
1

ROS2 : bibliothèques et outils pour

le développement logiciel en

robotique

Jules FARNAULT1 – Sergio RODRIGUEZ2 – Anthony JUTON3

Édité le
02/02/2026

1 Elève normalien à l’ENS Paris Saclay, DER Sciences de l’Ingénierie Électrique et Numérique
2 Maître de conférences au laboratoire SATIE, ENS Paris Saclay
3 Professeur agrégé à l’ENS Paris Saclay, DER Sciences de l’Ingénierie Électrique et Numérique

Cette ressource fait partie du N°118 de La Revue 3EI du 1er trimestre 2026.

Cette ressource a pour but de présenter ROS (du sigle en anglais Robotics Operating System version

2), un ensemble de bibliothèques C/C++ et python et d’outils de développement open-source pour

la robotique, drones compris. Les laboratoires de robotique, les fabricants de matériel et les

industriels de la robotique partagent dans une communauté dynamique leurs développements ROS,

ce qui permet de réutiliser des briques logicielles de qualité [modules d’acquisition de capteurs

complexes (LiDAR-Light Detection And Ranging, caméra RGBD, GPS/GNSS...), de contrôle

d’actionneurs, algorithmes complexes (filtres à particules, génération de trajectoire…)…] et faciles

à interfacer.

Cette ressource présente ROS et ses différents composants et guide le lecteur à travers la

documentation de la version ROS2 pour sa mise en œuvre sur deux premiers exemples. Elle est

suivie de la ressource « Mise en œuvre de ROS2 pour le contrôle d’une voiture autonome simulée

sous Webots et réelle » [15] présentant la mise en œuvre de ROS2 réelle et simulée.

Figure 1 : Graphe ROS2 utilisé pour la conduite d'une voiture autonome 1/10ème

https://eduscol.education.fr/sti/si-ens-paris-saclay
https://eduscol.education.fr/sti/si-ens-paris-saclay/revue-3ei

2

1 - ROS, un écosystème de bibliothèques et outils pour la robotique

ROS (Robot Operating System), né en 2007, [1] constitue une surcouche logicielle d’Ubuntu destiné

au développement d’applications pour la robotique. Il offre des services standardisés essentiels tels

que la gestion des capteurs, la gestion des actionneurs, la gestion de la navigation, ainsi que

l’enregistrement et le rejeu de données. En outre, ROS met à disposition des outils de visualisation,

de simulation, d’analyse et de débogage facilitant le développement et la maintenance des

systèmes robotiques.

ROS est utilisé par de nombreux laboratoires de recherche et industriels pour le développement de

logiciels de robots. Dans une optique open-source, ils développent des paquets (ROS package) que

tout utilisateur peut ajouter à son installation afin de bénéficier de ses fonctionnalités. Des projets

open-source pour les drones (PX4 autopilot), les bras robotisés (ROS-industrial), la navigation des

robots (Nav2) sont basés sur ROS. De plus, les fabricants de capteurs (Intel Realsense pour les

caméras RGBD, Slamtec ou Velodyne pour les LiDARs, ainsi que Analog Device (centrales inertielles)

fournissent des paquets ROS permettant d’acquérir les données de leurs équipements. Par ailleurs,

les fabricants de robots (Boston Dynamics, Unitree Husarion…) proposent également des paquets

ROS permettant de s’interfacer avec leurs robots.

Un répertoire des paquets documentés disponibles est fourni par ROS : https://index.ros.org

La communauté des développeurs ROS [2] communique principalement à travers un forum [3], un

canal Discord [4] et se rassemble chaque année lors de conférences ROScon nationales [6] et une

conférence internationale [5]. L’accès public à ces discussions, ainsi qu’aux et les documentations

[7], tutoriels et wiki [8] facilitent une prise en main rapide de ROS et des paquets complémentaires.

ROS2, dont la première distribution date de 2017, est une évolution majeure rendant les paquets

ROS2 incompatibles avec les paquets ROS1. Aujourd’hui, la plupart des projets et paquets ont été

migrés sur ROS2 et le nom générique ROS désigne souvent des travaux sur ROS2. Les évolutions

mineures sont portées par des distributions (un ensemble de paquets compatibles entre eux). Pour

cette ressource, la distribution LTS (Long Term Support) Jazzy, compatible avec Ubuntu 24.04 LTS,

a été choisie. Elle est moderne et sera supportée jusqu’à mai 2029. Les paquets les plus populaires

sont disponibles pour Jazzy.

ROS2 et la plupart des paquets complémentaires sont développés en C++ pour des critères de

performances. La suite montrera que la modularité de ROS2 permet d’écrire des programmes en

python s’interfaçant avec ces bibliothèques en C++.

2 - Nodes, Topics, Services… les différents composants de ROS

Un système robotique fonctionnant sous ROS possède une architecture construite en nodes qui

communiquent via des topics ou des services. Cette modularité, en nodes, permet de faire

cohabiter des nodes ROS officiels (par exemple, node fourni par le fabricant d’un capteur ou

développé par un laboratoire…) et des nodes développés spécifiquement pour répondre à des

besoins particuliers.

La messagerie (topics, services) s’appuie sur un middleware nommé DDS (de l’anglais Data

Distribution Service) utilisant des mécanismes d’échange par mémoire partagée ou les protocoles

IP [9]. Les nodes peuvent donc indifféremment être sur la même machine ou sur des machines

différentes, ce qui simplifie le calcul déporté pour des systèmes embarqués aux ressources limitées.

https://index.ros.org/

3

Évidemment, si les nodes sont sur des machines différentes, la latence entre les envois et

réceptions de message sera plus importante.

Figure 2 : Architecture d’un système robotique sous ROS, source : ROS.org

2.1 - Nodes (Nœuds)

Un node est un processus indépendant. Un nœud programmé en C++ peut donc cohabiter avec un

nœud programmé en python. Les nodes s’exécutent en parallèle au sein du système d’exploitation,

chaque node pouvant ainsi utiliser une CPU différente sur un microprocesseur multicœurs.

Pour communiquer entre eux, les nodes utilisent des topics ou des services.

2.2 - Topics (canaux)

Les topics sont une communication en mode publisher/subscriber. Ce sont des canaux de

communication qui permettent à différents nodes d’échanger des messages. Un ou plusieurs nodes

peuvent publier des messages dans un topic, tandis qu’un ou plusieurs nodes peuvent s’abonner à

ce topic pour recevoir ces messages. La messagerie inter-processus TCP utilisée dans ROS1 et a été

remplacée dans ROS2 par une communication nommée DDS. Cette solution combine l’utilisation

conjointe des protocoles TCP, UDP et mémoire partagée selon les contraintes de l’application.

2.3 - Services et actions

Les services sont une communication en mode client serveur. Ils sont utilisés plutôt pour la

modification de configuration d’un node, les topics étant plus adaptés pour les messages de process

(valeurs des capteurs et commandes des actionneurs).

Les actions sont similaires aux services mais avec une différence clé : elles renvoient un feedback

continu. C’est intéressant pour un service qui nécessite du temps pour s’exécuter. Par exemple si

on demande à un robot d’atteindre une position absolue, il est intéressant de pouvoir suivre

l’évolution de son déplacement.

4

Figure 3 : Architecture d’un système robotique sous ROS utilisant les actions, source : ROS.org

2.4 - ROS bag, enregistrement de jeu de données

ROS permet d’enregistrer un jeu de données constitué des messages échangés sur les topics,

services et actions dans un format standardisé, appelé ROS bag. Cette fonctionnalité facilite la

collecte et rejoue des données. Par exemple, il est possible d’enregistrer des acquisitions capteurs

pour les traiter hors ligne (segmentation d’image, reconstruction cartographique…) ou d’enregistrer

des jeux de données (capteurs, actions) afin de réaliser de l’apprentissage supervisé.

3 - Premiers pas avec ROS2 sous Ubuntu 24.04

Un des points forts de ROS est la qualité de sa documentation. Celle-ci est conçue pour vous guider

efficacement à travers l’ensemble de ressources disponibles, en insistant sur l’importance de suivre

toutes les étapes pour acquérir une connaissance approfondie du potentiel de ROS et une maîtrise

minimale de ses fonctionnalités.

La solution la plus simple, celle retenue ici, est d’installer ROS2 Jazzy sur une distribution Ubuntu

24.04. Pour débuter, il est préférable d’utiliser Ubuntu 24.04 Desktop, afin de disposer d’un

environnement graphique pour les outils graphiques de ROS. Cet environnement peut être installé

sur un PC, une machine virtuelle ou un nano-ordinateur Raspberry Pi. L’environnement graphique

par défaut de Ubuntu 24, Gnome, n’est pas très fluide pour la Raspberry Pi4.

Pour le travail sur un système embarqué, il peut être intéressant d’utiliser Ubuntu 24 Server (sans

interface graphique, accessible par ssh) sur le système embarqué (par exemple, un nano-ordinateur

Raspberry Pi). En complément, Ubuntu 24 Desktop peut être installé sur un PC situé sur le même

réseau, pour bénéficier des outils de visualisation/diagnostic.

3.1 - Installation d’une machine Ubuntu 24.04 - ROS2

L’installation de la machine virtuelle Ubuntu 24.04 est indiquée en annexe 1 et 2 [16].

5

L’installation Desktop ou Sever sur un nano-ordinateur Raspberry Pi se fait via Raspberry Imager :

Figure 4 : Raspberry Imager : logiciel de création d’image disque pour Raspberry Pi

3.2 - Installation de ROS2 sur la machine Ubuntu 24.04

Les différentes étapes pour installer ROS2 sur Ubuntu 24.04 sont décrites sur la page web officielle :

https://docs.ros.org/en/Jazzy/Installation/Ubuntu-Install-Debs.html 1

Figure 5 : Page d’accueil de l’installation de ROS2 Jazzy

Suivre scrupuleusement ce qui est demandé permet d’être efficace. Pour ces premiers pas, sur le

PC comme sur la raspberry Pi, il est conseillé d’installer la version Desktop, ce qui permet d’avoir

quelques outils intéressants. Pour le bon fonctionnement d’un robot par la suite, il suffit d’installer

sur le système embarqué la version ROS-Base et de garder sur un PC la version Desktop pour les

outils de visualisation/diagnostic.

1 Consulté le 19/01/2026

https://docs.ros.org/en/jazzy/Installation/Ubuntu-Install-Debs.html

6

Figure 6 : Lignes de commande pour installer la version desktop ou la version légère (ROS-base) de ROS2

Jazzy

Une fois ROS installé, il est proposé de tester sur un exemple :

Figure 7 : Exemple de système ROS2 minimaliste lancé sur deux consoles : une pour le récepteur du

message (listener) et une pour l’émetteur du message (talker)

Pour permettre l’utilisation de plusieurs versions de ROS2 ou de différents jeux de paquets, il est

possible de créer plusieurs workspaces. Cependant, pour commencer, on se limite à un seul

workspace. Avant de lancer l’exemple sur chaque terminal, on configure l’espace de travail en

exécutant le fichier setup.bash.

Pour éviter de lancer cette ligne à chaque ouverture de terminal sur notre système dédié à ROS2,

il est conseillé de l’ajouter au fichier .bashrc. Ce fichier est automatiquement exécuté à chaque

ouverture de terminal, ce qui permet de générer une configuration automatique pour

l’environnement ROS2 :

echo "source /opt/ros/Jazzy/setup.bash" >> ~/.bashrc

Pour que les nodes de différents équipements ROS2 puissent dialoguer, ils doivent être dans le

même domaine. Il est donc nécessaire d’ajouter une ligne de configuration pour utiliser domaine

spécifique, par exemple 94 :

echo "export ROS_DOMAIN_ID=94" >> ~/.bashrc

Les terminaux doivent alors tous être fermés puis réouverts pour prendre en compte la modification

de configuration.

3.3 - Découverte des fonctionnalités de ROS2 avec le tutoriel Beginner : CLI tools

Une fois ROS2 installé, la documentation propose plusieurs tutoriels pour débuter. Il est important

de suivre scrupuleusement les deux premiers :

• Beginner: CLI (Command Line Interface) tools permet de découvrir les fonctionnalités de
ROS2 ;

• Beginner: Client libraries enseigne comment créer des nodes et les faire communiquer.

7

Figure 8 : Page d’accueil du tutoriel Beginner: CLI tools de ROS2 Jazzy

L’exemple turtlesim proposé permet de tester différents outils de ROS2, notamment pour lister les

nodes, topics, actions et services. Il offre aussi la possibilité d’installer et d’expérimenter l’outil

rqt, qui permet d’afficher le diagramme des nodes et topics actifs, ainsi que d’interagir avec les

nodes en utilisant les services ou messages.

Figure 9 : Exemple Turtlesim lancé sur trois consoles : un node pour la simulation et l’affichage de la
tortue (turtlesim_node), un node pour la commande (turtle_teleop_key) et une dernière console pour

l’affichage des services ROS2 disponibles

8

Figure 10 : Outil ROS2 rqt de visualisation des nodes actifs

La suite du tutoriel guide à l’utilisation d’outils de diagnostic complémentaires, la mise en œuvre

des services et actions, la modification des paramètres d’un node, toujours sur l’exemple turtlesim,

ainsi que la création un fichier de lancement de nodes.

Les fonctions de sauvegarde et de chargement des paramètres d’un node via des fichiers YAML

seront bien utiles pour tout utilisateur de ROS.

Enfin, le tutoriel aborde l’enregistrement et la relecture d’un jeu de données avec ROS bag.

3.4 - Programmation de premiers nodes ROS2 avec le tutoriel Beginner : CLI libraries

Ce second tutoriel ROS2 amène à écrire 2 nodes (en C++ ou en python), un publiant un message

dans un topic et l’autre s’y abonnant pour l’afficher. Le tutoriel guide ensuite à « construire » ces

nodes avec l’outil colcon de ROS pour les lancer.

Figure 11 : Page d’accueil du tutoriel Beginner: Client libraries de ROS2 Jazzy

On peut se limiter aux quatre premières étapes :

9

• La découverte de l’outil colcon, nécessaire pour construire les nodes ;

• La découverte des environnements de travail, surcouche (overlay) au-dessus des paquets de

l’installation de base de ROS2 (underlay) ;

• La structure et la création d’un paquet avec un node simple, en C++ ou en python ;

• L’écriture (en C++ ou en python) d’un node talker publiant sur un topic et d’un node listener

souscrivant à ce topic pour l’afficher.

Les plus intéressés feront la suite du tutoriel avec la création de nodes communiquant via des

services et l’écriture de type de messages et services personnalisés, de nodes avec des paramètres.

L’avant-dernier item Using ros2doctor est rapide et utile pour la suite.

On trouve sur le web des mémos regroupant les principales commandes ROS. On donne ici un

exemple pertinent, sur deux pages [13].

4 - Quelques outils ROS complémentaires

ROS propose aux développeurs quelques outils bien utiles pour déboguer leur système.

4.1 - Rqt / rqt_graph

Rqt et Rqt_graph [10] sont des outils ROS permettant de visualiser en temps réel les nodes, topics,

services et actions en cours d’exécution. Rqt_graph offre une représentation de la topologie

logicielle sous forme de graphe. Il permet de visualiser les relations entre les nodes et les topics,

ainsi que les messages qui sont échangés entre eux.

Lancée dans un terminal, la commande rqt_graph fournit un schéma de communication entre les

nodes en cours d’exécution.

Figure 12 : Diagramme rqt_graph d'une voiture effectuant du SLAM (Simultaneous Localization and

Mapping)

Le package rqt contient d’autres affichages graphiques pour visualiser les données de ROS,

notamment rqt_plot qui permet de visualiser les données des topics.

10

Figure 13 : Outil rqt utilisé sur un l'exemple ROS2 pour webots pour l'affichage du diagramme des nodes,

des valeurs de 2 topics et de l'évolution du champ d'un des topics

4.2 - Ros_bag

Ros_bag [11] est un outil de ROS permettant d’enregistrer les données publiées par les nodes dans

des topics. Ces données peuvent être des images, des données de capteurs, des données de

navigation, etc. Elles peuvent ensuite être relues pour analyse ou rejouées afin de tester différents

algorithmes qui les exploitent.

Pour enregistrer des données dans un bag, on utilise la commande suivante sur des topics :

ros2 bag record <nom_du_topic> <nom_du_topic>

Pour utiliser ses données, on utilise la commande suivante :

ros2 bag play <nom_du_bag>

On peut ajouter –loop pour lire en boucle :

ros2 bag play <nom_du_bag> --loop

4.3 - Rviz2

Rviz2 [12] est un outil de ROS2 qui permet de visualiser des données en 3D. Il peut afficher

graphiquement des données de capteurs, LiDAR ou caméras. Il se lance comme un node qui s’abonne

à des topics pour visualiser en temps réel les données transmises :

ros2 run rviz2 rviz2

Figure 14 : (a) Visualisation des données du LiDAR dans Rviz, (b) Voiture et son lidar au moment de

l’acquisition

11

4.4 - Les transformées et repères

La position de capteurs dans le repère du robot ou dans le repère terrestre sont des éléments

essentiels pour exploiter leurs données. ROS propose un système puissant de transformée des

repères de coordonnées nommé tf, qui permet de gérer la transformation des repères de

coordonnées en temps réel. La documentation [14] propose son propre tutoriel pour bien

comprendre cet outil puissant.

Figure 15 : Illustration ROS associée au paquet tf2

5 - Conclusion

Cette ressource a présenté la structure d’un système reposant sur ROS2. L’association des nodes

fournis par des laboratoires ou des industriels avec ses propres nodes, ainsi que l’utilisation des

transformées ROS, permet d’exploiter pleinement les capteurs et les algorithmes existants. Par

ailleurs, les outils rqt_graph, rosbag et rviz2 seront des alliés essentiels pour la mise au point des

programmes.

12

Références :

[1]: Open Source Robotics Foundation, Inc., “Robot Operating System (ROS).” ,

http://www.ros.org/

[2]: https://docs.ros.org/en/Jazzy/index.html#ros-community-resources

[3]: forum ROS, https://discourse.ros.org/

[4]: canal Discord, https://discord.com/servers/open-robotics-1077825543698927656

[5]: Site web de la ROScon, https://roscon.ros.org

[6]: Site web de la ROScon France, https://roscon.fr/

[7]: Documentation officielle ROS, https://docs.ros.org/

[8]: Wiki officiel ROS, https://wiki.ros.org/

[9]: Le middleware ROS2, https://design.ros2.org/articles/ros_on_dds.html

[10]: page de rqt et rqt_graph, https://wiki.ros.org/rqt et https://wiki.ros.org/rqt_graph

[11]: ROS Wiki Contributors, “rosbag - ROS Wiki.”, https://wiki.ros.org/rosbag/Commandline

[12]: Tutoriel et page ROS Wiki sur RVIZ2,

https://docs.ros.org/en/Jazzy/Tutorials/Intermediate/RViz/RViz-Main.html et

http://wiki.ros.org/rviz

[13]: https://github.com/ubuntu-

robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf

[14]: Tutoriel et page ROS Wiki sur les transformée tf,

https://docs.ros.org/en/Jazzy/Tutorials/Intermediate/Tf2/Tf2-Main.html et

https://wiki.ros.org/tf2

[15]: Mise en œuvre de ROS2 pour le contrôle d’une voiture autonome simulée sous Webots et

réelle, J. Farnault, S. Rodriguez A. Juton, M. Goupillon, 2026, https://sti.eduscol.education.fr/si-

ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-

1-10e

[16]: Annexes de ROS2 : bibliothèques et outils pour le développement logiciel en robotique,

J. Farnault, S. Rodriguez A. Juton, 2026, https://sti.eduscol.education.fr/si-ens-paris-

saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-

robotique

• Annexe 1 : Installation de la machine virtuelle sous Linux

• Annexe 2 : Installation de la machine virtuelle sous Windows

http://www.ros.org/
https://docs.ros.org/en/jazzy/index.html#ros-community-resources
https://discourse.ros.org/
https://discord.com/servers/open-robotics-1077825543698927656
https://roscon.ros.org/
https://roscon.fr/
https://docs.ros.org/
https://wiki.ros.org/
https://design.ros2.org/articles/ros_on_dds.html
https://wiki.ros.org/rqt
https://wiki.ros.org/rqt_graph
https://wiki.ros.org/rosbag/Commandline
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/RViz/RViz-Main.html
http://wiki.ros.org/rviz
https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf
https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf
https://docs.ros.org/en/jazzy/Tutorials/Intermediate/Tf2/Tf2-Main.html
https://wiki.ros.org/tf2
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/mise-en-oeuvre-ros2-pour-controle-voiture-autonome-1-10e
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique
https://sti.eduscol.education.fr/si-ens-paris-saclay/ressources_pedagogiques/ros2-bibliotheques-outils-pour-developpement-logiciel-en-robotique

13

Ressource publiée sur Culture Sciences de l’Ingénieur : https://eduscol.education.fr/sti/si-ens-paris-saclay

