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Cette ressource expose les mécanismes d’optique géométrique à l’origine des arcs-en-ciel et des mirages :
réfraction, réflexion interne et variations d’indice dans l’atmosphère.

1 - Introduction

Les arcs-en-ciel et les mirages comptent parmi les phénomènes optiques naturels les plus familiers.
Observables sans instrument particulier, parfois de manière fugace, ils ont longtemps alimenté l’ima-
ginaire collectif. Derrière ces images souvent qualifiées d’illusions se cachent pourtant des mécanismes
physiques précis.

Dans cet article, ces phénomènes sont étudiés dans le cadre de l’optique géométrique, où la lumière
est modélisée par des rayons. Cette approximation est valable lorsque les dimensions caractéristiques
du système sont grandes devant la longueur d’onde de la lumière visible, de l’ordre de λ ∼ 0,4–0,7µm.
Dans le cas présent, les gouttes de pluie ont un rayon typique de l’ordre du millimètre, et les gradients
atmosphériques responsables des mirages s’étendent sur des distances allant du mètre à plusieurs
dizaines de mètres, ce qui justifie pleinement l’usage de l’optique géométrique.

Arcs-en-ciel et mirages reposent sur un principe commun fondamental : la lumière ne se propage pas en
ligne droite lorsqu’elle traverse un milieu dont l’indice de réfraction varie. Dans le cas des arcs-en-ciel,
cette variation est brutale, à l’interface air–eau des gouttes de pluie, tandis que, dans le cas des mirages,
elle est continue, liée à des gradients de température dans l’atmosphère.

L’objectif de cet article est de montrer que, malgré leurs manifestations visuelles très différentes,
arcs-en-ciel et mirages relèvent d’une même géométrie de la lumière, décrite à l’aide des lois de Snell-
Descartes, de l’étude des trajectoires des rayons et des variations d’indice.

2 - Arc-en-ciel : réfraction, réflexion interne et angles caractéristiques

Les arcs-en-ciel résultent de la déviation des rayons solaires lors de leur interaction avec des gouttes
d’eau assimilées à des sphères transparentes en chute libre dans l’atmosphère. Cette approximation est
justifiée pour des gouttes de taille millimétrique, dont la déformation aérodynamique reste négligeable
au regard des mécanismes optiques en jeu. La déviation de la lumière résulte d’une succession de
phénomènes de réfraction et de réflexion interne au sein des gouttes. L’analyse du trajet des rayons
lumineux met en évidence des angles de déviation caractéristiques, à l’origine de la position angulaire
des arcs observés et de l’ordre des couleurs.

Selon le nombre de réflexions internes subies par la lumière dans les gouttes, plusieurs arcs peuvent
ainsi être formés, dont les plus visibles sont l’arc primaire et l’arc secondaire.

2.1 - Arc primaire

L’arc-en-ciel primaire s’explique par le trajet suivi par un rayon solaire traversant une goutte d’eau
sphérique et subissant une seule réflexion interne. Ce trajet conduit à une concentration de la lumière
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dans une direction privilégiée, correspondant à l’arc observé.

Lorsqu’un rayon lumineux issu du Soleil pénètre dans une goutte d’eau, il subit successivement une
réfraction à l’interface air–eau, une réflexion interne sur la face opposée de la goutte, puis une seconde
réfraction en ressortant dans l’air. Ce trajet est représenté sur la figure 1.

Figure 1 : Trajet optique d’un rayon lumineux dans une goutte d’eau avec une réflexion interne, responsable
de l’arc-en-ciel primaire (d’après [1]).

Dans toute la suite, les angles sont pris comme des angles géométriques non orientés, mesurés par
rapport à la normale (ou à l’horizontale selon le cas).

Rappel – lois de Snell-Descartes

La déviation d’un rayon lumineux à l’interface entre deux milieux transparents est décrite par les
lois de Snell-Descartes. L’indice optique n caractérise le ralentissement de la lumière par rapport
au vide et dépend de la nature du milieu ; pour l’eau, il varie légèrement avec la longueur d’onde.

Réfraction. En notant nair et neau les indices de réfraction de l’air et de l’eau, i l’angle d’incidence
et r l’angle de réfraction (mesurés par rapport à la normale à l’interface), la loi de réfraction s’écrit :

nair sin i = neau sin r. (1)

Réflexion. Lorsqu’un rayon est réfléchi sur une interface, l’angle de réflexion est égal à l’angle
d’incidence :

iréflexion = iincidence.

Réflexion totale interne. Lorsque la lumière se propage d’un milieu d’indice plus élevé vers un
milieu d’indice plus faible (n1 > n2), la loi de Snell-Descartes (1) implique que l’angle de réfraction
r est supérieur à l’angle d’incidence i : le rayon réfracté s’écarte donc de la normale à l’interface.
Lorsque l’angle d’incidence augmente, l’angle réfracté se rapproche progressivement de 90◦. La
réfraction devient impossible lorsque le rayon réfracté est tangent à l’interface (r = 90◦), ce qui
définit l’angle critique ic :

sin ic =
n2

n1
.

Pour i > ic, aucun rayon réfracté ne peut exister dans le second milieu : le rayon est entièrement
réfléchi. On parle alors de réflexion totale interne.

Cette relation permet de relier la direction du rayon à l’entrée de la goutte à sa direction à l’intérieur.
Pour analyser la formation de l’arc-en-ciel, il est utile d’étudier comment une variation de l’angle
d’incidence i se répercute sur l’angle réfracté r. En différenciant l’équation (1), on obtient :

nair cos idi = neau cos r dr =⇒ dr

di
=

nair

neau

cos i

cos r
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La déviation totale D du rayon peut être obtenue en additionnant les déviations successives subies
lors des différentes interactions avec la goutte. À l’entrée dans la goutte, la réfraction entraîne une
première déviation angulaire (i− r). La réflexion interne contribue ensuite d’une déviation de (π−2r),
correspondant au changement de direction du rayon dans le triangle formé par les deux points de
réfraction et le point de réflexion totale interne. Enfin, la réfraction à la sortie de la goutte ajoute une
dernière déviation (i− r).

On obtient ainsi pour la déviation totale :

D = (i− r) + (π − 2r) + (i− r)

= π + 2i− 4r

Cherchons le minimum de déviation de ce rayon :

On a :
dD

di
= 2− 4

dr

di
= 2

(
1− 2

nair

neau

cos i

cos r

)
= 2

(
1− 2 cos i

n cos r

)
avec nair = 1 et neau = n.

Cette dérivée s’annule pour :

2 cos im = n cos rm ⇐⇒ 4 cos2 im = n2 cos2 rm car cos im ≥ 0

⇐⇒ 4(1− sin2 im) = n2(1− sin2 im
n2

)

⇐⇒ sin2 im =
4− n2

3

⇐⇒ im = arcsin

(√
4− n2

3

)

La figure 2 montre que la fonction de déviation D(i) admet un minimum marqué, confirmant que
l’angle im trouvé correspond bien à la déviation minimale du rayon.

L’eau étant un milieu dispersif, son indice de réfraction dépend de la longueur d’onde λ de la radiation
qui la traverse. Cette dépendance spectrale est classiquement décrite à l’aide de lois de dispersion
empiriques, introduites par Sellmeier pour rendre compte de la variation de l’indice optique loin des
résonances électroniques [2].

Dans le cas de l’eau pure, les valeurs expérimentales de l’indice en fonction de la longueur d’onde
ont été mesurées et compilées dans la littérature, notamment par Dorsey [3, p. 280]. Sur le domaine
spectral considéré et pour une température de T = 20◦C, ces données peuvent être approchées par la
relation empirique de type Sellmeier suivante :

n2(λ) = 1, 76253− 0, 0133998λ2 +
0, 00630957

λ2 − 0, 0158800
(2)

avec λ exprimée en µm.

Le tableau ci-dessous regroupe l’indice de réfraction, l’angle du minimum de déviation, la déviation
minimale et l’angle α entre les rayons incident et sortant, correspondant à différentes radiations :
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Longueur d’onde [nm] Couleur Indice de réfraction [-] im [◦] Dm [◦] Angle α de l’arc [◦]
700 rouge 1,330 59,6 137,5 42,5
605 orange 1,333 59,4 137,9 42,1
580 jaune 1,333 59,4 138,0 42,0
540 vert 1,335 59,3 138,2 41,8
510 cyan 1,336 59,2 138,4 41,6
475 bleu 1,338 59,1 138,6 41,4
445 indigo 1,340 59,0 138,9 41,1
405 violet 1,343 58,8 139,3 40,7

Table 1 : Variation de l’angle α de l’arc primaire en fonction de la longueur d’onde.

Figure 2 : Déviation d’un rayon rouge en fonction de l’angle d’incidence du rayon solaire sur la goutte.

Le minimum de déviation joue un rôle essentiel dans la formation visible de l’arc-en-ciel. Il ne concerne
pas un rayon isolé, mais un faisceau de rayons solaires incidents dont les angles d’incidence sont voisins
de l’angle im correspondant à ce minimum.

Autour de l’angle im correspondant au minimum de déviation, la fonction de déviation D(i) varie très
peu : pour une variation de l’angle d’incidence de l’ordre de ∆i ≃ 2◦, la variation correspondante
de l’angle de déviation est de l’ordre de ∆D ≃ 0,02◦ (voir la figure 2). Il en résulte un fort effet de
concentration angulaire : un grand nombre de rayons incidents sont déviés vers des directions très
proches, ce qui produit une intensité lumineuse élevée dans cette direction privilégiée. Le facteur de
concentration angulaire est ainsi de l’ordre de 100.

Ce mécanisme explique pourquoi l’arc-en-ciel apparaît comme une structure lumineuse bien définie, et
non comme une répartition diffuse de lumière. La plage angulaire ∆i ≃ 2◦ ne correspond pas à l’angle
apparent du Soleil de l’ordre de 0,5◦, valeur déduite de son diamètre et de sa distance à la Terre, mais
à la diversité des trajectoires possibles à l’intérieur d’une goutte. Pour une direction solaire donnée, les
rayons peuvent pénétrer la goutte en des points différents de sa surface (figure 1), ce qui correspond à
des angles d’incidence distincts autour de im.

La figure 3 illustre ce mécanisme du point de vue de l’observateur : seules certaines gouttes, situées dans
des directions bien définies par rapport à l’axe antisolaire, envoient des rayons réfractés jusqu’à l’œil.
Les rayons issus de gouttes situées au-dessus ou en dessous de cette zone n’atteignent pas l’observateur.

On appelle axe antisolaire la droite passant par l’œil de l’observateur et dirigée à l’opposé du Soleil.
Les angles d’observation des arcs-en-ciel sont mesurés par rapport à cet axe, comme indiqué sur le
croquis de la figure 7.
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L’angle d’observation de l’arc primaire est voisin de 42◦. Cette valeur correspond à l’angle α associé
au minimum de déviation pour la lumière visible, et peut être interprétée comme une valeur moyenne
des angles de déviation minimaux pour les différentes longueurs d’onde.

La dispersion de l’indice de l’eau entraîne une dépendance de cet angle avec la couleur : le minimum
de déviation est légèrement plus grand pour le violet que pour le rouge. Il en résulte une séparation
angulaire des couleurs. Géométriquement, les gouttes qui envoient la lumière rouge vers l’observateur
sont situées légèrement plus loin de l’axe antisolaire que celles responsables du violet, comme illustré
sur la figure 3 ci-dessous. Ainsi, le rouge apparaît à l’extérieur de l’arc, tandis que le violet se situe à
l’intérieur, comme illustré sur la figure 7.

Figure 3 : Schéma illustrant l’arrivée des rayons réfractés dans l’œil de l’observateur (d’après [4]).

Le croquis ci-dessous schématise le processus de formation et les conditions d’observation d’un arc-en-
ciel.

Figure 4 : Croquis résumant le phénomène de l’arc-en-ciel. (d’après [5]).
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2.2 - Arc secondaire

L’arc-en-ciel secondaire résulte du trajet de rayons solaires qui subissent deux réflexions internes suc-
cessives à l’intérieur des gouttes d’eau. Ce mécanisme, moins efficace que celui de l’arc primaire, conduit
à un arc plus large, plus faible en intensité et situé à un angle plus grand par rapport à la direction
antisolaire. Le trajet correspondant est représenté schématiquement sur la figure 5.

Figure 5 : Schéma du trajet optique d’un rayon lumineux dans une goutte d’eau avec double réflexion (adapté
d’après [6]).

La démarche suivie est analogue à celle de l’arc primaire. La réfraction à l’entrée de la goutte étant
identique, la relation reliant les variations angulaires dr et di issue de la loi de Snell-Descartes reste
valable :

dr

di
=

nair

neau

cos i

cos r

La déviation totale D du rayon s’obtient en additionnant les déviations élémentaires associées aux deux
réfractions et aux deux réflexions internes. Les deux réfractions contribuent chacune d’une déviation
(i− r), tandis que chaque réflexion interne apporte une déviation (π − 2r). On obtient ainsi :

D = (i− r) + (π − 2r) + (π − 2r) + (i− r)

= 2π + 2i− 6r

Cherchons le minimum de déviation de ce rayon :

On a :
dD

di
= 2− 6

dr

di

dD

di
= 2

(
1− 3

nair

neau

cos i

cos r

)
= 2

(
1− 3 cos i

n cos r

)
avec nair = 1 et neau = n.

Cette dérivée s’annule pour :

3 cos im = n cos rm ⇐⇒ 9 cos2 im = n2 cos2 rm car cos im ≥ 0

⇐⇒ 9(1− sin2 im) = n2(1− sin2 im
n2

)

⇐⇒ sin2 im =
9− n2

8

⇐⇒ im = arcsin

(√
9− n2

8

)
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Les valeurs correspondantes de l’angle de l’arc secondaire, calculées pour différentes longueurs d’onde,
sont regroupées dans le tableau 2. On constate que l’arc secondaire est observé à un angle moyen
d’environ 51◦ par rapport à l’axe antisolaire, supérieur à celui de l’arc primaire.

Longueur d’onde [nm] Couleur Indice de réfraction [-] im [◦] Dm [◦] Angle α de l’arc [◦]
700 rouge 1,330 71,9 230,1 50,1
605 orange 1,333 71,9 230,8 50,8
580 jaune 1,333 71,8 231,0 51,0
540 vert 1,335 71,8 231,3 51,3
510 cyan 1,336 71,7 231,7 51,7
475 bleu 1,338 71,7 232,1 52,1
445 indigo 1,340 71,6 232,6 52,6
405 violet 1,343 71,5 233,4 53,4

Table 2 : Variation de l’angle α de l’arc secondaire en fonction de la longueur d’onde.

Comme pour l’arc primaire, la fonction de déviation présente un minimum marqué (figure 6), ce qui
engendre un effet de concentration angulaire. Celui-ci est toutefois moins prononcé : pour une plage
d’incidences de l’ordre de 2◦, la variation de déviation est d’environ 0,05◦, ce qui correspond à un
facteur de concentration d’environ 40.

Figure 6 : Déviation d’un rayon rouge en fonction de l’angle d’incidence du rayon solaire sur la goutte avec
double réflexion.

Enfin, l’ordre des couleurs est inversé par rapport à l’arc primaire. Cette inversion résulte du nombre
pair de réflexions internes subies par les rayons dans la goutte. Pour l’arc secondaire, le minimum
de déviation correspond à un angle d’observation plus grand pour le violet que pour le rouge (voir
tableau 2).

Or les angles d’observation des arcs-en-ciel sont mesurés par rapport à l’axe antisolaire. Un angle plus
grand signifie que la goutte responsable de la couleur observée est situéeplus loin de cet axe. Ainsi, les
gouttes qui envoient la lumière violette vers l’observateur sont situées plus loin de l’axe antisolaire que
celles responsables du rouge, comme on le voit sur le croquis de la figure 7.

Il en résulte que, pour l’arc secondaire, le violet apparaît à l’extérieur de l’arc, tandis que le rouge se
situe à l’intérieur, en inversion par rapport à l’arc primaire.
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Figure 7 : Schéma synthétique formation d’un arc-en-ciel (d’après [7]).

2.3 - Synthèse et structure globale des arcs-en-ciel

L’analyse géométrique met en évidence un mécanisme central : pour un rayon solaire incident, la
déviation totale présente un extremum en fonction de l’angle d’incidence. Cette condition sélectionne
une direction privilégiée d’observation, située à environ 42◦ pour l’arc primaire, expliquant l’apparition
d’un arc lumineux bien défini dans le ciel opposé au Soleil. L’ensemble des gouttes satisfaisant cette
condition géométrique forme ainsi un cône d’observation dont l’intersection avec la sphère céleste est
un cercle.

L’arc secondaire résulte d’un mécanisme analogue, impliquant une double réflexion interne dans la
goutte. La déviation correspondante est plus importante, ce qui place l’arc à un angle plus grand
(environ 51◦, avec une inversion de l’ordre des couleurs). Entre les deux arcs apparaît la bande sombre
d’Alexandre : dans cette région angulaire, aucun rayon ne peut atteindre l’observateur après une ou
deux réflexions internes, ce qui explique son contraste marqué avec les zones adjacentes. Cette zone
porte le nom d’Alexandre d’Aphrodise (v.150–215), philosophe grec de l’Antiquité, qui fut le premier
à en proposer une description qualitative.

À l’intérieur de l’arc primaire, les rayons correspondant à différentes longueurs d’onde se recouvrent
largement. Il en résulte une superposition partielle des couleurs et une luminance accrue, sans sépa-
ration chromatique nette. Le découpage du spectre visible en un nombre fini de couleurs est donc en
partiearbitraire et dépend des conventions adoptées, le phénomène physique sous-jacent étant en réalité
continu.

Cependant, l’optique géométrique ne rend pas compte de tous les détails observés. En particulier, la
présence d’arcs surnuméraires, visibles à l’intérieur de l’arc primaire, révèle la nature ondulatoire de la
lumière. Ces franges supplémentaires résultent d’interférences entre rayons émergents de trajectoires
proches et nécessitent une description plus complète faisant intervenir la diffraction et les méthodes
asymptotiques. Une synthèse moderne et approfondie de ces effets, reliant optique géométrique et
optique ondulatoire, est donnée par Nussenzveig [8].
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3 - Mirages : lumière courbée par un gradient d’indice

Les mirages sont des illusions optiques dues à la propagation de la lumière dans une atmosphère dont
l’indice de réfraction varie avec l’altitude. Contrairement aux arcs-en-ciel, où la déviation de la lumière
se produit à des interfaces nettes entre milieux distincts, la déviation responsable des mirages est
continue : les rayons lumineux se courbent progressivement au sein de l’air.

Cette variation d’indice résulte des gradients de température atmosphériques. À pression donnée, l’in-
dice de réfraction de l’air dépend de sa densité, elle-même inversement liée à la température : un air plus
chaud est moins dense et possède un indice plus faible qu’un air plus froid. Les gradients thermiques
verticaux se traduisent ainsi par des gradients d’indice, responsables de la courbure des trajectoires
lumineuses.

Dans cette section, on établit le lien entre un profil d’indice n(z) et la trajectoire des rayons lumineux,
avant d’appliquer ces résultats aux principaux types de mirages : mirage inférieur, mirage supérieur et
phénomène de Fata Morgana.

3.1 - Modèle atmosphérique stratifié et notations

On modélise l’atmosphère comme un milieu transparent stratifié, dont l’indice de réfraction dépend
uniquement de l’altitude z :

n = n(z)

et ne dépend pas de la coordonnée horizontale x. Cette dépendance en z traduit l’existence d’un
gradient vertical de température supposé lent et régulier sur les distances considérées.

D’un point de vue physique, cette variation de l’indice peut être comprise à partir de la relation entre
indice de réfraction et densité du milieu. Pour un gaz peu dense comme l’air, l’indice de réfraction est
très proche de l’unité et vérifie, dans une bonne approximation, la loi de Gladstone-Dale [9] :

n− 1 ∝ ρ

où ρ désigne la masse volumique du gaz.

Rappel — loi de Gladstone–Dale

Pour un milieu transparent faiblement dense, l’indice de réfraction n est très proche de l’unité et
vérifie la loi empirique de Gladstone–Dale :

n− 1 = K ρ,

où ρ désigne la masse volumique du milieu et K une constante caractéristique du milieu considéré
(faiblement dépendante de la longueur d’onde).
Cette loi est valable pour des gaz et des milieux dilués, dans le régime où les interactions entre
particules sont faibles et où n ≃ 1.

En assimilant localement l’air à un gaz parfait et en supposant la pression quasi constante sur la
hauteur considérée, on a ρ ∝ 1/T , ce qui conduit à la loi approchée :

n− 1 ∝ 1

T

Cette relation montre que l’indice de réfraction décroît lorsque la température augmente. Les gradients
thermiques atmosphériques se traduisent donc directement par des gradients d’indice de réfraction,
responsables de la déviation progressive des rayons lumineux.

9



3.2 - Invariant de Snell en milieu stratifié

Considérons l’atmosphère comme une succession de couches horizontales d’épaisseur finie, chacune
d’indice constant n1, n2, . . . , n5, comme illustré sur la figure 8 ci-dessous.

Figure 8 : Trajectoire d’un rayon à travers un milieu à gradient d’indice (adapté d’après [10]).

Sur la figure 8, les angles sont notés i et r ; dans la suite, on utilise la notation plus générale θ pour
désigner l’angle du rayon. Dans chaque couche, le rayon se propage en ligne droite. Les interfaces étant
parallèles, l’angle θ que fait le rayon avec la normale est conservé au sein d’une couche donnée. On
peut ainsi appliquer la loi de Snell-Descartes de proche en proche.

Entre deux couches successives d’indices nk et nk−1, on a :

nk sin θk = nk−1 sin θk−1 (3)

En chaînant ces relations le long de la trajectoire, on obtient un invariant discret :

nk sin θk = constante (4)

où θk désigne l’angle du rayon avec la normale dans la couche d’indice nk. Cette constante est fixée
par les conditions initiales à l’entrée du milieu stratifié.

La figure 8 met également en évidence la possibilité d’une réflexion totale interne. Lorsque le rayon
atteint une interface vers une couche d’indice plus faible avec un angle d’incidence trop grand, la loi
de Snell-Descartes ne peut plus être satisfaite. L’angle critique est alors défini par :

sin θc =
nhaut

nbas
(nbas > nhaut) (5)

et le rayon est réfléchi tout en conservant la valeur de l’invariant (voir le rappel page 2).

Enfin, lorsque l’épaisseur des couches devient très petite, on peut modéliser l’atmosphère comme un
milieu stratifié continu, d’indice n = n(z). En faisant tendre l’épaisseur des couches vers zéro, l’invariant
discret se transforme en un invariant continu le long du rayon. La pente géométrique de la trajectoire
s’écrit :

tan θ(z) =
dz

dx
(6)

et l’invariant peut se réécrire sous la forme

n(z) sin θ(z) = C0 (7)

où C0 est une constante déterminée par la direction initiale du rayon.
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Figure 9 : Modèlisation d’un rayon à travers un milieu à gradient d’indice.

3.3 - Équation différentielle de la trajectoire

On se place dans le plan vertical (x, z) et l’on note α(z) l’angle que fait le rayon avec l’horizontale,
comme sur la figure 9. On notera que α est l’angle complémentaire de l’angle θ introduit précédem-
ment, défini par rapport à la verticale. Cette convention explique le passage d’une écriture en sin θ à
une écriture en cosα pour l’invariant de propagation. Sur un élément infinitésimal de trajectoire, on
introduit dx (projection horizontale), dz (projection verticale) et ds (longueur d’arc). On a alors, par
simple géométrie :

cosα(z) =
dx

ds
=

dx√
dx2 + dz2

=
1√

1 +
(
dz
dx

)2 (8)

D’après la section précédente, l’application de la loi de Snell-Descartes couche par couche conduit, dans
la limite continue, à l’invariant le long du rayon

n(z) cosα(z) = C0, (9)

où C0 est fixé par la direction initiale du rayon à l’entrée du milieu. En combinant (8) et (9), on obtient
immédiatement :

dx

ds
=

C0

n(z)
(10)

En réécrivant ds =

√
1 +

(
dz
dx

)2
dx, on en déduit

1√
1 +

(
dz
dx

)2 =
C0

n(z)
=⇒

(
dz

dx

)2

=

(
n(z)

C0

)2

− 1 (11)

Cette relation fournit une première forme (d’ordre 1) de l’équation de la trajectoire. Elle montre
notamment que la pente dz/dx augmente lorsque n(z) augmente : le rayon se redresse vers les régions
d’indice plus élevé.

On peut également obtenir une équation différentielle d’ordre 2 en dérivant (11). Posons p(x) = dz/dx.

Alors p2 =
(
n(z)
C0

)2
− 1 et, en dérivant par rapport à x,

2p
dp

dx
=

2

C2
0

n(z)
dn

dz

dz

dx

Comme p = dz/dx, les facteurs p se simplifient et l’on obtient l’équation simple :

d2z

dx2
=

1

C2
0

n(z)
dn

dz
(12)
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Les équations (11) et (12) relient ainsi directement le profil d’indice n(z) (donc le gradient thermique
via n(z)) à la courbure de la trajectoire. Elles constituent le point de départ de l’analyse des mirages.

3.4 - Courbure du rayon : rôle du gradient d’indice

On a établi précédemment l’équation différentielle de la trajectoire dans un milieu stratifié :

d2z

dx2
=

1

C2
0

n(z)
dn

dz
(13)

où C0 est une constante fixée par les conditions initiales. Cette relation relie directement la courbure
du rayon (via d2z/dx2) au gradient d’indice.

On en déduit immédiatement le sens de courbure :

• si
dn

dz
> 0, alors

d2z

dx2
> 0 : la trajectoire est concave vers le haut ;

• si
dn

dz
< 0, alors

d2z

dx2
< 0 : la trajectoire est concave vers le bas.

Ce dernier comportement est illustré qualitativement sur la figure 9, construite dans un modèle discret
de couches stratifiées, qui constitue une approximation du milieu continu lorsque l’épaisseur des couches
est suffisamment faible.

3.5 - Approximation de faible gradient : trajectoire parabolique

Dans de nombreuses situations (route chauffée, surface de mer froide), l’indice varie faiblement sur la
hauteur considérée. On peut alors approximer :

n(z) ≃ n0 + γz avec |γz| ≪ n0, (14)

où γ =
dn

dz
est supposé constant. Dans cette approximation, on peut aussi prendre n(z) ≃ n0 dans le

facteur multiplicatif de (12), ce qui donne une courbure (quasi) constante :

d2z

dx2
≃ 1

C2
0

n0 γ = κ (constante) (15)

En intégrant deux fois, on obtient la trajectoire sous forme parabolique :

z(x) ≃ z0 + p0 x+
κ

2
x2 = z0 + p0 x+

n0 γ

2C2
0

x2, (16)

où z0 = z(0) et p0 =
dz

dx

∣∣∣∣
x=0

sont fixés par la condition initiale.

Cette expression montre que, à faible gradient, la trajectoire est bien une parabole, dont la concavité

est déterminée par le signe de γ =
dn

dz
.

3.6 - Mirage inférieur : image renversée du ciel (route « mouillée »)

On considère le cas d’un sol fortement chauffé en été, par exemple une route asphaltée exposée au soleil.
L’air au voisinage immédiat du sol est alors plus chaud, moins dense, et donc d’indice de réfraction plus
faible. En montant en altitude, l’air se refroidit et l’indice augmente, ce qui correspond à un gradient
d’indice positif :

dn

dz
> 0
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Figure 10 : Photographie d’un mirage inférieur
observé sur une route chauffée (d’après [11]).

Figure 11 : Schéma de principe : courbure des rayons
lumineux dans une atmosphère à gradient de

température et d’indice (d’après [12]).

Les figures 10 et 11 illustrent ce phénomène à la fois par une observation réelle (photographie) et
par un schéma explicatif. Dans ces conditions, d’après l’équation différentielle de la trajectoire établie
précédemment, un gradient d’indice positif entraîne une courbure des rayons lumineux vers le haut.

Des rayons issus du ciel, arrivant vers le sol avec une pente descendante, sont progressivement déviés
par le gradient d’indice. Ils peuvent atteindre un point de retournement où leur trajectoire devient
quasi horizontale, avant de remonter vers l’observateur. Dans le modèle continu, ce comportement
correspond à une réflexion totale interne au sein de l’atmosphère stratifiée.

L’œil prolonge localement le dernier segment du rayon reçu en ligne droite. Le rayon perçu semble alors
provenir du sol : l’observateur voit une image renversée du ciel, interprétée comme une réflexion sur
une surface d’eau. Cette illusion visuelle est à l’origine de l’expression courante de route « mouillée ».

3.7 - Mirage supérieur : inversion thermique et image relevée

Le mirage supérieur apparaît dans des situations d’inversion thermique, lorsque l’air au voisinage du
sol (ou de la surface de la mer, de la banquise) est plus froid que l’air situé au-dessus. L’air froid, plus
dense, possède alors un indice de réfraction plus élevé près de la surface. Par conséquent, l’indice de
réfraction diminue lorsque l’altitude augmente, ce qui s’écrit mathématiquement :

dn

dz
< 0.

D’après la relation reliant la courbure du rayon au gradient d’indice, les rayons lumineux se courbent
dans ce cas vers le bas. Des rayons émis par un objet lointain peuvent ainsi être progressivement
déviés de façon à atteindre l’observateur, alors que, géométriquement, l’objet devrait être masqué par
la courbure de la Terre ou situé sous l’horizon apparent. L’image est alors observée au-dessus de sa
position attendue : on parle de mirage supérieur.

Les figures 12 et 13 illustrent ce phénomène. La photographie montre un navire apparaissant déformé
et partiellement relevé au-dessus de l’horizon marin, tandis que le schéma explicatif représente la
propagation des rayons lumineux dans une atmosphère stratifiée à gradient d’indice négatif.

Il est important de souligner que tous les rayons issus de l’objet ne traversent pas les mêmes régions
de l’atmosphère. Certains rayons restent proches de trajectoires quasi rectilignes, tandis que d’autres
sont fortement incurvés par le gradient d’indice. Il peut ainsi exister simultanément plusieurs trajets
optiques reliant un même point de l’objet à l’œil, ce qui conduit à la superposition de plusieurs images.

Les rayons faiblement déviés produisent une image géométrique directe, tandis que les rayons fortement
courbés engendrent une image secondaire, généralement déformée et parfois inversée.
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Figure 12 : Photographie d’un mirage
supérieur observé en milieu marin : le navire

apparaît relevé au-dessus de l’horizon.
Photographie © Pekka Parviainen.

Figure 13 : Mirage supérieur : transporteur de
minerais apparaissant déformé et relevé au-dessus

de l’horizon (d’après [13]).

L’image issue des rayons courbés peut apparaître inversée. Cette inversion s’explique par le fait que les
rayons provenant de la partie basse de l’objet traversent des zones d’indice plus élevé et sont davantage
déviés que ceux issus de la partie haute. L’ordre vertical des points de l’objet est alors inversé lors de
la reconstruction visuelle.

Enfin, comme le cerveau prolonge localement les rayons lumineux en ligne droite, il attribue à ces rayons
courbés une position apparente erronée, située au-dessus de la position réelle de l’objet. L’observateur
perçoit ainsi simultanément une image directe et une ou plusieurs images déformées ou inversées,
caractéristique des mirages supérieurs.

3.8 - Fata Morgana : profils complexes et images multiples

Dans certaines situations atmosphériques particulières, typiquement au-dessus d’une mer froide ou
d’une banquise, l’atmosphère peut présenter plusieurs couches d’air superposées à températures alter-
nées. Le profil de l’indice de réfraction n(z) n’est alors plus monotone : le gradient dn/dz peut changer
de signe avec l’altitude, traduisant la présence de plusieurs inversions thermiques successives.

Figure 14 : Mirage de type Fata Morgana observé au-dessus de l’océan Arctique. L’iceberg, photographié au
large de l’île de Padloping (Nunavut, Canada), apparaît fortement déformé et structuré en niveaux superposés

sous l’effet de gradients thermiques complexes dans l’atmosphère. Crédit photo : David Stanley (2023).

Dans ce contexte, l’équation différentielle régissant la trajectoire des rayons lumineux peut admettre
plusieurs solutions reliant une même source à l’observateur. Plusieurs rayons issus d’un même point de
l’objet suivent alors des trajectoires distinctes, chacune pouvant présenter un ou plusieurs points de
retournement où le rayon devient localement quasi horizontal avant de se recourber à nouveau.
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Il en résulte une superposition d’images correspondant à ces différents trajets optiques. Sur la figure 14,
on distingue ainsi une bande principale qui se décompose en plusieurs sous-bandes superposées verti-
calement : certaines contiennent une image à l’endroit de l’iceberg, tandis que d’autres présentent une
image inversée. Ces images peuvent également être étirées ou comprimées selon la géométrie locale du
profil d’indice.

Cette coexistence d’images droites et inversées ne résulte pas d’une réflexion sur la surface de l’eau, mais
de la multiplicité des trajectoires permises par les gradients thermiques complexes de l’atmosphère.
Chaque sous-bande correspond à un chemin optique distinct reliant l’objet à l’œil de l’observateur.

Ce type de mirage, appelé Fata Morgana, peut être interprété comme une généralisation du mirage
supérieur, caractérisée par la superposition d’images multiples issues d’un même objet lorsque le profil
d’indice n(z) présente plusieurs inversions successives.

3.9 - Synthèse

Les mirages inférieur et supérieur sont deux manifestations d’un même mécanisme : la propagation
de la lumière dans une atmosphère stratifiée, dont l’indice de réfraction dépend de l’altitude n(z).
Le gradient vertical d’indice impose une courbure continue des trajectoires lumineuses, décrite par
l’équation (12).

Le signe de dn/dz détermine la nature du mirage. Lorsque l’indice augmente avec l’altitude (dn/dz >
0), les rayons se courbent vers le haut et produisent un mirage inférieur (image renversée du ciel).
À l’inverse, lorsque l’indice décroît avec l’altitude (dn/dz < 0), les rayons se courbent vers le bas et
donnent un mirage supérieur, où l’image est relevée au-dessus de sa position géométrique.

Des profils d’indice plus complexes, non monotones, peuvent engendrer plusieurs trajectoires reliant
une même source à l’observateur, conduisant à des images multiples et déformées : le phénomène de
Fata Morgana.

4 - Conclusion

Les arcs-en-ciel et les mirages, bien que très différents dans leurs manifestations visuelles, reposent
sur un même principe fondamental : la déviation de la lumière lorsqu’elle se propage dans un milieu
dont l’indice de réfraction n’est pas uniforme. Dans le cas des arcs-en-ciel, cette variation d’indice est
localisée à des interfaces nettes entre l’air et l’eau des gouttes, ce qui conduit à des phénomènes de
réfraction et de réflexion interne responsables d’angles de déviation caractéristiques. Dans le cas des
mirages, la variation d’indice est continue, liée à des gradients thermiques atmosphériques, et engendre
une courbure progressive des trajectoires lumineuses.

L’approche par l’optique géométrique permet de décrire ces deux phénomènes à l’aide de lois simples,
telles que la loi de Snell-Descartes et son invariant en milieu stratifié. Malgré les simplifications du
modèle (rayons, gradients lents, approximation locale), les résultats obtenus rendent compte de manière
remarquable des observations : formation d’arcs colorés, images renversées du ciel, images relevées ou
multiples dans le cas de la Fata Morgana.

Ces phénomènes illustrent ainsi la capacité de modèles physiques relativement simples à expliquer
des effets naturels complexes et spectaculaires. Ils constituent également un exemple particulièrement
parlant du lien entre des situations du quotidien et des notions fondamentales de la physique, telles
que la dispersion, la réfraction et la propagation des ondes dans les milieux inhomogènes.
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