Baccalauréat Professionnel « Maintenance des Équipements Industriels »

ÉPREUVE E2 Analyse et préparation d'une activité de maintenance

SESSION 2018

CORRIGÉ

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 1/12

Problématique N°1:

Q1	Gestion de maintenance	DTR 2/14	Temps conseillé : 40 min	Nbre de pts : / 30
----	------------------------	----------	--------------------------	--------------------

Q1.1: Compléter le tableau, ci-dessous d'après les données de l'historique (arrondir les résultats à 1 chiffre après la virgule).

Ligne de production de gomme MP94			
Temps total	heures	3744	
Temps requis TO	heures	2246,4	
Temps d'indisponibilité TA	heures	211	
Temps de disponibilité TBF	heures	2035,4	
Nombre de défaillances	/	132	
MTBF	heures	15,4	
MTTR	heures	1,6	
Disponibilité opérationnelle	%	90,6	

Q1.2: Comparer la Disponibilité opérationnelle Do de la ligne MP94 par rapport aux deux autres lignes et commenter.

Réponse :

La disponibilité opérationnelle de MP94 est inférieure à celle des deux autres lignes. Il faut donc augmenter la disponibilité

Q1.3 : Compléter le tableau et classer les sous-systèmes de la ligne MP94 par ordre décroissant de défaillances.

Sous systèmes	Extrudeuse	Guillotine	Marquage	Emballage	Conditionnement
Total de défaillances	9	7	58	14	44
Classement décroissant	4	5	1	3	2

Q1.4: Identifier les deux sous-systèmes les moins performants.

Réponse : Marquage et Conditionnement

Problématique N°2:

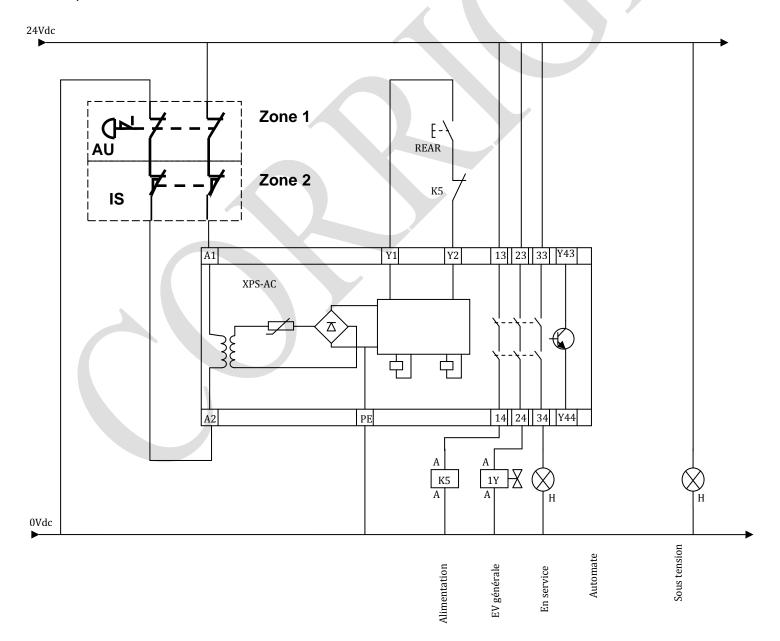
02	Mise en sécurité électrique	DTR 3/14, 4/14	Temps conseillé :	Nbre de pts :
QZ	ivise en securite electrique	et 5/14	35 min	/ 35

Q2.1: Donner la référence du module de sécurité PREVENTA adapté sachant que le bornier doit être intégré au module et que le circuit de commande est alimenté en 24Vdc.

Référence XPS AC 5121

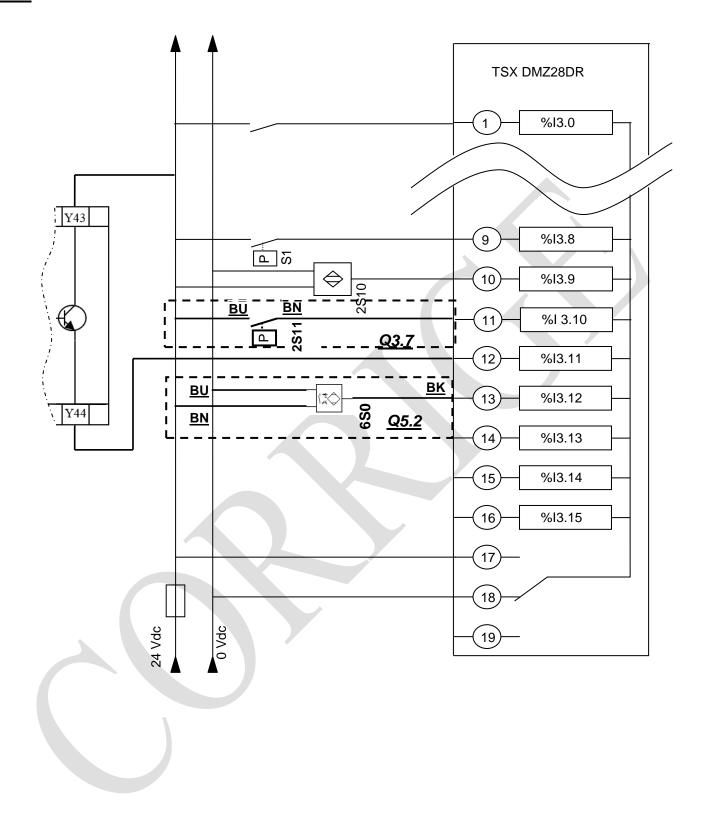
BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 2/12

Q2.2: Donner la référence de l'interrupteur de sécurité (IS) adapté sachant qu'il doit posséder 2 contacts NC à action dépendante.


Référence XC SPA 792

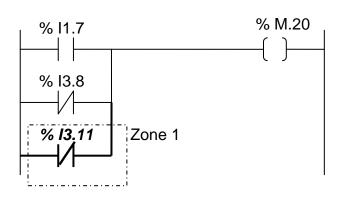
Q2.3 : L'installation du module de sécurité PREVENTA nécessite le changement de l'arrêt d'urgence (AU) qui doit posséder 2 contacts "O" ; donner la nouvelle référence.

Référence XB4 BS 8444	
-----------------------	--


<u>Q2.4</u>: En utilisant les symboles normalisés, raccorder l'interrupteur de sécurité (IS) sur le schéma électrique ci-dessous **en zone 2**.

<u>Q2.5</u>: En utilisant les symboles normalisés, raccorder l'arrêt d'urgence (AU) sur le schéma électrique ci-dessous **en zone 1**.

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 3/12


Q2.6 : Raccorder le module de sécurité PREVENTA à la carte d'entrées de l'automate.

BAC PRO MEI	Code: AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 4/12

Q2.7: Mettre à jour le programme automate, en insérant dans la **zone 1** l'information délivrée par le module de sécurité et compléter le tableau.

% L.60 MAST/PRL

Adresse	Libellé	
%M.20	défaut convoyeur	
%I1.7	disjoncteur convoyeur	
%I3.8	présence air comprimé	
% I3.11	Défaut module sécurité	

Problématique N°3:

Q3	Implantation d'un capteur à chute de pression et d'un bloc régulateur de pression	DTR 5, 7, 8, 9 et 10/14	Temps conseillé : 45 min	Nbre pts : / 40	
----	---	----------------------------	-----------------------------	-----------------	--

Q3.1 : Justifier le choix de ce type de capteur en complétant le tableau. (Cocher la bonne réponse).

	oui	non
Le capteur nécessite l'interfaçage du signal de sortie (pneumo-électrique)		Х
Le capteur permet un changement de série sans réglage de position	X	
Le capteur détecte la position du piston du vérin par champ magnétique		X

Q3.2 : Donner les références du pressostat pneumatique à implanter.

Caractéristiques du vérin de serrage : type double effet, diamètre d'alésage 25 mm, course 40 mm, orifices de raccordement Gaz BSPP 1/8 de pouce.

Référence	7828 00 10
-----------	------------

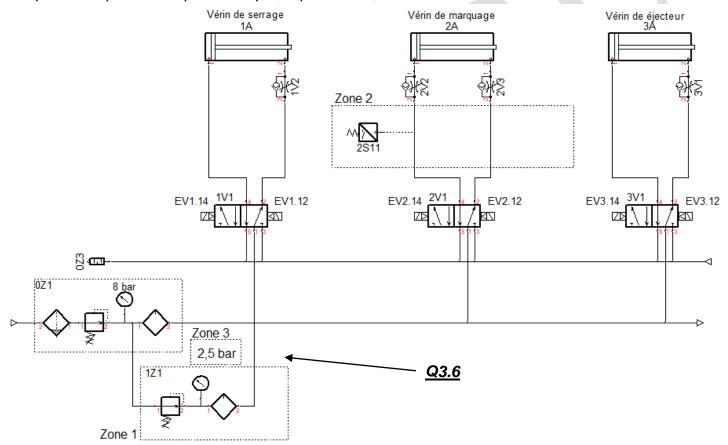
Q3.3 : Donner les références des composants suivants (Matériel dans la série 31) :

Un mini régulateur sans décompression avec pression secondaire 0-4bar, manomètre rond et orifices de raccordement de type BSPP.

Référence	P31RB 1 2 N N M P
-----------	-------------------

Un mini lubrificateur avec cuve plastique, même type de raccordement et sans support.

Référence P31LB 1 2 L G N N	
-----------------------------	--

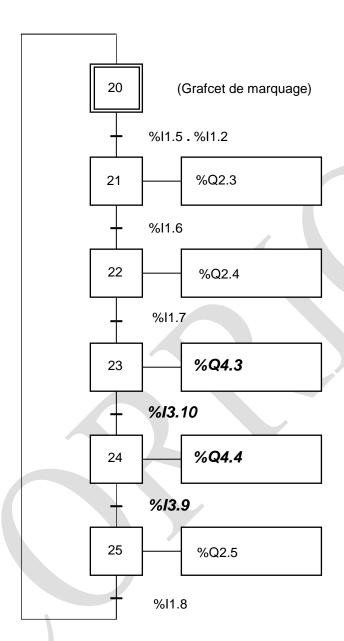

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 5/12

Un élément de liaison qui raccordera les deux modules et un bloc de raccordement avec support en T pour fixer l'ensemble. Vous serez attentif au type et au diamètre de raccordement.

Désignation	Référence
Elément de liaison	P31KA00CB
Bloc de raccordement	P31KA12CN

Q3.4: Modifier le schéma pneumatique à partir des données ci-dessous en utilisant la symbolisation normalisée :

- Insérer le nouveau bloc de conditionnement dans la zone 1 (mini-régulateur, manomètre et minilubrificateur). Son alimentation se fera par piquage à la sortie du régulateur de pression du bloc 0Z1 et sa sortie sera reliée à l'alimentation du distributeur 1V1.
- Implanter le pressostat pneumatique, repère 2S11, dans la zone 2.



Q3.5 : La série de gomme nécessite une force de serrage de 12 DaN. Compléter le tableau ci-dessous à l'aide des caractéristiques du vérin de serrage défini à la question Q3.2 (faire apparaître le détail de vos calculs).

Diamètre du piston (cm)	2,5 cm
Surface du piston (cm2)	$S = \pi \times D^2/4 = \pi \times 2.5^2/4 = 4.91 \text{ cm}^2$
Pression (bar)	$P = \frac{12}{4,91} = 2,44 \text{ bars}$

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient: 4	DC: 6/12

- Q3.6 : Reporter la valeur de réglage du régulateur en zone 3 de DQR 10/19.
- Q3.7 : Implanter le pressostat sur la carte automate en DQR 7/19 conformément au tableau des affectations entrées/sorties et noter la couleur des fils.
- Q3.8 : Compléter le grafcet point de vue automate.

Problématique N°4:

Q4	Régulation de température	DTR 11/14 et 12/14	Temps conseillé :	Nbre de pts :
	9		40 min	/ 30

Q4.1: Choisir le type du thermocouple avec la plage de température la plus appropriée, en respectant rigoureusement les préconisations du constructeur.

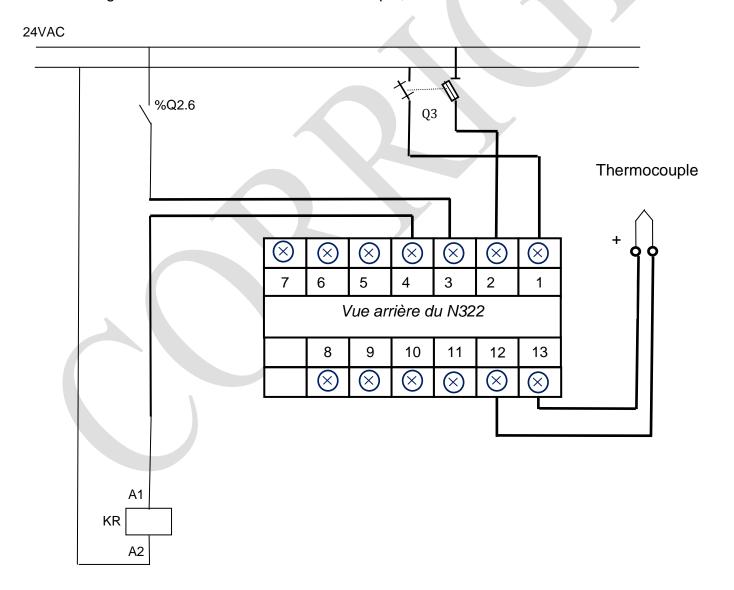
Référence	Thermocouple type T
-----------	---------------------

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 7/12

Q4.2: Donner la référence du thermocouple à commander sachant que l'on demande une longueur du thermocouple de 200 mm minimum, avec un diamètre de 3 mm et que la dimension intérieure du four est de 460 mm.

Référence	405-128
-----------	---------

<u>Q4.3</u>: Choisir le régulateur de température à associer au thermocouple (sans liaison RS485) en fonction de la tension disponible (**DQR 13/19**).


Référence	N322 J-2
-----------	----------

Q4.4 : Compléter ci-dessous le schéma électrique :

- du thermocouple,
- du thermostat électronique (sortie et alimentation).

Nota:

Pour le câblage de la sortie du thermostat électronique, on utilisera le contact NC de la sortie 1.

KR: relais de chauffe

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 8/12

Q4.5: Compléter la procédure de paramétrage du régulateur d'après le manuel d'instruction, en entourant les bonnes réponses.

Réglage de la consigne en SP1

Appui sur la touche

Maintenir pendant

1s 2s 5s

Le message suivant apparaît

Entrer la valeur

175 185 190

Réglage du seuil haut

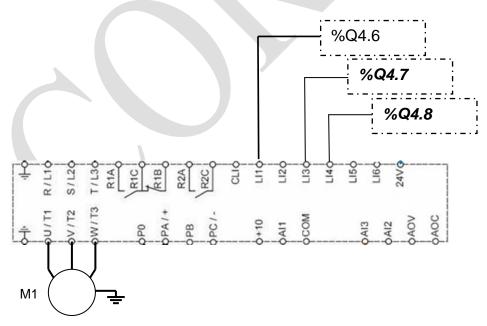
	reguego da ocuminati
Appui sur la touche	P V
Maintenir pendant	1s 2s 5s
Le message suivant apparaît	SP1 SP2 Unt
Sélectionner le paramètre	SPL SPH
Entrer la valeur	175 185 190

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 9/12

Problématique N°5:

Q5	Variation de vitesse	DTR 13/14 et 14/14	Temps conseillé :	Nbre de pts :
QS	variation de vitesse	DTK 13/14 et 14/14	40 min	/ 30

Q5.1: A l'aide du DQR 7/19, donner la référence du détecteur photoélectrique de proximité à installer sachant que la distance maximale avec la bande est de 50 cm, que l'on impose une sortie axiale du câble et un contact NO.


Référence	XUB5APANM12	Quantité	3
-----------	-------------	----------	---

Q5.2 : Représenter le détecteur 6S0 sur la carte automate de DQR 7/19.

<u>Q5.3</u>: Identifier la vitesse à donner au convoyeur du poste de découpe en fonction des états des 3 capteurs en renseignant toutes les cases vides par 0 ou 1, sachant que 6S2 informe d'une réserve insuffisante, 6S0 d'une réserve trop importante et 6S1 d'une réserve satisfaisante.

Capteur 6S2	Capteur 6S1	Capteur 6S0	Vitesse lente	Vitesse moyenne	Vitesse rapide
0	0	0	0	0	0
1	0	0	1	0	0
1	1	0	0	1	0
1	1	1	0	0	1

Q5.4: Compléter dans le schéma ci-dessous, les adresses de sorties automate et les liaisons avec le variateur.

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 10/12

Problématique N°6:

A la remise en service de la ligne et suite à un défaut du transformateur T6, le disjoncteur différentiel **Q7** a déclenché, vous êtes chargé de contrôler ce transformateur en toute sécurité.

Q6	Risques électriques	DTR 6/14 et 14/14	Temps conseillé : 40 min	Nbre de pts : / 35
----	---------------------	-------------------	-----------------------------	--------------------

Q6.1: Cochez dans la colonne de droite par une croix, le titre d'habilitation nécessaire pour cette intervention, en sachant que vous intervenez seul et que vous devez réaliser la consignation électrique.

	Aucun titre	
ВО	Exécutant travaux d'ordre non électrique	
B1	Exécutant travaux d'ordre électrique	
B2	Chargé de travaux d'ordre électrique	
BR	Chargé d'intervention	X
BS	Intervenant de remplacement et de raccordement	
ВС	Chargé de consignation électrique	

Q6.2: Préciser sur quel composant vous allez réaliser la consignation électrique, sachant que vous devrez la faire au plus près de la zone d'intervention.

Réponse :

Consignation sur disjoncteur Q9

Q6.3: Citer de manière chronologique les étapes de la consignation.

Réponse :

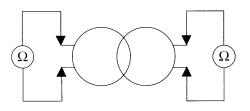
1: Séparer 2: Condamner

3: Identifier 4: Vérification d'absence de Tension

Q6.4: Cochez dans la colonne de droite par une croix, les équipements de protection nécessaires à la réalisation de la consignation et la VAT.

Casque avec protection faciale	Х
Lunettes de protection anti UV	
Paire de gants isolants 1000 V	Х
Chaussures isolantes	Х
Cadenas de consignation	Х
Testeur VAT Basse Tension	X
Voltmètre	

Q6.5: Indiquer ou vous devez vérifier l'absence de tension.

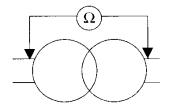

Réponse : Aval de Q9 (Borne 2-Q9 ; borne 4-Q9)

BAC PRO MEI	Code: AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient : 4	DC: 11/12

Q6.6: Entourer dans le tableau si la réponse est cohérente ou non.

A/ Mesure de la résistance des bobinages :

Primaire Secondaire


	Valeurs relevées	Valeur coh <u>érente</u>	Valeur non cohérente
Mesure 1	9 ohms	oui	non
Mesure 2	0,5 ohms	(oui)	non

Mesure 1

Mesure 2

B/ Mesure de l'isolement entre les bobinages :

Primaire Secondaire

	Valeurs relevées	Valeur coh <u>é</u> rente	Valeur non cohérente
Mesure 3	>10 M.ohms	oui	non

Mesure 3

C/ Mesure d'isolement entre les bobinages et la terre :

Primaire Secondaire $M\Omega$

	relevées	cohérente	cohérente
Mesure 4	0 ohms	oui	non
Mesure 5	>10 M.ohms	oui	non

Valeur

Valeur non

Valeurs

Mesure 4

Mesure 5

Q6.7: Lors de la précédente mesure, si vous relevez une résistance nulle entre un des bobinages et la terre, quelle conclusion pouvez-vous tirer sur l'état général du transformateur ?

Réponse :

Le transformateur est hors service (circuit primaire à la masse)

Q6.8: Afin de remplacer le transformateur qui n'est plus commercialisé, indiquer les 3 caractéristiques électriques principales à relever sur la plaque signalétique afin de le remplacer par un modèle équivalent.

Réponse :

1 Tension primaire; 2 Tension secondaire; 3 Puissance apparente

Q6.9: Donner la référence du transformateur à commander.

Référence :	423 03
-------------	--------

BAC PRO MEI	Code : AP 1806-MEI 2	Session 2018	Corrigé
ÉPREUVE E2	Durée : 4 h	Coefficient: 4	DC: 12/12