Durée: 6h00

TP MISE EN SERVICE

MC Mécatronique navale

Thème:

Mettre en service un réseau hydraulique en réglant le débit d'eau circulant dans un aérotherme.

Objectifs::

- Calculer le débit nécessaire pour alimenter un aérotherme
- Mesurer ce débit à l'aide d'un TA SCOPE
- Régler ce débit.

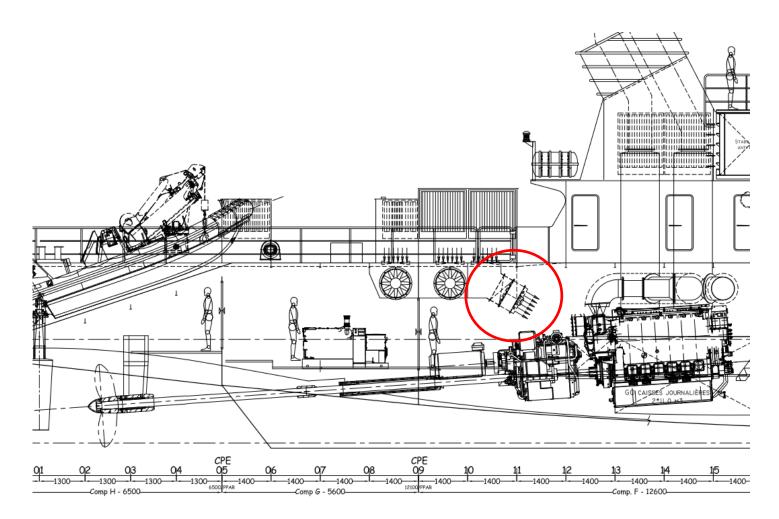
MC Mécatronique navale

Durée : 6h00

FICHE D'ACTIVITES ET EVALUATIONS

			NIV	EAU	
	EVALUATION	0	1	2	3
	C2.1: Décoder les informations décrivant une installation				
Com	C2.2: Interpréter, décoder des informations techniques				
Compétences évalués	C4.3: Réaliser un diagnostic				
s	C4-4: Réaliser des opérations de contrôle				
	C5-4: Appliquer des modes opératoires et des procédures.				
	C6.1: Décrire le fonctionnement d'une installation.				
Tâches	A1 :Intégrer les équipements A2 : Conduire les installations A4 : participer aux essais ,à la mise en service. A5 : Appliquer et faire appliquer les règles de d'hygiène, de santé, de sécurité e de l'environnement	t de	pro	tecti	ion
Savoirs associés	 ⇒ S2.2 distribution des énergies ⇒ S4.3 grandeurs physiques appliqués (énergie, débit) ⇒ S5.3 Impacts de l'activité sur l'environnement 				
Matériel mis à disposition	 ⇒ Chaudière fioul, préparateur et aérotherme ⇒ Documents constructeur de l'aérotherme ⇒ Le Memotech ⇒ La notice de pompe ⇒ L'annexe N°5 				

	NIVEAU D'ACQUISITION									
0	1	2	3							
Non réalisé	Non maitrisé	Sait faire avec l'aide de	Maitrise							



MC Mécatronique navale

Durée : 6h00

Contexte:

Vous intervenez sur une installation de chauffage/ ventilation du local machine. Vous devez déterminer la puissance délivrée par un aérotherme et calculer le débit d'eau nécessaire afin de le régler à l'aide d'une vanne TA.

MC Mécatronique navale

Durée : 6h00

Contexte:

Vous devez déterminer la puissance délivrée par un aérotherme et calculer le débit d'eau nécessaire afin de le régler à l'aide d'une vanne TA.

<u>COMPETENCES MOBILISEES</u>: C6.1: Décrire le fonctionnement d'une installation.

C2.2: Traiter les informations techniques décrivant l'état d'une installa-

tion

Vous avez.

- Un banc d'essai hydraulique comprenant une chaudière fioul et son aérotherme.
- Les données suivantes :

Le régime de température est 60/40°C

La température ambiante de l'atelier réglementaire est de 15°C

La référence de l'aérotherme est 502EC14 de chez Wesper

La chaleur spécifique de l'eau = 4180 J / kg °C

Masse volumique de l'eau = $1000 \text{ kg} / \text{m}^3$

• Un extrait de la documentation technique Westherm en annexe N°2

VOUS DEVEZ	CRITERES DE REUSSITE	EVALUATION
Question 1 : Repérer les différents éléments de l'installation, comprendre son fonctionnement.	Les explications sont correctement transcrite au professeur	C6.1 0 1 2 3
Question 2: Déterminer, à partir de la documentation constructeur, la puissance de l'aérotherme, le débit d'air soufflé, la température de soufflage. Question 3: Déterminer le débit d'eau nécessaire pour alimenter votre aérotherme : P = q _m * Cp * (Ts-Te)	La lecture des caractéristiques est juste Le calcul est juste	C2.2 0 1 2 3 C2.2 0 1 2 3

MC Mécatronique navale

Durée : 6h00

<u>COMPETENCES MOBILISEES</u>: C2.1: Décoder les informations décrivant une installation

C2.2: Interpréter, décoder des informations techniques

Vous avez.

- Un extrait de cours concernant la hauteur manométrique et les pertes de charge d'un réseau en annexe N°5
- La courbe de pompe et de réseau en annexe N°3
- Un extrait de documentation technique Tour et Anderson en annexe N°4

VOUS DEVE	: <u>Z :</u>					CRITERES DE REUS	SITE	ı	EVALUA	ATION	
Question 4: A est grande ou amont et en a lant dans l'aé	verte (4 tou val de la por	irs), détermi mpe et de la	ner à l'aide courbe de j	e du manom	ètre en	Les mesures justes et <u>très</u> La détermina la hauteur ma trique et du de correcte	précises ation de anomé-	0	C2.	2	3
	P aspi	ration	P refo	ulement	Hm (= P	ref—P asp)		Débi	t Q		
	bar	(m CE)	bar	(m CE)	(mCE)	kg/s		(n	n³/h	1)
Vitesse I											
Vitesse II											
Vitesse III											
Question 5 : S					nt souhai-	La vitesse ch juste et la rép justifiée. Le point de f	onse est		C5.		
té .			r			nement corre la vitesse de sélectionné e bit calculé	spond à pompe	0	1	2	3
Question 7 : : de réseau pas				nent , tracer	la courbe	La courbe de est parallèle a du constructe correspond à réseau.	à celle eur et				
Question 8 : : charge du rés	-		-	-	oertes de	Le tracé est coment effectue courbe et la v juste	é sur la	0	C2.	2	3
				<u>5</u>							

MC Mécatronique navale

Durée : 6h00

COMPETENCES MOBILISEES :

C2.2: Interpréter, décoder des informations techniques

C4.3: Réaliser un diagnostic

C4-4: Réaliser des opérations de contrôle

C5-4: Appliquer des modes opératoires et des procédures.

Vous avez.

- Un extrait de cours concernant la hauteur manométrique et les pertes de charge d'un réseau en annexe N°5
- La courbe de pompe et de réseau en annexe N°3

VOUS DEVEZ				CRITERES DE REUSSITE		EVALU	ATION	i
	rtir de cette courbe, bour le débit souhai		ertes de charges	Les pertes de charges du réseau sont cor-		C2	2.2	
				rectement détermi- nées et tracés sur la courbe	0	1	2	3
Question 10 : à parcréer par vanne T	artir de cette courbo A	e, déterminer les p	pertes de charges à	Les pertes de charges à créer sur la vanne TA sont correctement déduites				
	rtir de l'abaque de l que vous devrez et			Le nombre de tour est correctement dé-			5.4	
tenir le débit souh				terminé	0	1	2	3
Question 12: suit vanne TA	e à la valeur préce	édemment trouvé	ée, régler la	La vanne est réglée				
Question 13: con	trôler le débit ave	c la courbe de po	ompe:	Les valeurs sont justes et le débit sou- haité est correct.				
P asp (mCE)	Pref (mCE)	Hmt (mCE)	Qv (m ³ /h)	naite est correct.		C4	.4	
					0	1	2	3
	1	<u> </u>	1					

REMARQUE:

Une fois votre installation régler faite constater vos résultats par le professeur.

Question 15: conclure quant aux résultats obtenues :	La conclusion est critique quant aux résultats obtenus		C4	 I.3	
		0	1	2	3

Durée : 6h00

ANNEXE N°2 : extrait de document technique des aérothermes WESTHERM.

Performances thermiques - WESTHERM eau chaude série PHM

Tailles 1500 tr/mn	Dili				Air :	12 °C			
	Débit	Eau 45	/40 °C	Eau 60)/40 °C	Eau 80	/60 °C	Eau 90)/70 °C
1500 tr/IIII	(m³/h)	P (kW)	Ts (°C)						
351	2048	6,77	21,59	4,82	18,83	10,99	27,58	14,18	32,1
352	1730	8,66	26,51	8,55	26,33	15,45	37,91	18,85	43,61
353	1440	-	-	11,47	35,12	19,23	50,76	23,01	58,39
451	3748	-	-	12,54	21,71	24,1	30,67	29,83	35,11
452	3378	15,93	25,71	15,17	25,05	28,14	36,22	34,54	41,73
453	3090	19,7	30,52	19,41	30,25	35,31	45,19	43,08	52,5
501	6010	-	-	19,4	21,37	35,9	29,35	44,05	33,29
502	5524	-	-	23,49	24,35	42,27	34,22	51,5	39,08
503	5400	-	-	31,5	28,94	55,93	42,07	67,92	48,52
551	7623	-	-	26,45	22,07	-	-	-	-
552	7116	-	-	31,93	25,02	55,7	34,72	67,4	39,5
553	6600	-	-	41,59	30,3	71,53	43,47	86,21	49,93
651	9985	-	-	32,21	21,36	60,7	29,65	74,8	33,75
652	9263	-	-	43,28	25,56	75,72	35,73	91,67	40,73
653	8398	-	-	50,61	29,49	90,87	43,41	110,59	50,23
701*	13538	-	-	39,74	20,52	77,53	28,63	96,34	32,66
702*	12588	-	-	52,87	24,19	96,18	34,18	117,54	39,11
703*	11780	66,22	28,32	61,56	27,17	116,65	40,75	143,7	47,42

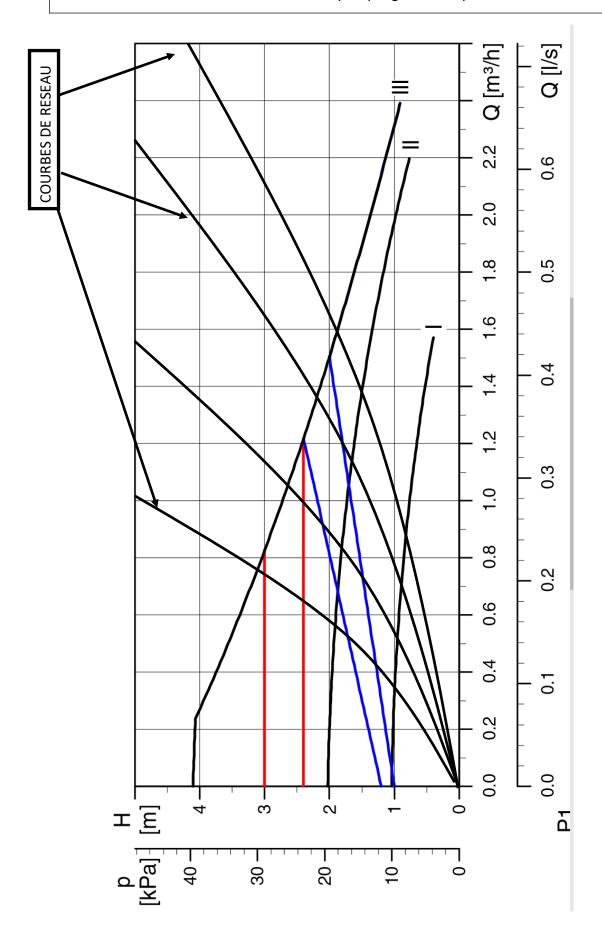
^{* 1000} tr/mn.

Tailles	Dili	Air:15 °C									
	Débit	Eau 45	5/40 °C	Eau 60	D/40 °C	Eau 80)/60 °C	Eau 90)/70 °C		
1500 tr/mn	(m³/h)	P (kW)	Ts (°C)	P (kW)	Ts (°C)	P (kW)	Ts (°C)	P (kW)	Ts (°C)		
351	2048	5,9	23,44	4,22	21,03	10,13	29,51	13,3	34,04		
352	1730	7,67	27,99	7,58	27,84	14,45	39,47	17,83	45,2		
353	1440	9,24	33,82	10,32	36,02	18,05	51,76	21,82	59,42		
451	3748	-	-	10,99	23,6	22,46	32,58	28,16	37,03		
452	3378	14,09	27,25	13,4	26,65	26,29	37,85	32,64	43,37		
453	3090	17,45	31,57	17,19	31,32	32,99	46,32	40,73	53,66		
501	6010	-	-	17,15	23,37	33,54	31,37	41,65	35,33		
502	5524	21,01	26,15	20,87	26,08	39,55	36	48,75	40,88		
503	5400	27,54	29,96	28,04	30,23	52,35	43,43	64,28	49,9		
551	7623	-	-	23,54	24,05	-	-	-	-		
552	7116	-	-	28,54	26,76	52,22	36,51	63,86	41,31		
553	6600	-	-	37,26	31,56	67,09	44,81	81,7	51,3		
651	9985	-	-	28,37	23,33	56,66	31,64	70,68	35,75		
652	9263	-	-	38,68	27,24	70,98	37,47	86,84	42,49		
653	8398	44,84	30,65	44,96	30,7	85	44,67	104,62	51,52		
701*	13538	-	-	34,76	22,53	72,22	30,64	90,89	34,68		
702*	12588	47,95	26,17	46,89	25,92	89,94	35,95	111,19	40,9		
703*	11780	57,84	29,4	52,37	28,04	106,86	41,6	133,79	48,3		

^{* 1000} tr/mn.

Tailles 1500 tr/mn	D464	Air : 18 °C								
	Débit	Eau 45	Eau 45/40 °C Eau 60/		/40 °C	Eau 80)/60 °C	Eau 90/70 °C		
	(m³/h)	P (kW)	Ts (°C)	P (kW)	Ts (°C)	P (kW)	Ts (°C)	P (kW)	Ts (°C)	
351	2048	5,04	25,29	3,65	23,27	9,29	31,43	12,42	35,95	
352	1730	6,71	29,47	6,63	29,33	13,46	41,02	16,83	46,77	
353	1440	8,13	34,72	9,18	36,88	16,89	52,72	20,64	60,43	
451	3748	10,64	26,4	9,48	25,49	20,84	34,47	26,5	38,94	
452	3378	12,29	28,79	11,64	28,22	24,44	39,45	30,77	45	
453	3090	15,24	32,6	15,09	32,47	30,71	47,43	38,4	54,81	
501	6010	-	-	14,92	25,35	31,2	33,37	39,28	37,35	
502	5524	18,36	27,84	18,27	27,79	3685	37,75	46,02	42,67	
503	5400	24,01	31,21	24,64	31,51	48,82	44,77	60,7	51,27	
551	7623	-	-	20,66	26,02	41,19	33,99	-	-	
552	7116	-	-	25,19	28,48	48,76	38,28	60,36	43,11	
553	6600	-	-	32,96	32,79	62,68	46,12	77,24	52,65	
651	9985	-	-	24,58	25,29	52,61	33,6	66,58	37,74	
652	9263	-	-	34,12	28,9	66,24	39,17	82,07	44,23	
653	8398	39,21	31,82	39,33	31,86	79,18	45,91	98,72	52,8	
701*	13538	34,35	25,51	29,82	24,52	66,93	32,64	85,5	36,7	
702*	12588	41,88	27,85	40,95	27,63	83,76	37,7	104,91	42,67	
703*	11780	50,22	30,62	45,96	29,55	99,14	42,92	125,87	49,64	

^{* 1000} tr/mn.

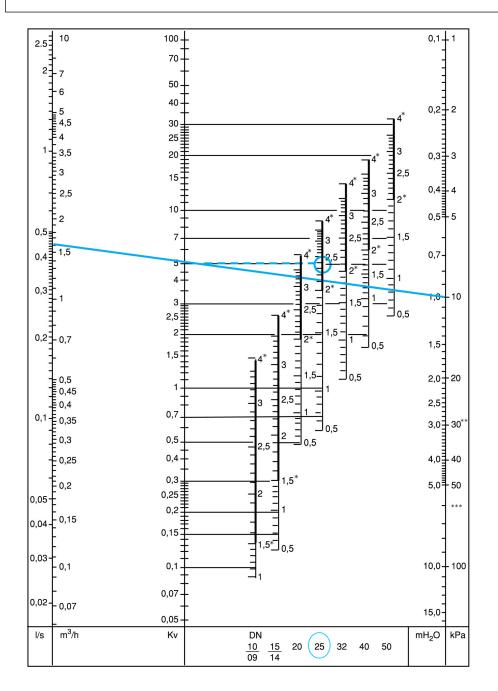


MC Mécatronique navale

Durée : 6h00

[k

ANNEXE N°3: courbe de pompe .grunfoss alpha 25-40



MC Mécatronique navale

Durée : 6h00

ANNEXE N°4: abaque de pertes de charge des vannes TA STAD.

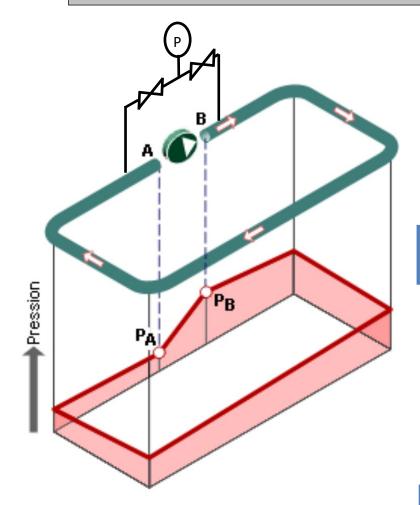
^{*)} Plage recommar **) 25 db (A) ***) 35 db (A)

Exemple:

Je souhaite un débit de 1.6 m3/h dans mon circuit et je dois créer une perte de charge de 1mCE.

Je trace une droite entre les deux points.

Je trouve le Kv de ma vanne et à partir de là, je trace une horizontale sur ma vanne (ici une STAD 25) afin d'obtenir la position de ma vanne (en nombre de tour) : 2.4 tours.



MC Mécatronique navale

Durée : 6h00

ANNEXE N°5:

HAUTEUR MANOMETRIQUE DE POMPE ET PERTES DE CHARGES DANS UN RESEAU FERME

Au niveau de la pompe :

Elle fournie de l'énergie sous forme de pression qui va permettre de faire circuler l'eau

Cette différence de pression s'appelle la hauteur manométrique de pompe

$$Hm = P_{ref} - P_{asp}$$

Au niveau du réseau :

La pression chute du point B au point A.

Cette différence de pression s'appelle les pertes de charge

$$PDC = P_{ref} - P_{asp}$$

ON A DONC:

$$Hm = PDC = P_{ref} - P_{asp}$$

Avec:

Hm: la hauteur manométrique de la pompe (en mCE, Bar ou Pascal)

PDC: pertes de charge du réseau (en mCE, Bar ou Pascal)

Pref: pression au refoulement de la pompe (en mCE, Bar ou Pascal) Pasp: pression à l'aspiration de la pompe (en mCE, Bar ou Pascal)