour débuter. Il est important

de suivre scrupuleusement les deux premiers :

e Beginner: CLI (Command Line Interface) tools permet de découvrir les fonctionnalités de
ROS2 ;

e Beginner: Client libraries enseigne comment créer des nodes et les faire communiquer.

ROS 2 Documentation: Jazzy

/ Tutorials / Beginner: CLI tools

You're reading the documentation for an ¢
have a look at Kilted.

+ Configuring environment

* Using turtlesim, ros2 ,and rqt

.

) Understanding nodes
Distributions

Understanding topics
B Tutorials

Understanding services
B Beginner: CLI tools

L]

Understanding parameters

Understandin

L]

Configuring environment

: Us rqt_console to view
Using turtiesim, rosz, and rogc * Using| rqt_console | to view logs

Understanding nodes Launching nodes

* Recording and playing back data
Understanding topics 5 playing

Understanding services

Q@ Previous
Understanding parameters
Understanding actions
Ui e et D © Copyright 2025, Open Robotics.
Launching nodes _ i X .
Built with Sphinx using a theme provided t

Recording and playing back data

Figure 8 : Page d’accueil du tutoriel Beginner: CLI tools de ROS2 Jazzy

L’exemple turtlesim proposé permet de tester différents outils de ROS2, notamment pour lister les
nodes, topics, actions et services. Il offre aussi la possibilité d’installer et d’expérimenter [’outil
rqt, qui permet d’afficher le diagramme des nodes et topics actifs, ainsi que d’interagir avec les
nodes en utilisant les services ou messages.

webotsros2@WebotsROS2: ~ Q1 o webotsros2@WebotsROS2: ~

:-$ ros2 run turtlesim turtlesim_node 1-% ros2 topic list
QSocketNotifier: Can only be used with threads started with Q
Thread 8 /parameter_events
[INFO] [1753524153.946841507] [turtlesim]: Starting turtlesim l/rosout
with node name /turtlesim /turtlel/cmd_vel

[turtlel/color_sensor
webotsros2@WebotsROS2: ~ '/turtlei,fpose

. 57 ct1 is

;S ros2 run turtlesim turtle teleop key ; 38 resd oElitan Lisi

Reading from keyboard
‘/turtlei,’rotatefabsolute
arrow keys to move the turtle. :-$ ros2 service list
se g|lb|v|c|d|e|r|t keys to rotate to absolute orientations.
f' to cancel a rotation.
to quit.

Jclear

Jkill

|/reset

{ /spawn
/teleop_turtle/describe_parameters
Beginner: Cliel /teleop_turtle/get_parameter_types
(miEmese /teleop_turtle/get_parameters
/teleop_turtle/get_type_description
/teleop_turtle/list_parameters
Demos /teleop turtle/set parameters
Miscellaneous /teleop_turtle/set_parameters_atomically
[turtlel/set_pen
/turtlel/teleport_absolute

Concepts /turtlel/teleport_relative
/turtlesim/describe_parameters
/turtlesim/get parameter_types
/turtlesim/get_parameters
/turtlesim/get_type_description
/turtlesim/1list_parameters
/turtlesim/set_parameters
/turtlesim/set_parameters_atomically

Figure 9 : Exemple Turtlesim lancé sur trois consoles : un node pour la simulation et ’affichage de la
tortue (turtlesim_node), un node pour la commande (turtle_teleop_key) et une derniére console pour
l’affichage des services ROS2 disponibles

e
Q'
Recording an

Advanced

How-to Guides

Contact

The ROS 2 Proj

webotsros2@WwebotsROS2: ~

1S rqt

test-rgt - O X
" Eile Plugins Running Perspectives Help
#Node Graph DE® -00
" & || Nodes only -JIr / FIEE
Group: |2 |+| Namespaces [v| Actions [v|tf v|Images | v|Highlight v|Fit |Z3

Hide: V! Dead sinks v/ Leaf topics v/ Debug tf vl Unreachable |v|Params

Figure 10 : Outil ROS2 rqt de visualisation des nodes actifs

La suite du tutoriel guide a ’utilisation d’outils de diagnostic complémentaires, la mise en ceuvre
des services et actions, la modification des parametres d’un node, toujours sur I’exemple turtlesim,
ainsi que la création un fichier de lancement de nodes.

Les fonctions de sauvegarde et de chargement des parameétres d’un node via des fichiers YAML
seront bien utiles pour tout utilisateur de ROS.

Enfin, le tutoriel aborde ’enregistrement et la relecture d’un jeu de données avec ROS bag.

3.4 - Programmation de premiers nodes ROS2 avec le tutoriel Beginner : CLI libraries

Ce second tutoriel ROS2 améne a écrire 2 nodes (en C++ ou en python), un publiant un message
dans un topic et ’autre s’y abonnant pour ’afficher. Le tutoriel guide ensuite a « construire » ces
nodes avec |’outil colcon de ROS pour les lancer.

ROS 2 Documentation: Jazzy
Tutorials ' Beginner: Client libraries

You're reading the documentation for an older, but still
have a look at Kilted.

Beginner: Client libraries

.
(=]
o
=}

aa

olcon to build packages

Creating a workspace

Installation

D Creating a package
Distributions

Writing a simple publisher and subscriber (C++)
B Tutorials

Writing a simple publisher and subscriber (Python)

Beginner: CLI tools Writing a simple service and client (C++)

B Beginner: Client libraries Writing a simple service and client (Python)

Using cotcon to build packages Creating custom msg and srv files

Implementing custom interfaces
Creating a workspace P >

Using parameters in a class (C++)
Creating a package

Using parameters in a class (Python)
Writing a simple publisher and
subscriber (C++)

Using ros2doctor to identify issues

Creating and using plugins (C++)

Writing a simple publisher and
Figure 11 : Page d’accueil du tutoriel Beginner: Client libraries de ROS2 Jazzy

On peut se limiter aux quatre premieres étapes :

8

e La découverte de ’outil colcon, nécessaire pour construire les nodes ;

e La découverte des environnements de travail, surcouche (overlay) au-dessus des paquets de
installation de base de ROS2 (underlay) ;

e La structure et la création d’un paquet avec un node simple, en C++ ou en python ;

e L’écriture (en C++ ou en python) d’un node talker publiant sur un topic et d’un node listener
souscrivant a ce topic pour ’afficher.

Les plus intéressés feront la suite du tutoriel avec la création de nodes communiquant via des
services et l’écriture de type de messages et services personnalisés, de nodes avec des parametres.

L’avant-dernier item Using ros2doctor est rapide et utile pour la suite.

On trouve sur le web des mémos regroupant les principales commandes ROS. On donne ici un
exemple pertinent, sur deux pages [13].

4 - Quelques outils ROS complémentaires
ROS propose aux développeurs quelques outils bien utiles pour déboguer leur systeme.
4.1 - Rqt / rqt_graph

Rqt et Rqt_graph [10] sont des outils ROS permettant de visualiser en temps réel les nodes, topics,
services et actions en cours d’exécution. Rqt_graph offre une représentation de la topologie
logicielle sous forme de graphe. Il permet de visualiser les relations entre les nodes et les topics,
ainsi que les messages qui sont échangés entre eux.

Lancée dans un terminal, la commande [fsj#elgll) fournit un schéma de communication entre les
nodes en cours d’exécution.

Figure 12 : Diagramme rqt_graph d'une voiture effectuant du SLAM (Simultaneous Localization and
Mapping)

Le package rgt contient d’autres affichages graphiques pour visualiser les données de ROS,
notamment rqt_plot qui permet de visualiser les données des topics.

File Plugins Running Perspectives Help

& Node Graph D2® - o® Citopic Monitor DE@ - 0@ EMatrlot DET® - 00
| | Nodes only Ll / B & Topic Type Bandwidth Hz Value +| Topiclleft_sensor/range | + | =~ v autoscroll | 10 | %>
- v Jemd_vel eometry_msgs/msg/Twist 1.32KB/s 28.11
Group: |2 || Namespaces v/ Actions v/ tf [v/Images | v/ Highlight v/Fit |[ZZ HH eometmssves .
- =~ B
Hide: v Deadsinks ¥ Leaftopics v/ Debug | |tF v Unreachable v Params x double o1 #€> Q=B
y double 0.0
z double 0.0 T T T
» angular geometry_msgs/Vector3 0.175 4. — fleft_sensorjrange
= |v| /left_sensor sensor_msgs/msg/Range 1.12KB/s 28.11
+ header std_msgs/Header 0.150
radiation_type uintg 1
field_of _view Floak 1.0 0.125
Iy oot fet sensor Semd v [min_range Float 0.0
<oy max_range float 0.150000¢ 0100
range fleat 0.137266(0.075
variance float 0.0
» [] /parameter_events rcl_interfaces/msg/ParameterEvent not monit 0.050
» || /remove_urdf_robot std_msgs/msg/string not monit: 1300 1302 1304 1306 130.8

3 Jright_sensor sensor_msgs/msg/Range not monit(~
« »

Figure 13 : Outil rqt utilisé sur un l'exemple ROS2 pour webots pour l'affichage du diagramme des nodes,
des valeurs de 2 topics et de l'évolution du champ d'un des topics

4.2 - Ros_bag

Ros_bag [11] est un outil de ROS permettant d’enregistrer les données publiées par les nodes dans
des topics. Ces données peuvent étre des images, des données de capteurs, des données de
navigation, etc. Elles peuvent ensuite étre relues pour analyse ou rejouées afin de tester différents
algorithmes qui les exploitent.

Pour enregistrer des données dans un bag, on utilise la commande suivante sur des topics :

ros2 bag record <nom_du_topic> <nom_du_topic>

Pour utiliser ses données, on utilise la commande suivante :

ros2 bag play <nom_du_bag>

On peut ajouter -loop pour lire en boucle :

ros2 bag play <nom_du_bag> --loop

4.3 - Rviz2

Rviz2 [12] est un outil de ROS2 qui permet de visualiser des données en 3D. Il peut afficher
graphiquement des données de capteurs, LiDAR ou caméras. Il se lance comme un node qui s’abonne
a des topics pour visualiser en temps réel les données transmises :

ros2 run rviz2 rviz2

Figure 14 : (a) Visualisation des données du LiDAR dans Rviz, (b) Voiture et son lidar au moment de
l’acquisition

10

4.4 - Les transformées et repéres

La position de capteurs dans le repere du robot ou dans le repére terrestre sont des éléments
essentiels pour exploiter leurs données. ROS propose un systeme puissant de transformée des
repéres de coordonnées nommé tf, qui permet de gérer la transformation des reperes de
coordonnées en temps réel. La documentation [14] propose son propre tutoriel pour bien
comprendre cet outil puissant.

Figure 15 : Illustration ROS associée au paquet tf2
5 - Conclusion

Cette ressource a présenté la structure d’un systéme reposant sur ROS2. L’association des nodes
fournis par des laboratoires ou des industriels avec ses propres nodes, ainsi que ['utilisation des
transformées ROS, permet d’exploiter pleinement les capteurs et les algorithmes existants. Par
ailleurs, les outils rqt_graph, rosbag et rviz2 seront des alliés essentiels pour la mise au point des
programmes.

11

Références :

[1]: Open Source Robotics Foundation, Inc., “Robot Operating System (ROS).” ,
http://www.ros.org/

[2]: https://docs.ros.org/en/Jazzy/index.html#ros-community-resources

[3]: forum ROS, https://discourse.ros.org/
[4]: canal Discord, https://discord.com/servers/open-robotics-1077825543698927656

[5]: Site web de la ROScon, https://roscon.ros.org
[6]: Site web de la ROScon France, https://roscon.fr/

[7]: Documentation officielle ROS, https://docs.ros.org/
[8]: Wiki officiel ROS, https://wiki.ros.org/

[9]: Le middleware ROS2, https://design.ros2.org/articles/ros_on_dds.html

[10]: page de rqt et rqt_graph, https://wiki.ros.org/rgt et https://wiki.ros.org/rqt_graph

[11]: ROS Wiki Contributors, “rosbag - ROS Wiki.”, https://wiki.ros.org/rosbag/Commandline

[12]: Tutoriel et page ROS Wiki sur RVIZ2,
https://docs.ros.org/en/Jazzy/Tutorials/Intermediate/RViz/RViz-Main.html et
http://wiki.ros.org/rviz

[13]: https://github.com/ubuntu-
robotics/ros2 cheats sheet/blob/master/cli/cli cheats sheet.pdf

[14]: Tutoriel et page ROS Wiki sur les transformée tf,
https://docs.ros.org/en/Jazzy/Tutorials/Intermediate/Tf2/Tf2-Main.html et
https://wiki.ros.org/tf2

[15]: Mise en ceuvre de ROS2 pour le controle d’une voiture autonome simulée sous Webots et
réelle, J. Farnault, S. Rodriguez A. Juton, M. Goupillon, 2026, https://sti.eduscol.education.fr/si-

ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-
1-10e

[16]: Annexes de ROS2 : bibliothéques et outils pour le développement logiciel en robotique,
J. Farnault, S. Rodriguez A. Juton, 2026, https://sti.eduscol.education.fr/si-ens-paris-
saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-

robotique

e Annexe 1 : Installation de la machine virtuelle sous Linux

e Annexe 2 : Installation de la machine virtuelle sous Windows

12

http://www.ros.org/
https://docs.ros.org/en/jazzy/index.html#ros-community-resources
https://discourse.ros.org/
https://discord.com/servers/open-robotics-1077825543698927656
https://roscon.ros.org/
https://roscon.fr/
https://docs.ros.org/
https://wiki.ros.org/
https://design.ros2.org/articles/ros_on_dds.html
https://wiki.ros.org/rqt
https://wiki.ros.org/rqt_graph
https://wiki.ros.org/rosbag/Commandline
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/RViz/RViz-Main.html
http://wiki.ros.org/rviz
https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf
https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/Tf2/Tf2-Main.html
https://wiki.ros.org/tf2
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique

Ressource publiée sur Culture Sciences de 'Ingénieur : https://eduscol.education.fr/sti/si-ens-paris-saclay

13

