BACCALAURÉAT PROFESSIONNEL RÉPARATION DES CARROSSERIES

Session : 2018

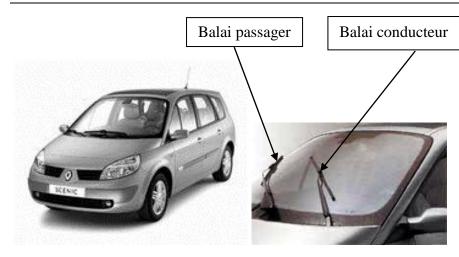
E.1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve E11

UNITÉ CERTIFICATIVE U11

Analyse d'un système technique

Durée : 3h Coefficient : 2


DOSSIER TECHNIQUE

Ce dossier comprend 8 pages numérotées de DT 1/8 à DT 8/8

- DT2/8 et DT3/8 : Présentation du mécanisme et principe de fonctionnement
- DT4/8 : Diagramme FAST
- DT5/8 : Caractéristiques techniques et Valeurs normalisées des écarts
- DT6/8 : Perspective du mécanisme complet
- DT7/8 : Dessin d'ensemble du mécanisme
- DT8/8 : Nomenclature

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 1/8

1 Introduction

L'objet de l'étude est le mécanisme complet d'essuie-glace avant du Renault Scénic II.

1. PRESENTATION DU DISPOSITIF

1.1 INTRODUCTION

Les essuie-glaces sont des raclettes en caoutchouc, montées sur des bras actionnés par un moteur électrique, commandés depuis l'habitacle. Ils sont en nombre variable, suivant la taille du pare-brise et la conception de leurs bras. Ils permettent de *nettoyer* le pare-brise avant, ainsi que la vitre arrière, sans sortir du véhicule. Ils sont obligatoirement associés à un lave-glace constitué d'une pompe électrique qui projette du liquide sur le pare-brise. Ce liquide de nettoyage est stocké dans un réservoir sous le capot. Un dispositif d'essuie-glace est formé d'un moteur électrique entraînant un montage de type bielle/manivelle. Ce dernier assure la transformation du mouvement rotatif continu du moteur électrique en mouvement alternatif pour les balais.

Un dispositif d'essuie-glace est donc avant tout un dispositif de sécurité permettant de maintenir la *visibilité* du conducteur dans les conditions normales d'utilisation du véhicule.

1.2 EXPRESSION DU BESOIN

D'un point de vue conducteur, le besoin peut s'exprimer de la façon suivante : **obtenir le champ de vision le plus grand possible**, permettant ainsi une visibilité maximale pour accroître la sécurité et le confort de pilotage.

D'un point de vue constructeur, l'objectif est surtout de fournir un dispositif répondant aux différentes contraintes énoncées dans la **directive européenne 78/318/CEE** concernant le rapprochement des législations des États membres relatives aux dispositifs d'essuie-glace et de lave-glace des véhicules à moteur.

1.3 SYSTEME PLURITECHNIQUE : DISPOSITIF D'ESSUIE-VITRE DE LA RENAULT SCENIC II 1.3.1. Mise en situation

La qualité primordiale des véhicules genre monospace est l'excellent rapport encombrement/habitabilité. Le conducteur devant bénéficier d'une vision complète de la route, l'utilisation de pare-brise panoramique s'avère indispensable. Avec un pare-brise d'une surface de **1,40 m²**, le véhicule **SCENIC II** dégage une vision panoramique remarquable.

La taille de ce pare-brise engendre un problème puisqu'il faut conserver cette visibilité dans les conditions normales d'utilisation (pluie, poussière, insectes, ...), les bords de la surface vitrée devant aussi être atteints par les balais de l'essuie-glace.

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 2/8

1.3.2. Description structurelle

SCENIC II adopte un dispositif d'essuyage à mouvement parallèle doté d'une cinématique dite "à extension". Celle-ci assure une très bonne épure, en élargissant son rayon d'action dans une zone généralement non accessible pour les dispositifs parallèles conventionnels. Adaptée aux dimensions du pare-brise, elle permet un champ de vision totalement dégagé.

SCENIC II est équipé de balais à lame souple qui permettent à la fois de diminuer les bruits aérodynamiques et d'augmenter la qualité d'essuyage du fait de l'uniformité de la pression exercée sur le pare-brise.

1.3.3.Le capteur de pluie.

Le système d'essuie-glace permet une adaptation du balayage à la quantité d'eau sur le pare brise. Cet essuie-glace *intelligent* est l'un des nombreux équipements destinés à **favoriser la concentration du conducteur sur la conduite**.

La quantité d'eau est acquise par un capteur de pluie, situé sur le pare-brise. L'information recueillie permet au calculateur de déterminer la vitesse de balayage la mieux adaptée. Celle-ci aura une cadence proportionnelle à l'intensité de la pluie.

2. Principe de fonctionnement

L'ensemble du mécanisme est entraîné par un unique moto-réducteur Valéo repéré 27 sur DT6/8

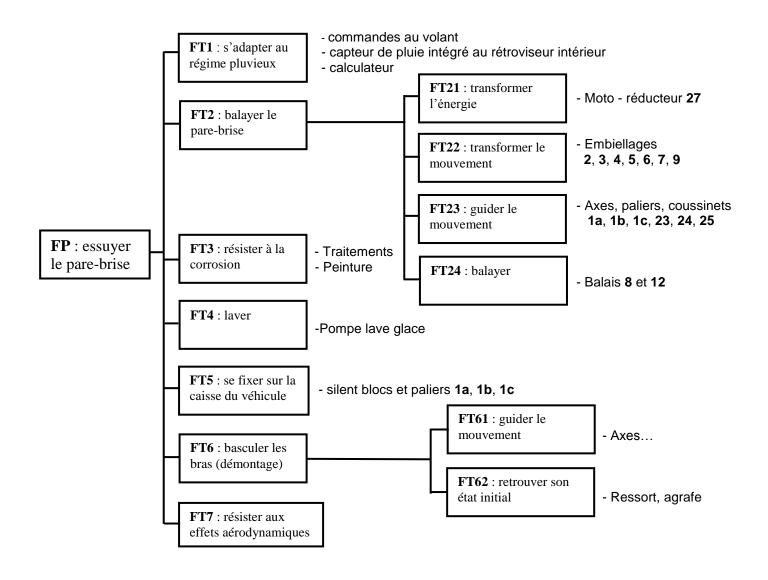
La chaîne de transmission de puissance se décompose en trois parties :

a- La transmission primaire :

Composée de la manivelle motrice 2, de la bielle primaire 3 et du renvoi 4. Le balai d'essuie-glace conducteur est lié complètement au renvoi 4.

b- La transmission intermédiaire :

Elle transmet la puissance du renvoi 4 au côté passager. Elle est composée de la bielle secondaire 5 et de la manivelle intermédiaire 6.


c- La transmission secondaire :

Elle entraîne le balai passager. Il s'agit d'un système dit « quatre barres », composé du bâti tubulaire 1 (fixe), du levier secondaire 7, de l'entraîneur passager 11 (lié au balai passager) et du levier primaire 9 (en liaison encastrement avec l'axe et la manivelle intermédiaires 24+6).

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 3/8

3. Présentation

Diagramme FAST de l'essuie-glace de Scénic

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 4/8

4. Caractéristiques techniques

Moteur:

Couple maxi: 40 N.m

Fréquence de rotation en charge mini : 32 tr/min Fréquence de rotation en charge maxi : 60 tr/min

Balayage:

Fréquence mini : 32 AR par minute Fréquence maxi : 60 AR par minute

Masse de l'ensemble : environ 5kg.

Vitesse de glissement des balais : comprise entre 1 et 8 m/s

5. Valeurs normalisées des écarts

Extraits ISO 2	Extraits ISO 286-2 (NF EN 20286-2) de valeurs normalisées: écarts limites pour alésages												
	Ec	Ecart supérieur (ES) et Ecart inférieur (EI) en micromètre (1 μm = 0,001 mm) fonction des dimensions											
						no	minales e	en mm		-			
au-delà de	-	3	6	10	18	30	50	80	120	180	250	315	400
à (inclus)	3	6	10	18	30	50	80	120	180	250	315	400	500
H6	+6	+8	+9	+11	+13	+16	+19	+22	+25	+29	+32	+36	+40
	0	0	0	0	0	0	0	0	0	0	0	0	0
H7	+10	+12	+15	+18	+21	+25	+30	+35	+40	+46	+52	+57	+63
	0	0	0	0	0	0	0	0	0	0	0	0	0
Н8	+14	+18	+22	+27	+33	+39	+46	+54	+63	+72	+81	+89	+97
	0	0	0	0	0	0	0	0	0	0	0	0	0
H9	+25	+30	+36	+43	+52	+62	+74	+87	+100	+115	+130	+140	+155
	0	0	0	0	0	0	0	0	0	0	0	0	0

Extraits ISO 2	Extraits ISO 286-2 (NF EN 20286-2) de valeurs normalisées: écarts limites pour arbres												
	Ecart supérieur (es) et Ecart inférieur (ei) en micromètre (1 µm = 0,001 mm) fonction des dimensions												
	nominales en mm												
au-delà de	-	3	6	10	18	30	50	80	120	180	250	315	400
à (inclus)	3	6	10	18	30	50	80	120	180	250	315	400	500
p6	+12	+20	+24	+29	+35	+42	+51	+59	+68	+79	+88	+98	+108
	+6	+12	+15	+18	+22	+26	+32	+37	+43	+50	+56	+62	+68

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 5/8

DOSSIER TECHNIQUE

Perspective du mécanisme complet

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 6/8

DOSSIER TECHNIQUE

Dessin d'ensemble du mécanisme

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 7/8

Nomenclature

35	2	Adaptateur	PO	
34	2	Axe	Acier	
33	2	Connecteur	S235	2 parties serties
32	2	Ame métallique conducteur	Acier	L = 650 mm
31	2	Ame métallique passager	Acier	L = 550 mm
30	4	Agrafe	S235	
29	1	Joint torique		3×12
28	2	Coussinet cylindrique	BP25	12×15×12
27	1	Moto-réducteur		Cmax = 40 N.m
26	3	Ecrou H, M10		
25	1	Axe secondaire	36 Si Mn 14	Acier pour décolletage
24	1	Axe intermédiaire	36 Si Mn 14	Serti sur 6
23	1	Axe de renvoi	36 Si Mn 14	
22	2	Cache axe	PP	
21	4	Anneau élastique		
20	11	Rondelle plate		
19	4	Bague de rotule	PA	Surmoulée sur 5
18	2	Collerette caoutchouc	Caoutchouc	
17	4	Rotule	S 400	Nickelé
16	2	Roulement rigide à billes		8 BC 10 PP
15	2	Axe riveté	Acier	Pour frappe à froid
14	1	Entraîneur conducteur	Al Si 12 Cu	Peinture noire
13	1	Porte balai conducteur	E 240	
12	1	Lame conducteur	Caoutchouc	L = 650 mm
11	1	Entraîneur passager	Al Si 12 Cu	Peinture noire
10	1	Porte balai passager	E 240	
9	1	Levier primaire	S 235	
8	1	Lame passager	Caoutchouc	L = 550 mm
7	1	Levier secondaire	S 235	
6	1	Manivelle intermédiaire	S 400	Galvanisé
5	1	Bielle secondaire	Acier	Galvanisé insert
4	1	Renvoi	S 400	Galvanisé
3	1	Bielle primaire	Acier	Galvanisé
2	1	Manivelle motrice	S 400	Galvanisé
1e	1	Plaque support moteur	Acier	Tôle Galvanisée – ep 2mm
1d	1	Support tubulaire	Acier	Galva Øext 20mm – ep 1,5mm
1c	1	Palier secondaire	PA 6.6	Surmoulé sur 1
1b	1	Palier intermédiaire	PA 6.6	Surmoulé sur 1 et 1d
1a	1	Palier de renvoi	Zamack	Serti sur 1d
1	1	Bâti tubulaire	Acier	Galva Øext 20mm – ep 1,5mm
Rep	Nbre	Désignation	Matériau	Remarques
		DIODOGITIE		

DISPOSITIF D'ESSUIE-GLACE NOMENCLATURE DT 8/8

Baccalauréat Professionnel Réparation des carrosseries	1806-REP ST 11	Session 2018	DT
E1 : Épreuve scientifique et technologique E11 – U11 : Analyse d'un système technique	Durée : 3h	Coefficient : 2	Page 8/8