BACCALAURÉAT PROFESSIONNEL

TECHNICIEN DU FROID ET DU CONDITIONNEMENT DE L'AIR

Session : 2017

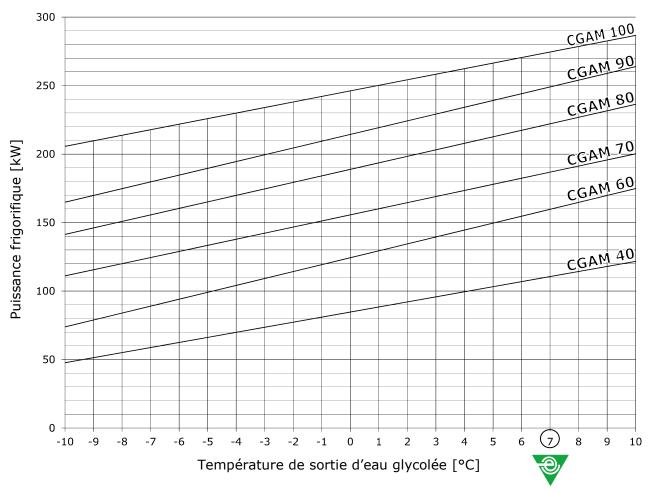
E.1- ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve E11

UNITÉ CERTIFICATIVE U11

Analyse scientifique et technique d'une installation

Durée : 4h Coef. : 3


DOSSIER RESSOURCES

Ce dossier comprend 9 pages numérotées de DRess 1/9 à DRess 9/9.

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 1/9

Courbe de correction de la puissance frigorifique des refroidisseurs de liquide CGAM – rendement standard, package compact – unités V DOUBLES Pour une température de sortie d'eau glycolée de −10 °C à 10 °C

Conditions EUROVENT : Régime d'eau glycolée : 7 °C/12 °C

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient : 3	Page 2/9

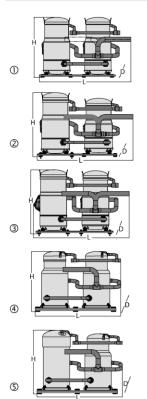
Caractéristiques générales des refroidisseurs de liquide CGAM – rendement standard, package compact – unités V DOUBLES

Taille		40	60	70	80	90	100
Performances Eurovent (1)							
Puissance frigorifique nette	(kW)	110,6	159,7	186,8	222,1	249,0	274,5
Puissance électrique absorbée totale	(kW)	40,3	58,7	67,9	78,7	87,9	100,5
EER		2,75	2,72	2,75	2,82	2,83	2,73
Alimentation électrique principale		400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Niveau de puissance acoustique	(dBA)	90,9	91,8	93,6	95,6	94,7	93,7
Caractéristiques du système							
Circuit frigorifique	Nbre	2	2	2	2	2	2
Étages de puissance	%	25-50-75- 100	25-50-75- 100	21-43-71- 100	25-50-75- 100	22-44-72- 100	25-50-75 100
Intensité d'unité							
Intensité absorbée maximale	(A)	68,4	99,7	115,3	133,6	149,3	170,7
Compresseur							
Nombre	Nbre	4	4	4	4	4	4
Туре		Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Modèle		CSHD125 et CSHD125	CSHN184 et CSHN184	CSHN184 et CSHN250	CSHN250 et CSHN250	CSHN250 et CSHN315	CSHN31 et CSHN31
Vitesse moteur	(tr/min)	2900	2900	2900	2900	2900	2900
Facteur de puissance : cos(φ)	(6,7,1,1,1,1,	0,85	0,85	0,85	0,85	0,85	0,85
Résistance de réservoir par circuit	(W)	160 et 160	160 et	160 et 160	160 et 160	160 et 160	160 et 160
Évaporateur							
Quantité	Nbre	1	1	1	1	1	1
Type		BPHE	BPHE	BPHE	BPHE	BPHE	BPHE
Stockage/volume d'eau (total)	(1)	9,1	15,6	18,9	24,0	26,5	32,4
Résistance antigel	(W)	120	18	30		240	
Condenseur		'			1		
Туре		Ailettes et tubes	Ailettes et tubes	Ailettes et tubes	Ailettes et tubes	Ailettes et tubes	Ailettes et tubes
Oté de batteries	Nbre	2	2	2	2	2	2
Ventilateur							
Туре		Hélice	Hélice	Hélice	Hélice	Hélice	Hélice
Quantité par circuit	Nbre	2	2	2	3	3	3
Diamètre	(mm)	732	732	732	732	732	732
Type d'entraînement		Direct	Direct	Direct	Direct	Direct	Direct
Débit d'air par ventilateur	(m³/h)	13485	16129	17638	16088	17189	17195
Pression statique	(Pa)	0	0	0	0	0	0
Vitesse moteur	Nbre	920	920	920	920	920	920
Charge d'huile et de fluide frigorigène							
Charge de fluide frigorigène (Circuit 1/Circuit 2)	(kg)	10,9/10,9	16,3/16,3	18,1/18,1	20/20	21,8/21,8	23,6/23,6
Charge d'huile (Circuit 1/Circuit 2)	(1)	6,6 / 6,6	13,4 / 13,4	13,4 / 13,4	13,4 / 13,4	13,4 / 13,4	13,4 / 13,4
Masse							
Masse à l'expédition	(kg)	1884	2134	2176	2434	2567	2683

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient : 3	Page 3/9

Correspondance entre les compresseurs scroll TRANE et DANFOSS

Référence TRANE	Numéro de modèle	Fluide frigorigène	Référence DANFOSS	Numéro de commande DANFOSS
CSHA100	COM07257	R-407C	SZ125	COM0756E
CSHA150	COM07558	R-407C	SZ185	COM0757E
CSHD092	COM09111	R-410A	SH90	COM9111E
CSHD110	COM09121	R-410A	SH105	COM9121E
CSHD125	COM09854	R-410A	SH120	COM9131E
CSHD142	COM09861	R-410A	SH140	COM9141E
CSHD161	COM09151	R-410A	SH161	COM9151E
CSHD183	COM09868	R-410A	SH184	COM9161E
CSHN184	COM09171	R-410A	SH180	COM9171E
CSHN250	COM09839	R-410A	SH240	COM9002E
CSHN315	COM09841	R-410A	SH300	COM9004E
CSHN374	COM09843	R-410A	SH380	COM9006E


Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient : 3	Page 4/9

Caractéristiques des tandems de compresseur SH

Quick reference

Product range tandem compressors

				Voltage code		Di	mensions (mr	~)
Outline	Model	Composition	4	6	7	Di	mensions (mi	11)
n°			400/3/50 460/3/60	230/3/50	500/3/50 575/3/60	L	D	н
	SH182	2 x SH090	0	0	0	844	446	514
	SH212	2 x SH105	0	0	0	844	446	564
1	SH242	2 x SH120	0	0	0	844	446	564
	SH282	2 x SH140	0	0	0	844	446	564
	SH322	2 x SH161	0	0	0	844	446	564
	SH195	SH090 + SH105	0	0	0	842	469	564
	SH210	SH090 + SH120	0	0	0	842	469	564
2	SH230	SH090 + SH140	0	0	0	842	469	564
0	SH260	SH120 + SH140	0	0	0	842	469	564
	SH281	SH120 + SH161	0	0	0	842	469	564
	SH301	SH140 + SH161	0	0	0	842	469	564
	SH304	SH120 + SH184	0	0	0	866	473	580
3	SH324	SH140 + SH184	0	0	0	866	473	580
	SH345	SH161 + SH184	0	0	0	866	473	580
	SH368	2 x SH184	0	0	0	866	473	580
	SH360	2 x SH180	0		0	1025	527	731
	SH482	2 x SH240	0		0	1025	527	731
4	SH590	2 x SH295	0		0	1025	527	731
	SH600	2 x SH300	0		0	1025	527	771
	SH760	2 x SH380	0		0	1025	527	803
	SH420	SH180 + SH240	0		0	1025	527	731
	SH475	SH180 + SH295	0		0	1025	527	731
	SH480	SH180 + SH300	0		0	1025	527	771
	SH535	SH240 + SH295	0		0	1025	527	731
	SH540	SH240 + SH300	0		0	1025	527	771
	SH560	SH380 + SH180	0		0	1025	527	803
(5)	SH620	SH240 + SH380	0		0	1025	527	803
	SH675	SH295 + SH380	0		0	1025	527	803
	SH680	SH300 + SH380	0		0	1025	527	803
	SH725	SH240 + SH485	0		0	1025	546	803
	SH780	SH295 + SH485	0		0	1025	546	803
	SH865	SH380 + SH485	0		0	1025	553	803
	SH970	SH485 + SH485	0		0	1025	553	803

O Tandems to be achieved by assembly of individual compressors. Specific outline drawings of tandems and trio units

Technical specifications

		Nominal	Nominal coo	ling capacity	Power	Effi	ciency	Swent volume	Displacement [®]	Oil charge
N	odel	tons 60 Hz TR	w	Btu/h	input kW	COP W/W	E.E.R. Btu/h /W	cm³/rev	m³/h	dm ³
	SH182	15	44200	150900	14.37	3.08	10.51	176.8	30.76	6.0
	SH195	16	48700	166200	15.66	3.11	10.61	191.9	33.39	6.3
	SH210	17.5	51800	176800	16.65	3.11	10.61	205.3	35.72	6.3
	SH212	17.5	53100	181200	16.95	3.14	10.72	207.0	36.02	6.6
	SH230	19	56500	192800	17.76	3.18	10.85	221.4	38.51	6.3
	SH242	20	59400	202700	18.92	3.14	10.72	233.8	40.68	6.6
	SH260	21.5	64100	218800	20.04	3.20	10.92	249.9	43.47	6.6
	SH281	23.5	68100	232400	21.61	3.15	10.75	268.6	46.74	6.6
	SH282	23.5	68800	234800	21.15	3.25	11.09	266.0	46.25	6.6
	SH301	25	72800	248500	22.72	3.21	10.96	284.7	49.52	6.6
	SH304	25.5	73900	252200	23.19	3.19	10.89	287.2	49.97	6.9
	SH322	27	76900	262500	24.29	3.17	10.82	303.4	52.79	6.6
	SH324	27	78700	268600	24.31	3.24	11.06	303.3	52.76	6.9
	SH345	29	82700	282300	25.88	3.20	10.92	322.0	56.03	6.9
	SH360	30	88200	301000	27.73	3.18	10.85	340.4	59.23	13.4
	SH368	30.5	88500	302000	27.46	3.22	10.99	340.6	59.26	7.2
Tandem	SH420	35	103300	352600	32.37	3.19	10.89	397.8	69.22	13.4
	SH475	39.5	116600	398000	36.37	3.21	10.96	446.4	77.67	13.4
	SH480	40	118600	404800	37.19	3.19	10.89	455.7	79.29	13.4
	SH482	40	118400	404100	37.00	3.20	10.92	455.2	79.20	13.4
	SH535	44.5	131700	449500	41.01	3.21	10.96	503.8	87.66	13.4
	SH540	45	133700	456300	41.82	3.20	10.92	513.1	89.28	13.4
	SH560	46.5	133800	456700	42.05	3.18	10.85	515.2	89.64	13.9
	SH590	49	145100	495200	45.01	3.22	10.99	552.4	96.12	13.4
	SH600	50	149000	508500	46.64	3.19	10.89	571.0	99.35	13.4
	SH620	51.5	148800	507800	46.68	3.19	10.89	572.6	99.63	13.9
	SH675	56.5	162200	553600	50.69	3.20	10.92	621.2	108.09	13.9
	SH680	56.5	164100	560100	51.50	3.19	10.89	630.5	109.71	13.9
	SH725	60	174500	595600	54.15	3.22	10.99	670.2	116.61	13.4
	SH760	63.5	179300	611900	56.36	3.18	10.85	690.0	120.06	14.4
	SH780	65	187900	641300	58.15	3.23	11.02	718.8	125.07	13.4
	SH865	70	205000	699700	63.83	3.21	10.96	787.6	137.04	13.9
	SH970	80	230700	787400	71.30	3.24	11.06	885.2	154.02	13.4

© for +15°C evap. temp; +68°C cond. temp under nominal voltage 400V-3-50Hz
② displacement at nominal speed: 2900 rpm at 50 Hz
TR= Ton of Refrigeration
Rating conditions: 5H compressors
Evaporating temperature: 7.2 °C

© Condensing temperature: 54.4 °C Frequency: 50 Hz / 60 Hz Sub-cooling: 8.3 K

Standard rating conditions: ARI standard Superheat: 11.1 K

Subject to modification without prior notification. For full data details and capacity tables refer to Online Datasheet Generator http://cc.danfoss.com

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 5/9

Caractéristiques des compresseur SH seuls

Quick reference

Technical data single compressors

Model	То	-20)	-15		-10)	-5		0		5		10		15	
Model	Tc	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe
	35	9700	4.5	12100	4.6	15000	4.7	18200	4.8	22000	4.8	26300	4.9	31200	4.9	36800	4.9
SH090-4	45	8500	5.6	10700	5.7	13200	5.7	16200	5.8	19600	5.9	23500	5.9	28000	6.0	33000	6.0
	55	-	-	-	-	11300	7.1	13900	7.1	16900	7.2	20400	7.3	24400	7.3	28900	7.4
	35	11200	5.4	14100	5.5	17400	5.6	21400	5.7	25900	5.7	31200	5.9	37200	6.0	44000	6.1
SH105-4	45	10200	6.7	12800	6.7	15900	6.8	19400	6.8	23500	6.9	28100	7.0	33400	7.2	39500	7.3
	55	-	-	-	-	13900	8.4	17000	8.4	20600	8.5	24600	8.5	29200	8.6	34500	8.8
	35	13100	5.9	16300	6.0	20100	6.1	24500	6.2	29500	6.3	35300	6.4	41900	6.5	49400	6.5
SH120-4	45	11400	7.4	14300	7.4	17800	7.5	21800	7.6	26300	7.7	31600	7.8	37600	7.9	44400	7.9
	55	-	-	-	-	15200	9.3	18700	9.4	22800	9.5	27400	9.6	32700	9.6	38800	9.7
	35	15700	6.8	19300	6.9	23500	7.0	28400	7.0	34000	7.1	40400	7.2	47700	7.2	56000	7.2
SH140-4	45	13700	8.3	17000	8.4	20900	8.5	25400	8.6	30500	8.6	36400	8.7	43200	8.8	50800	8.8
	55	-	-	-	-	18000	10.5	22000	10.5	26500	10.6	31800	10.7	37900	10.7	44800	10.8
	35	17300	7.8	21500	7.9	26300	7.9	31900	8.0	38300	8.0	45700	8.1	54100	8.2	63600	8.4
SH161-4	45	15100	9.8	18900	9.8	23300	9.8	28400	9.8	34300	9.9	41000	9.9	48700	10.0	57400	10.1
	55	-	-	-	-	19900	12.4	24300	12.3	29500	12.3	35500	12.3	42400	12.3	50200	12.3
	35	19200	9.1	24000	9.1	29600	9.1	36000	9.2	43500	9.2	52100	9.2	61800	9.3	72700	9.4
SH180-4	45	16600	11.3	21000	11.3	26200	11.3	32100	11.3	39000	11.3	46800	11.3	55700	11.3	65800	11.4
	55	-	-	-	-	22300	14.1	27600	14.1	33700	14.1	40700	14.1	48700	14.0	57800	14.0
	35	20200	8.7	24900	8.8	30300	9.0	36700	9.2	44000	9.4	52400	9.5	61900	9.7	72700	9.8
SH184-4	45	17800	10.6	22100	10.8	27100	10.9	32800	11.1	39400	11.2	47000	11.4	55700	11.6	65500	11.8
	55	-	-	-	-	23400	13.4	28400	13.5	34300	13.6	41000	13.8	48700	14.0	57500	14.2
	35	26700	12.0	33200	12.0	40700	12.1	49200	12.1	59000	12.2	70200	12.3	82800	12.4	97100	12.6
SH240-4	45	23300	14.8	29300	14.9	36100	15.0	43900	15.0	52800	15.1	63000	15.1	74500	15.2	87400	15.3
	55	-	-	-	-	30900	18.6	37800	18.6	45800	18.7	54800	18.7	65100	18.8	76800	18.8
	35	32700	14.5	40600	14.6	49800	14.7	60300	14.8	72400	14.9	86100	15.1	101700	15.5	119200	15.9
SH295-4	45	28700	17.9	35800	18.1	44100	18.2	53600	18.3	64600	18.3	77100	18.5	91200	18.7	107200	18.9
	55	-	-	-	-	37800	22.4	46200	22.6	56000	22.7	67100	22.7	79900	22.9	94300	23.0
	35	34000	15.0	42000	15.1	51300	15.3	62100	15.5	74400	15.7	88500	16.0	104600	16.3	122700	16.7
SH300-4	45	29800	18.3	37100	18.5	45500	18.7	55200	18.8	66500	19.0	79300	19.3	93900	19.6	110500	19.9
	55	-	-	-	-	39000	23.0	47600	23.1	57500	23.3	68900	23.5	82000	23.8	97000	24.1
	35	40400	18.4	50000	18.6	61100	18.7	74000	18.8	88900	19.0	105900	19.2	125300	19.6	147200	20.2
SH380-4	45	35500	22.3	44200	22.7	54300	22.9	66000	23.0	79600	23.1	95100	23.3	112900	23.5	133000	23.8
	55	-	-	-	-	46600	28.0	57000	28.2	69000	28.3	82900	28.5	98900	28.6	117100	28.8
	35	52600	23.0	64800	23.5	78900	23.8	95400	24.1	114400	24.1	136200	23.9	161100	23.4	189400	22.6
SH485-4	45	46700	28.0	57700	28.4	70600	28.8	85400	29.2	102500	29.4	122200	29.5	144700	29.4	170300	29.0
5.7.05	55	-	-	-	-	61200	35.0	74300	35.4	89400	35.8	106900	36.0	126900	36.1	149800	36.0

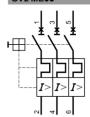
To: Evaporating temperature in °C Tc: Condensing temperature in °C Qo: Cooling capacity in W Pe: Power input in kW Superheat = 11.1 K Subcooling = 8.3 K Voltage: 400 V / 3 / 50 Hz

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 6/9

Disjoncteur moteur magnéto-thermique

Références

Composants de protection TeSys


Disjoncteurs-moteurs magnéto-thermiques GV2 ME--

TeSys GV

					ar bou						
		s norma rie AC-3		des r	noteurs	triphas	sés 50)/60 Hz	Plage de réglage des	déclenchement	Référence
400/	415 V		500 V	/		690 V	,		déclencheurs	magnétique	
Р	lcu	Ics (1)	Р	lcu	Ics (1)	Р	lcu	Ics (1)	thermiques (2)	ld ± 20 %	
kW	kA	%	kW	kA	%	kW	kA	%	Α	Α	
-	-	-	-	-	-	-	-	-	0,10,16	1,5	GV2ME01
0,06	*	*	-	-	-	-	-	-	0,160,25	2,4	GV2ME02
0,09	*	*	-	-	-	-	-	-	0,250,40	5	GV2ME03
0,12	*	*	_	_	_	0,37	*	*	0,400,63	8	GV2ME04
0,18	*	*	-	-	-	-	-	-			
0,25	*	*	-	-	-	0,55	*	*	0,631	13	GV2ME05
0,37	*	*	0,37	*	*	-	-	_	116	22,5	GV2ME06
0,55 -	*	*	0,55 0,75	*	*	0,75 1,1	*	*			
0,75	*	*	1,1	*	*	1,5	3	75	1,62,5	33,5	GV2ME07
1,1 1,5	*	*	1,5 2,2	*	*	2,2 3	3	75 75	2,54	51	GV2ME08
2,2	*	*	3	50	100	4	3	75	46,3	78	GV2ME10
3 4	*	* *	4 5,5	10 10	100 100	5,5 7,5	3	75 75	610	138	GV2ME14
5,5	15 -	50	7,5 -	6 –	75 -	9 11	3	75 75	914	170	GV2ME16
7,5	15	50	9	6	75	15	3	75	1318	223	GV2ME20
9	15	40	11	4	75	18,5	3	75	1723	327	GV2ME21
11	15	40	15	4	75	-	-	-	2025	327	GV2ME22 (3)
15	10	50	18,5	4	75	22	3	75	2432	416	GV2ME32

Schéma

Disjoncteurs-moteurs de 0,06 à 15 kW / 400 V, raccordement par cosses fermées

Pour commander ces disjoncteurs avec raccordement par cosses fermées, ajouter le chiffre 6 à la fin de la référence choisie ci-dessus.

Exemple: GV2 ME08 devient GV2 ME086.

Disjoncteurs magnéto-thermiques GV2 ME avec bloc de contacts intégré

Avec bloc de contacts auxiliaires instantanés (composition voir page B6/11):

■ GV AE1, ajouter **AE1TQ** en fin de référence du disjoncteur choisie ci-dessus. Exemple: GV2 ME01AE1TQ.

■ GV AE11, ajouter **AE11TQ** en fin de référence du disjoncteur choisie ci-dessus.

Exemple: GV2 ME01AE11TQ. ■ GVAN11, ajouter AN11TQ en fin de référence du disjoncteur choisie ci-dessus. Exemple : GV2 ME01AN11TQ.

Ces disjoncteurs avec bloc de contacts intégré sont vendus par lot de 20 pièces sous emballage unique.

(2) Le réglage du thermique doit se situer dans l'amplitude marquée sur le bouton gradué.
(3) Calibre maximal pouvant être monté dans les coffrets **GV2 MC** ou **MP**, consulter notre agence régionale.

* > 100 kA.

Caractéristiques : pages B6/51 à B6/54 Encombrements : pages B6/70 à B6/72 Schémas page B6/82

B6/4 Schneider

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 7/9

Caractéristiques des pompes de distribution NB

Caractéristiques générales

GRUNDFOS X

Désignation de la pompe

Exemple	NB 32 -125	/140
Gamme ————		
Diamètre nominal de l'orifice de refoulement (DN) Diamètre nominal de la roue [mm]		
Diamètre réel de la roue [mm] —		

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 8/9

Formulaire

Désignation	Formule	Unité
Puissance d'un aérofrigorifère	$P=qm\times(h_S-h_E)$ Avec : $qm:d\acute{ebit}\;massique\;en\;[kg/s]\;;$ $h_S:enthalpie\;sp\acute{ecifique}\;de\;l'air\;en\;sortie\;en\;[kJ/kg]\;;$ $h_E:enthalpie\;sp\acute{ecifique}\;de\;l'air\;en\;entr\acute{ee}\;en\;[kJ/kg].$	[kW]
Débit massique de l'air	$qm = \frac{qv}{v'}$ Avec : $qv : débit \ volumique \ en \ [m^3/h] \ ;$ $v' : volume \ spécifique \ en \ [m^3/kg].$ Rappel : 1 h = 3 600 s	[kg/h]
Température moyenne de surface d'un aérofrigorifère à eau glycolée	$ts_{MS} = \frac{te_{eg} + ts_{eg}}{2}$ Avec : $te_{eg} : temp\'erature d'entr\'ee d'eau glycol\'ee en [°C] ; ts_{eg} : temp\'erature de sortie d'eau glycol\'ee en [°C].$	[°C]
Intensité absorbée	$I = \frac{P_e \times 1000}{U \times \sqrt{3} \times \cos(\phi)}$ Avec: $P_e : \text{puissance \'electrique absorb\'ee en [kW] ;}$ $U : \text{tension du courant \'electrique en [V] ;}$ $\sqrt{3} : \text{constante du r\'eseau triphas\'e ;}$ $\cos(\phi) : \text{facteur de puissance.}$	[A]
Puissance électrique absorbée d'une pompe	$\mathrm{Pa} = \frac{P2}{\eta}$ Avec : P2 : puissance utile en [kW] ; η : rendement en [%].	[kW]

Baccalauréat Professionnel Technicien du Froid et du Conditionnement de l'Air	1706-TFC ST 11	Session 2017	DRess
E1 – Épreuve scientifique et technique Sous-épreuve U11 – Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 9/9