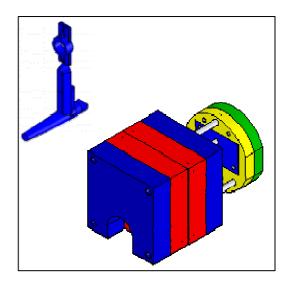


Objectif de l'activité : Concevoir les parties actives à partir d'une carcasse standard adapté à la presse à injecter Babyplast 610 de marque Alecop.

A- Cahiers des charges

On désire réaliser le moulage plastique d'un écrou de pitons basculants pour plafond Placoplatre, ce dernier est fabriqué par découpage sur une presse 40 tonnes, la **cadence** est de **6000 pièces/heure**, (coût horaire presse =25€). Le taraudage de l'écrou est exécuté après

B- Données


Un dossier ressources.

La production est de 120 000 pièces par mois.

La fiche de la matière plastique choisie : **P.O.M**. (voir fiche technique de la matière) La fiche technique de la Presse à injecter Babyplast 610 diamètre de piston 18 mm.

Les fichiers SW de la carcasse standard.

Les fichiers SW de la grappe à injecter.

C- Etude préliminaire de conception de moulage

1 **Rechercher** les éléments indiqués ci-dessous sur le document technique de la matière plastique choisie.(voir dossier ressources)

Matière choisie :
Retrait de la matière:
Masse volumique (g/cm3):
Température de plasticité:
Pression d'injection matière P_{im} (en Mpa):

2 **Rechercher** les caractéristiques techniques demandées, sur la documentation industrielle de la presse à injecter Babyplast 610.(voir dossier ressources)

Volume maximale injectable V_{im} (cm3):

Pression d'injection maxi P_i maxi (en Mpa):

Force de fermeture ou verrouillage F_v (en N):

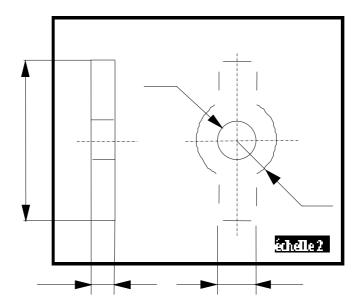
- 3 **Etudier** la forme de l'écrou à mouler, on ne réalisera que le perçage (ø le pas).
- 3-1 **Choisir** la solution compatible avec les critères suivants à partir des simulations rhéologiques.(*Compléter le tableau en relevant les valeurs de chaque critères énoncés, afin de vous aider à faire un choix)*

Critères sélectionnés dans le dossier ressources

- Le moins de perte de charge .
- > La température d'injection mini-maxi.
- Vérifier si la température est supérieure à la température de non écoulement (tg)
- Le moins de retassure (déformation pièce).
- Le temps avant éjection le plus intéressant en fonction de notre système d'éjection.

	Delrin 100 NC 10					
P.O.M.	Retassure	Perte de	Tps av	Température	Tinj.>Tg	
		charge	éjection	injection		
Etude 1						
Etude 2						
Etude 3						
Etude 4						

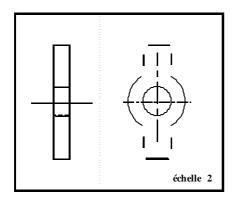
Notation pour les retassures : **O** acceptable , + satisfaisant, - inacceptable

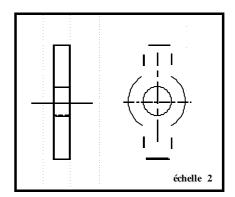

La solution retenue est l'étude n°_____

3-2 D'après la solution retenue :

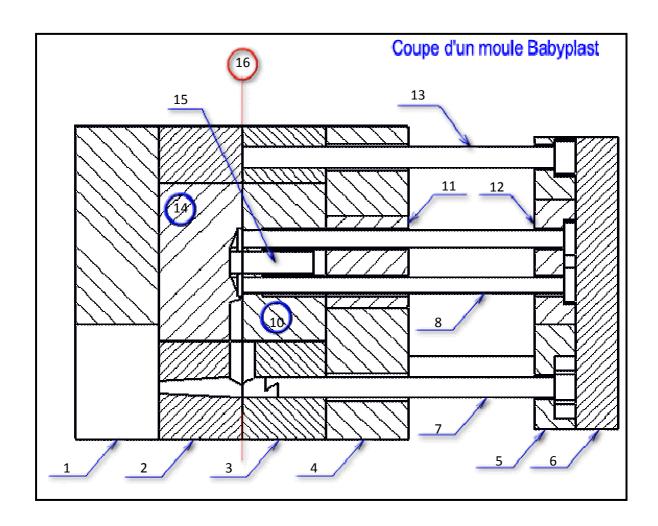
- **Esquisser**, à main levée, la forme finale de l'écrou.
- > Situer le plan de joint, et la position du point d'injection de l'écrou.
- Appliquer à l'écrou le pourcentage de retrait, dans SolidWorks, afin d'obtenir les cotes empreintes des parties actives du moule. faire une mise à l'échelle
- ➤ Relever les cotes empreintes sur le croquis, après avoir procéder à la mesure, dans Solidworks, des cotes représentées ci dessous. (utiliser outil mesurer)

1-	
2-	
3-	
3-4 Cit	er les règles de base pour définir un système d'éjection.
1-	
2-	
3-	
4-	


3-3 Citer les différents types d'éjection possibles. http://membres.lycos.fr/microtech/



3-5 **Définir** deux solutions d'éjection de l'écrou (on désire un système efficace à moindre coût). Choisir une des solutions. **Définir** la partie fixe et la partie mobile pour chacune des solutions


Première solution

deuxième solution

4 **Colorier** en rouge l'empreinte, en bleu les rappels d'éjecteurs, en vert les éjecteurs et en jaune l'éjecteur de carotte. (voir dossier ressources)

4-1 **Identifier** chaque élément repéré ci-dessus.

1-	
2	
<i>Z</i> -	

3-

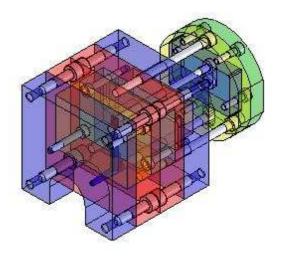
4- _____

5- _____

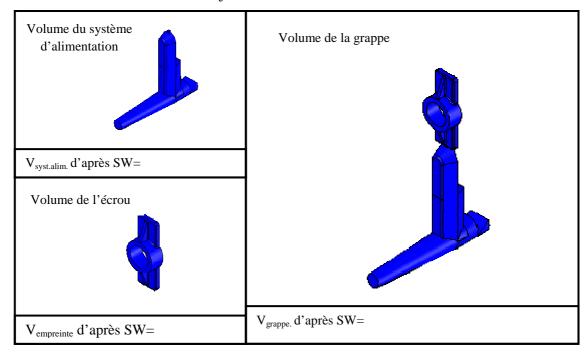
6- _____

7- _____

0-


9- ______ 10-

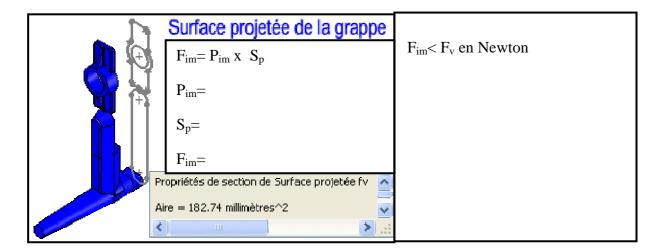
11-


17-12-

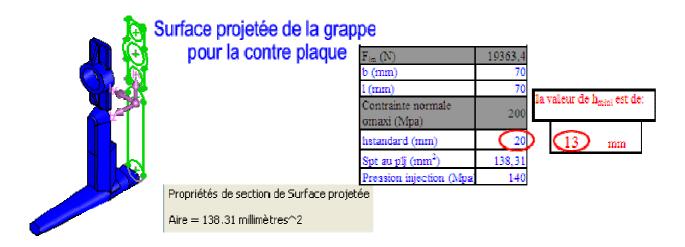
13-____

14-______ 15-

- 5 Vérifier si la presse est compatible avec la pièce à injecter (utilisation des données SW).
 - 5-1 **Vérifier** si le volume injectable machine est suffisant.



Le volume injectable est _____



5-2 **Vérifier** si la force de verrouillage est suffisante.

La force de verrouillage est _____

5-3 **Vérifier** si l'épaisseur h_{standard} de la contre plaque est suffisante.

La contre plaque standard est _____

La presse à injecter est-elle compatible pour injecter cette pièce?

oui non

D- Conception un outillage d'injection plastique.

1 **Modéliser** le moule d'injection plastique sur modeleur Volumique SW, à partir de la mise en plan format A3 de l'écrou et des fichiers SW.