BREVET DE TECHNICIEN SUPERIEUR

ETUDE ET REALISATION D'OUTILLAGES DE MISE EN FORME DES MATERIAUX

E4: CONCEPTION D'OUTILLAGES

Sous-épreuve : U41 - Analyse et conception d'outillages

Durée : 4 heures Coefficient : 2

Aucune documentation autorisée

Contenu du dossier

Dossier technique

Présentation de la pièce	page 1/23
Présentation de l'outillage	page 2/23
Plan pièce	page 3/23
Plan d'ensemble de l'outillage de moulage	page 4/23
Plan de la partie fixe de l'outillage de moulage	page 5/23
Plan de la partie mobile de l'outillage de moulage	page 6/23
Plan du gros chariot de l'outillage de moulage	page 7/23
Nomenclature de l'outillage de moulage	page 8/23
Eléments conception refroidissement	page 9/23
Eléments conception retenue de chariot	page 10-11/23

Dossier question

Texte de l'épreuve pages 12-13-14-15/23

Dossier réponse (documents à rendre avec la copie)

	•
Analyse injection/éjection	page 16/23
Modification du système d'injection	page 17/23
Étude des lignes de joint (contre-dépouilles)	page 18/23
Étude du petit chariot (démoulage)	page 19/23
Étude du gros chariot (démoulage)	page 20/23
Validation du choix de la presse	page 21/23
Étude du refroidissement de l'empreinte mobile	page 22/23
Étude de la retenue du gros chariot	page 23/23

CALCULATRICE AUTORISEE Sont autorisées toutes les calculatrices de poche, y compris les calculatrices programmables alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimantes. Le candidat n'utilise qu'une seule machine sur la table. Toutefois, si celle-ci vient à connaître une défaillance il peut la remplacer par une autre. Afin de prévenir les risques de fraude, sont interdits les échanges de machines entre les candidats, la consultation des notices fournies par les constructeurs ainsi que les échanges d'informations par l'intermédiaire des fonctions de transmission des calculatrices.

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	

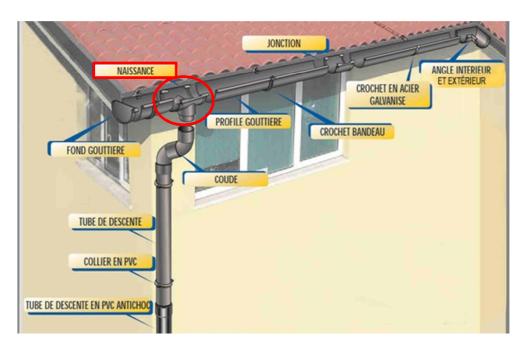
Dossier technique

Documents de 1 à 11

Présentation de la pièce	page 1/23
Présentation de l'outillage	page 2/23
Plan pièce	page 3/23
Plan d'ensemble de l'outillage de moulage	page 4/23
Plan de la partie fixe de l'outillage de moulage	page 5/23
Plan de la partie mobile de l'outillage de moulage	page 6/23
Plan du gros chariot de l'outillage de moulage	page 7/23
Nomenclature de l'outillage de moulage	page 8/23
Eléments conception refroidissement	page 9/23
Eléments conception retenue de chariot	page 10-11/23

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	

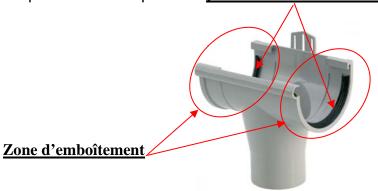
Présentation du sujet


Le produit

La naissance de gouttière NC25 présentée ci-dessous fait partie d'un système d'évacuation des eaux pluviales.

Mise en situation de la naissance NC25

La naissance prend place à l'extrémité de la gouttière, juste au-dessus du tube de descente d'évacuation des eaux pluviales. Elle est en PVC et simplement collée (ou emboîtée) sur le profilé de gouttière. Ces pièces existent avec plusieurs diamètres qui sont fonction de la surface de la toiture.


Matière : PVC-U (NF-EN 607) Structure : Amorphe

> Retrait: 0,3% Densité: 1,40

Mise en œuvre : Injection

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 1/23

Le dossier présente l'outillage de mise en forme permettant d'obtenir la pièce qui sera utilisable après la mise en place du **joint d'étanchéité en caoutchouc**.

Outillage d'injection sous pression

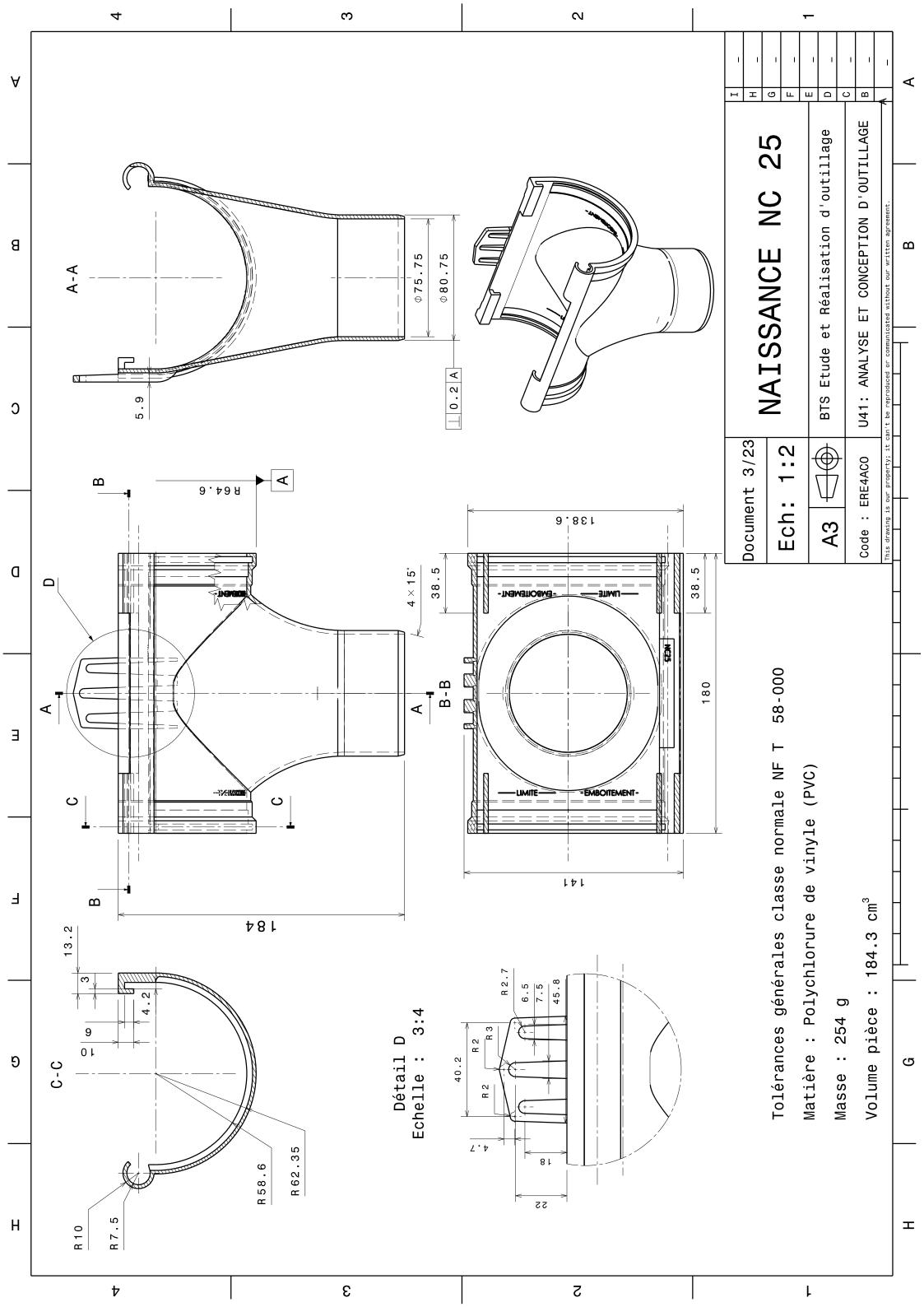
Moulage sous pression une empreinte.

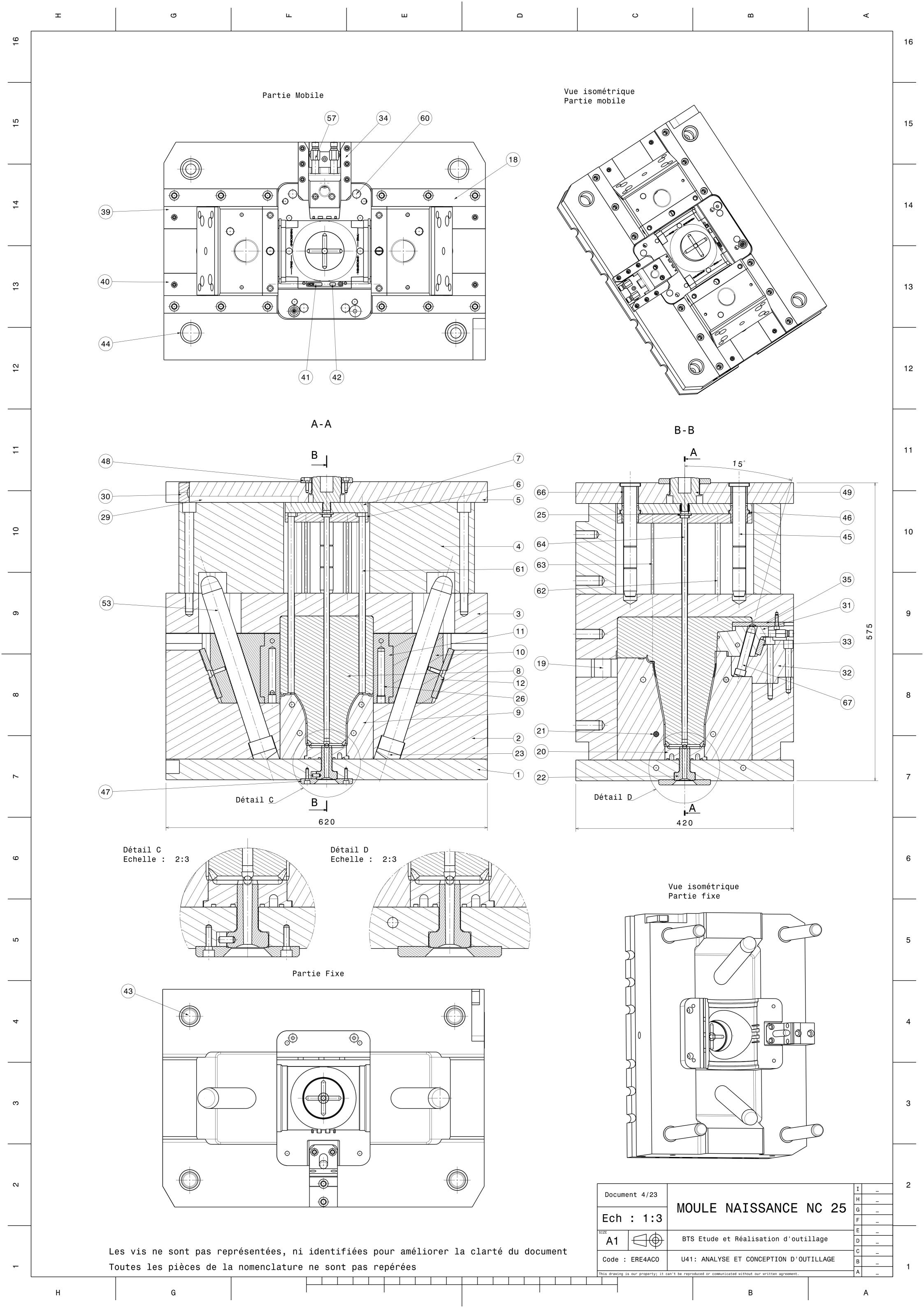
Démoulage par tiroirs et batterie.

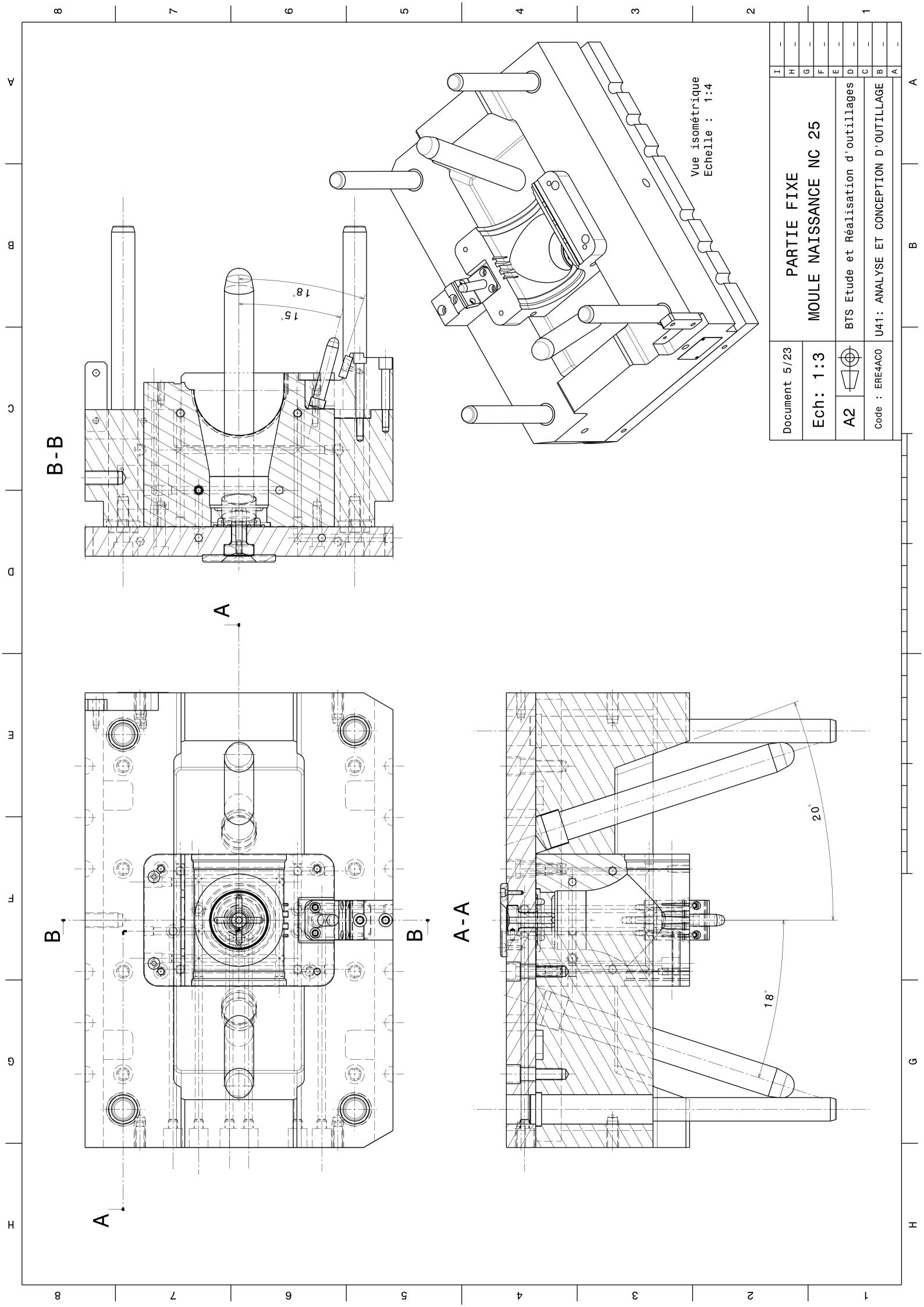
T° de moulage : 190° C / T° du moule : 60°.

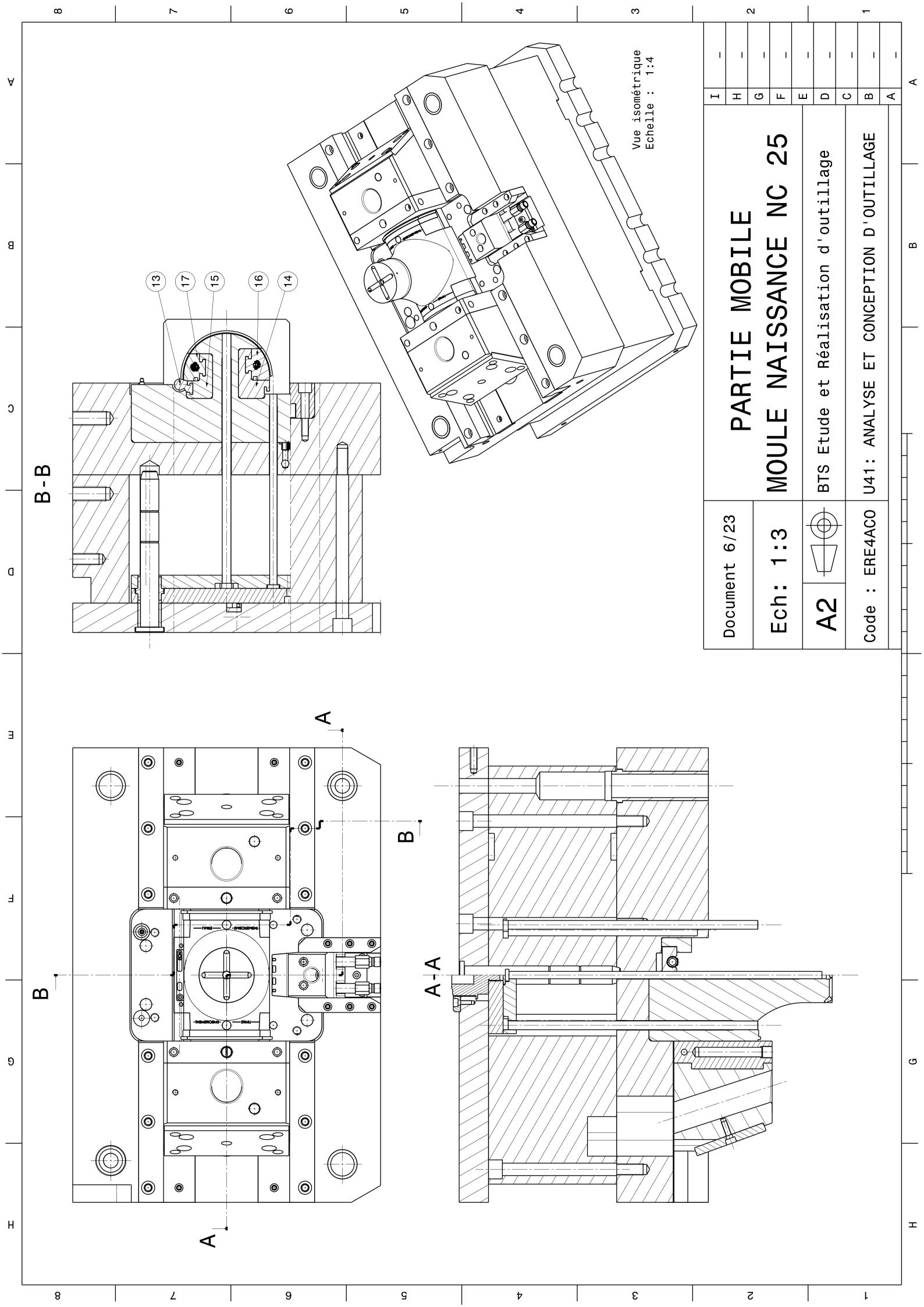
Pression d'injection : 120 MPa / Pression de maintien : 100 MPa.

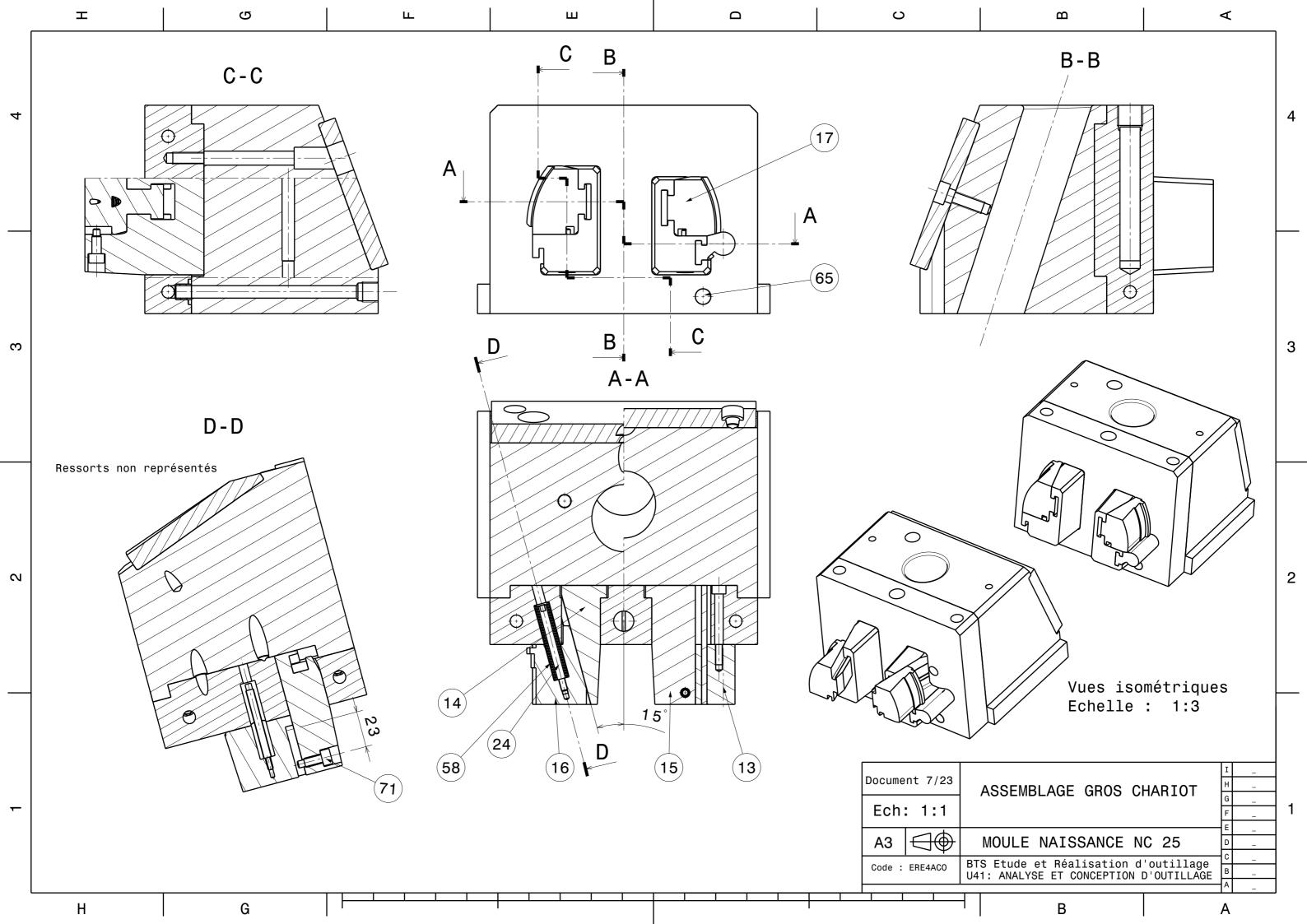
Dépouille côté éjection 1,5 °, côté fixe 2°.

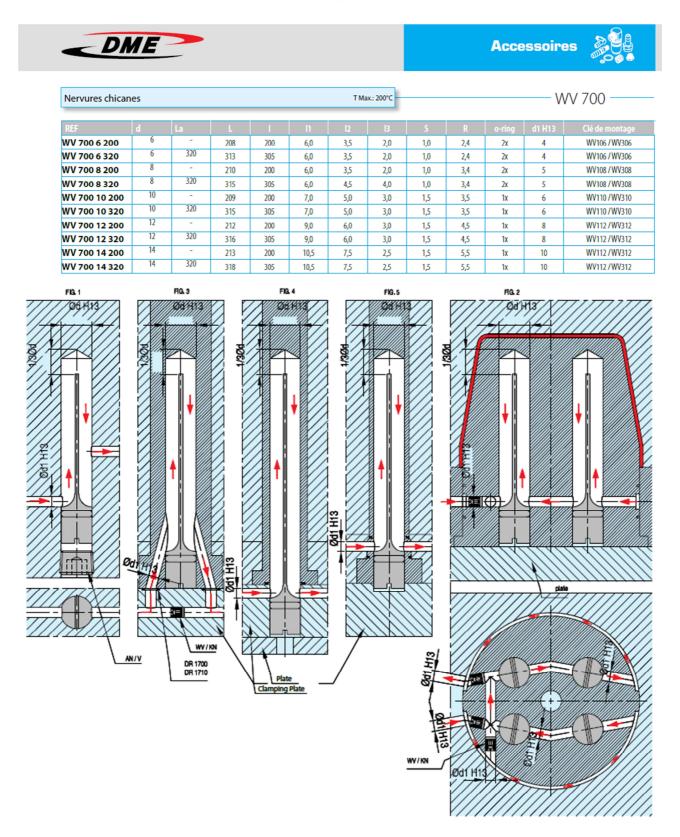

Production: 100 000 injections/an.


Machine de transformation : Presse NEGRI BROSSI V320 EUROMAP 2920


NEGRI BOSSI


Caratteristiche tecniche Technical data Caractéristiques techniques Caracteristicas tecnicas				2100			2920			
Classificazione - Classification Classification - Denominacion	Euromap	32	00	32	00H - 21	00	3200H - 2920			
Diametro vite - Screw diametre Diamètre de la vis - Diametro husillo	mm	52	60	70	60	70	80	70	80	90
Rapporto L/D - Screw L/D ratio Rapport L/D - Relacion L/D husillo	n°	23	20	20	20	20	17,5	20	20	17,5
Volume iniezione calcolato - Theoretical injection capacity Volume d'injection théorique - Volumen inyeccion	cm ³	660	880	1200	880	1190	1560	1385	1810	2290
Capacità iniezione PS - Shot weight PS Poids injectable PS - Capacidad inyeccion PS	g	600	800	1090	800	1080	1420	1260	1645	2080
Portata di iniezione - Injetion rate Debit d'injection - Capacidad inyeccion	cm ³ /s	180	240	325	240	325	420	345	450	570
Pressione max. sul materiale - Max. pressure on material Pression maxi. sur la matière - Màx. presiòn sobre el material	bar	2440	1840	1350	2390	1755	1350	2100	1615	1280
Coppia sulla vite - Screw torque Couple vis - Max torsion sobre el husillo	Nm		1550			2000			3150	
Giri vite - Screw speed Vitesse rotation - Velocidad rotacion husillo	min ⁻¹		250			250			210	
Capacità di plastificazione PS - Plasticising capacity PS Capacite de plastification PS - Capacidad plastification PS	g/s	50	57	73	53	70	80	70	85	100
Zone riscaldamento cilindro - Barrel heating zones Zone de chauffe cylindre - Zonas calefacción cilin.plastificación	n°	4	4	5	4	5	5	5	5	5
Potenza riscaldamento - Heating capacity Puissance chauffage - Potencia calefaccion	kW	25	25	27	25	27	27	27	31	31
Forza appoggio ugello - Nozzle contact force Force d'appui du buse - Fuerza de appoyo boquilla	KN	63	63	63	82	82	82	134	134	134
Forza di chiusura - Clamping force Force de fermeture - Fuerza de cierre KN		3200			3200			3200		
Forza di ritenuta - Locking force Force de retenue - Fuerza de bloqueo	KN	3400		3400			3400			
Corsa di apertura max stampo - Mould max.opening stroke Course ouverture a min.moule - Carrera de apertura a min.molde	mm		630			630			630	
11.7										


BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 2/23



MOULE D'INJECTION : NAISSANCE NC25

Rep	Qté	Désignation	Matière	Observations	Rep	Qté	Désignation	Matière	Observations
1	1	Semelle fixe	C45		37	6	Bague régulation 2	CuSn12	
2	1	Plaque porte-empreinte fixe	40CrMnMoS8		38	1	Plaquette identification	Tôle	
3	1	Plaque porte-empreinte mobile	40CrMnMoS8		39	2	Pattin 1	40CrMnMoS8	TF1+AB1 (1100 Mpa)
4	1	Plaque tasseau	C45		40	2	Pattin 2	40CrMnMoS8	TF1+AB1 (1100 Mpa)
5	1	Semelle mobile	C45		41	1	Pavé gravure client	ADINOX41 VAR	
6	1	Plaque éjection	C45		42	1	Pavé gravure CE	ADINOX41 VAR	
7	1	Contre-plaque éjection	C45		43	4	Colonne	GR 671-32-250-160	
8	1	Empreinte mobile	ADINOX41 VAR		44	4	Bague	GR 1071-32-125	
9	1	Empreinte fixe	ADINOX41 VAR		45	2	Colonne d'éjection	GR 601-25-220	
10	2	Gros chariot	40CrMnMoS8	TF1+AB1 (1100 Mpa)	46	2	Bague d'éjection	GR 1001-25-16-32	
11	2	Face gros chariot	ADINOX41 VAR		47	1	Rondelle fixe	GR 627-100	
12	2	Plaquette verrou gros chariot	40CrMnMoS8	TF1+AB1 (1100 Mpa)	48	1	Rondelle mobile	GR 605-100	
13	2	Pavé (rond)	ADINOX41 VAR		49	1	Attelage d'éjection	GR 412-16-150	
14	2	Support rampe (carre)	ADINOX41 VAR	TENIFER QPQ	50	11	Bouchon à frapper	Koenig	MB600 ø12
15	2	Support rampe (rond)	ADINOX41 VAR	TENIFER QPQ	51	6	Bouchon conique	GR-1016	
16	2	Rampe (carre)	X5CrNiCuNb16-4	TF1+AB1 (1100 Mpa)	52	8	Coupleur rapide	DME N9-1/4A	
17	2	Rampe (rond)	X5CrNiCuNb16-4	TF1+AB1 (1100 Mpa)	53	2	Doigt de démoulage (Grand chariot)	GR 602-40-355	
18	4	Glissière gros chariot	40CrMnMoS8	TF1+AB1 (1100 Mpa)	54	4	Décolleur	GR 395-10	
19	1	Barette fermeture	C45		55	12	Joint Viton R10	Le joint français	
20	1	Fond de matrice	ADINOX41 VAR		56	1	Dateur	DME MD****	
21	3	Bouchon dérivation	CuSn12	ø10x12	57	6	Allonge régulation	DME EJP-3524	
22	1	Buse indexée	X5CrNiCuNb16-4	UGIMA	58	4	Ressort	GR 355-5,5-50	
23	2	Entretoise doigt	C45		59	4	Ressort	GR 355-10-76	
24	4	Guide ressort	C45		60	4	Rappel d'éjecteur ø16	GR 628-16-315	
25	1	Rondelle éjecteur	C45		61	2	Ejecteur pièce ø12	GR 628-12-400	
26	2	Lame régulation 1	CuSn12	86x13x2	62	2	Ejecteur pièce ø10	GR 628-10-315	
27	2	Lame régulation 2	CuSn12	211x15x2	63	2	Ejecteur pièce ø5	GR 628-5-315	
28	2	Lame régulation 3	CuSn12	136x15x2	64	1	Ejecteur carotte ø10	GR 628-10-500	
29	1	Support contacteur	C45		65	2	Ejecteur maintien chariot	GR 628-10-100	
30	1	Support prise	C45		66	2	Bague frettée éjection	GR 1006-25-34	
31	1	Petit chariot	X5CrNiCuNb16-4	UGIMA	67	1	Doigt de démoulage (petit chariot)	GR 602-16-100	
32	1	Coin verrou	40CrMnMoS8		68	2	Centreur	GR 611-16	
33	1	Plaquette verrou petit chariot	40CrMnMoS8	TF1+AB1 (1100 Mpa)	69	1	Détecteur	Turck	
34	2	Glissière petit chariot	40CrMnMoS8	TF1+AB1 (1100 Mpa)	70	1	Connecteur	JAEGER	
35	1	Patin petit chariot	40CrMnMoS8	TF1+AB1 (1100 Mpa)	71	4	Vis CHC à Téton long M6- 16	X5 Cr Ni 18 -10	ISO 4028
36	4	Bague régulation 1	CuSn12				-		

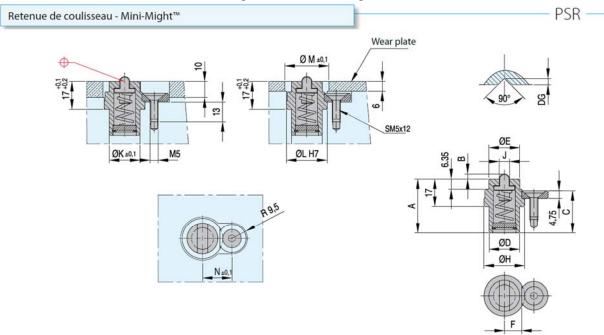
BTS ETUDE ET REALISATION D'OUTILLAGES SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE | Code : ERE4ACO | Page 8/23

Eléments de conception système de refroidissement

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 9/23

Eléments de conception de retenue chariot (coulisseau) (P1)

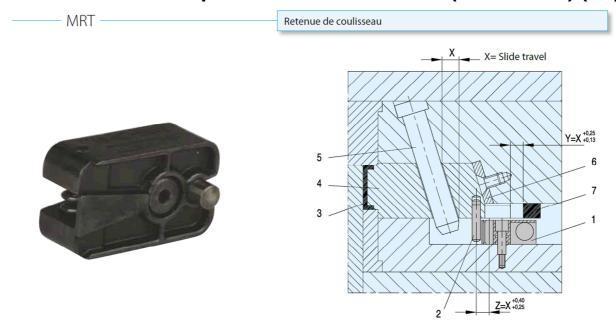
Retenues de coulisseau


Info PSR-PSM-MRT-SRTM

Les retenues de coulisseau **DME** constituent une solution de retenue de coulisseau compacte et économique qui rend obsolètes les méthodes encombrantes du type hydraulique ou à ressort externe. L'interférence avec les colonnes de machine ou les barrières de sécurité ne pose plus de problème.

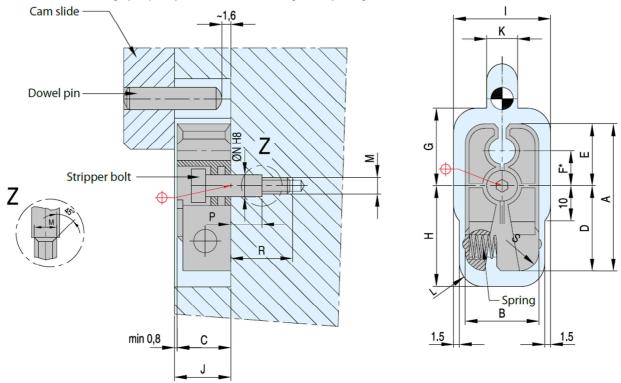
Disponibles en trois dimensions avec capacité croissante de poids, les retenues de coulisseau peuvent s'utiliser individuellement ou à plusieurs pour les coulisseaux plus larges ou plus lourds. Disponibles en 3 types :

- MRT: la goupille cylindrique installée dans le coulisseau se verrouille dans la retenue jusqu'au moment du dégagement en raison de la fermeture du moule. Avec une amorce généreuse de l'ouverture de la douille de sorte que la goupille cylindrique entre dans la douille même en cas de faible désalignement entre la retenue et la colonne.
- PSM: semblable à MRT, mais le ressort est totalement encastré et protégé contre la contamination.
- **PSR:** fonctionne sans goupille cylindrique de sorte à pouvoir retirer le coulisseau sans enlever la retenue de coulisseau. Dimension réduite, mais pouvoir de retenue important.


REF						ini-Migl			Poids maxi du coulisseau Kg	DG mm		Dimensions poche				
				D												
PSR 1000	27,43	1,83	20,20	15,75	16	9,52	22	17,5	4,4	2,3	15,87	22	24	17,0		
PSR 2000	33,53	3,07	26,30	18,8	19	10,67	25	21,5	8,8	3,9	19,05	25	27	18,2		
PSR 4000	32,00	3,78	24,76	22,1	22	11,86	28	31,5	17,6	4,9	22,23	28	30	19,4		

Dimension réduite, mais pouvoir de retenue important Conception facilitant le montage Le coulisseau peut être enlevé sans démonter sa retenue Conception système autonome Engagement par ligne de contact Trois taux de retenue : 44, 88 et 176 Newton Max. 120°C

Instruction d'installation


BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 10/23

Eléments de conception de retenue chariot (coulisseau) (P2)

REF					Poches de retenue dans le moule						Poids maxi du							
NEF																		coulisseau (kg)
MRT-10M	38	19	16	22	16	9,1	5	19	26	25	17	8	8	M5	6	6	15,5	10
MRT-20M	54	32	20	33	21	12,7	6	24	36	36	21	10	10	M6	8	8,5	20,5	20
MRT-40M	86	45	30	53	53	20,3	10	36	56	56	31	12	13	M8	10	10	25,0	40

*La distance entre le centre de la goupille cylindrique et le centre de la vis de blocage est à respecter rigoureusement

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 11/23

Dossier questions

Documents de 12 à 15

A - Injection - Ejection	page 12/23
B - Analyse du démoulage	page 13/23
C - Validation du choix de la presse	page 14/23
D - Conception	page 15/23

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	

Texte de l'épreuve

Documents à consulter : 1/23 à 11/23 pour les questions A, B, C et D

A - Injection - Ejection

A partir des documents **4/23** à **8/23**, on se propose d'analyser l'outil existant, pour déterminer les traces laissées par l'outillage sur la pièce afin d'obtenir la validation du client.

A-1 Analyse de l'injection

Sur le document réponse 16/23

- **A-1.1** Identifiez en bleu, sur les deux vues en coupe partielle, le cheminement de la matière.
- **A-1.2** Identifiez en bleu, sur les deux vues en perspective, les zones d'injection.
- **A-1.3** Indiquez le type de seuil d'injection utilisé. Justifiez ce choix.

Sur le document réponse 17/23

L'arrivée de la matière se fait entre la partie fixe (buse, fond de matrice) et la partie mobile (empreinte mobile). Le canal cylindrique d'alimentation est réparti symétriquement entre ces pièces, ceci impose l'indexation des pièces.

- **A-1.4** Sur quelle(s) pièce(s) sont réalisées ces indexations, expliquez les solutions retenues.
- **A-1.5** Ces indexations sont à l'origine d'un surcoût de l'outillage. Une autre solution pour la section des canaux, respectant le débit matière, peut être envisagée.

Pour cela suivez la démarche suivante :

- **a.** Identifiez et calculez la section actuelle d'un canal.
- **b.** Déduisez les dimensions de la nouvelle section que vous proposez.
- **c.** Représentez votre solution, sur les trois vues en détail.

A-2 Analyse de l'éjection

Sur le document réponse 16/23

- **A-2.1** Repérez en vert, sur les deux vues en perspective, les zones d'éjection sur la pièce.
- **A-2.2** Certains de ces éjecteurs sont orientés. Justifiez ce choix.

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 12/23

B - Analyse du démoulage

A partir des documents 3/23 à 8/23, on se propose d'étudier les déplacements de l'outil ainsi que les caractéristiques nécessaires au démoulage.

B-1 – Analyse des formes de la pièce

Sur le document réponse 18/23

- **B-1.1** Sur au moins une des vues 2D, tracez la Direction Principale de Démoulage par des vecteurs verts nommés DPD.
- **B-1.2** Il existe plusieurs zones en contre-dépouille. Sur les vues 2D, identifiez par des hachures de couleurs différentes ces zones.
- **B-1.3** Sur les vues en perspective, tracez en bleu la ligne de joint principale et en rouge les lignes de joint auxiliaires (chariots).
- **B-2** Analyse du démoulage de la forme réalisée par le petit chariot

Sur le document réponse 19/23

- **B-2.1** Tracez la course réelle du petit chariot lors de l'ouverture complète du moule. En déduire sa valeur.
- **B-2.2** La course est-elle compatible avec les dimensions de la pièce ? Justifiez votre réponse.
- **B-3** Analyse du démoulage des formes réalisées par le gros chariot (Doc. 3/23 à 8/23)

La course minimale d'ouverture du moule permettant de libérer les gros chariots des doigts de démoulage est de 215 mm.

B-3.1 –L'inclinaison du doigt de démoulage du gros chariot étant de 18°, la course est-elle compatible pour le démoulage de la contre-dépouille liée à l'emboîtement de la gouttière ? Justifiez votre réponse.

Sur le document réponse 20/23

- **B-3.2** Sur les perspectives, identifiez par une couleur différente chaque groupe fonctionnel.
- **B-3.3** Sur la coupe A-A, indiquez le(s) mouvement(s) relatif(s) entre ces groupes.
- **B-3.4** A l'aide du document **7/23**, donnez le rôle des ressorts **58**. En déduire le rôle des butées **71**.

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 13/23

- B-3.5 Relevez sur le document 7/23 la course de la rampe carrée 16.
- **B-3.6** A l'aide de cette course, représentez sur la coupe A-A la rampe ronde **17** sortie.
- **B-3.7** La course est-elle compatible pour le démoulage de la contre-dépouille liée à la gorge servant à la mise en place du joint ? Justifiez votre réponse.

C- Validation du choix de la presse

A partir des documents 3/23 à 8/23, on se propose d'étudier les efforts s'exerçant dans le moule afin de valider le choix de la presse.

Sur le document réponse 21/23

- C-1 Analyse des efforts sur le plan de joint
 - **C-1.1** Déterminez la surface projetée sur le plan de joint, sur laquelle s'exerce la pression, à 5% près.
 - **C-1.2** En déduire l'effort s'exerçant sur le plan de joint.
- C-2 Analyse des efforts sur les chariots

La surface sur laquelle s'exerce la pression sur le petit tiroir est estimée à 652 mm².

- **C-2.1** Calculez l'effort s'exerçant sur le petit chariot.
- **C-2.2** Déduisez la composante de cet effort sur le plan de joint.
- **C-2.3** L'effort s'exerçant sur un gros chariot est de 175200N, déterminez la composante de l'effort dû aux gros chariots s'exerçant sur le plan de joint.
- C-3 Validation de la presse
 - **C-3.1** Déduisez des questions précédentes l'effort total qui tend à ouvrir le moule. La presse choisie est-elle compatible ? Justifiez.

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 14/23

D – Conception

D-1 – Validation du système de refroidissement

Afin d'assurer un moulage correct de la pièce, il faut un refroidissement régulier sur la hauteur de l'empreinte mobile.

Sur le document réponse **22/23**, à l'aide des documents constructeurs fournis (document **9/23**), proposez un circuit de refroidissement compatible.

Nota : deux circuits peuvent être envisagés ; l'utilisation des éléments standards proposés n'est pas obligatoire.

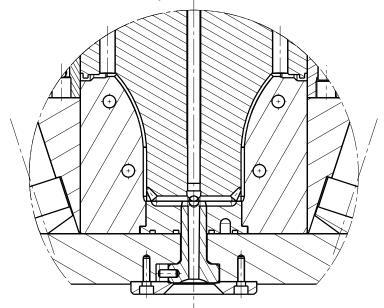
D-2 – Maintien en position du gros tiroir

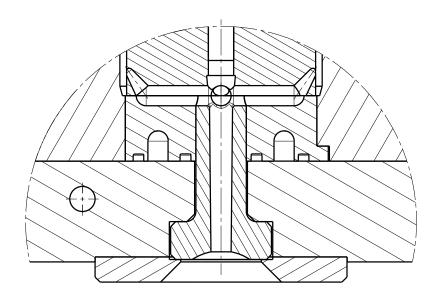
La course d'ouverture du moule impose une sortie complète du doigt de démoulage du gros tiroir. Il faut assurer le maintien en position de celui-ci, lors de l'ouverture du moule.

Sur le document réponse 23/23, à l'aide des documents constructeurs fournis (document 10/23 et 11/23), proposez une solution répondant à ce besoin.

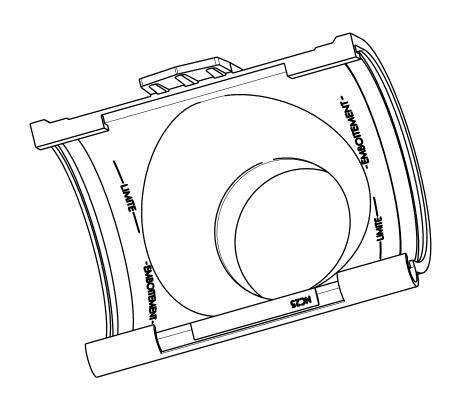
BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	Page 15/23

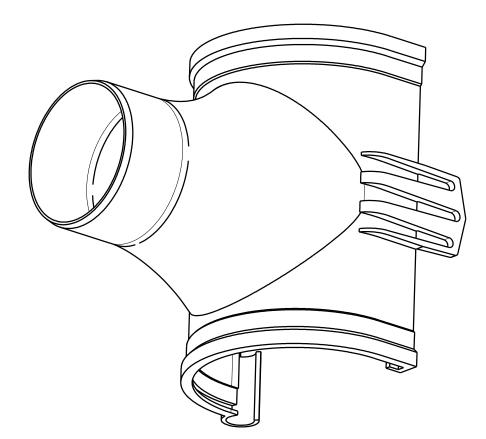
Dossier répo	nses
--------------	------


(Documents à rendre avec la copie)

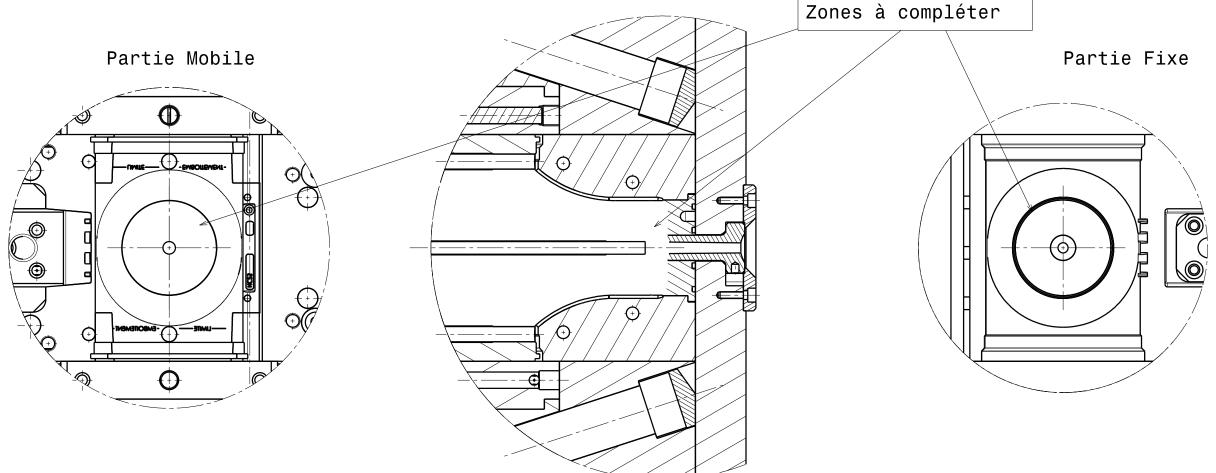

Analyse injection/éjection	page 16/23
Modification du système d'injection	page 17/23
Étude des lignes de joint (contre-dépouilles)	page 18/23
Étude du petit chariot (démoulage)	page 19/23
Étude du gros chariot (démoulage)	page 20/23
Validation du choix de la presse	page 21/23
Étude du refroidissement de l'empreinte mobile	page 22/23
Étude de la retenue du gros chariot	page 23/23

BTS ETUDE ET REALISATION D'OUTILLAGES	SUJET	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	Code : ERE4ACO	


A- Injection-Ejection


A-1.1: Vue en coupe partielle du cheminement de la matière

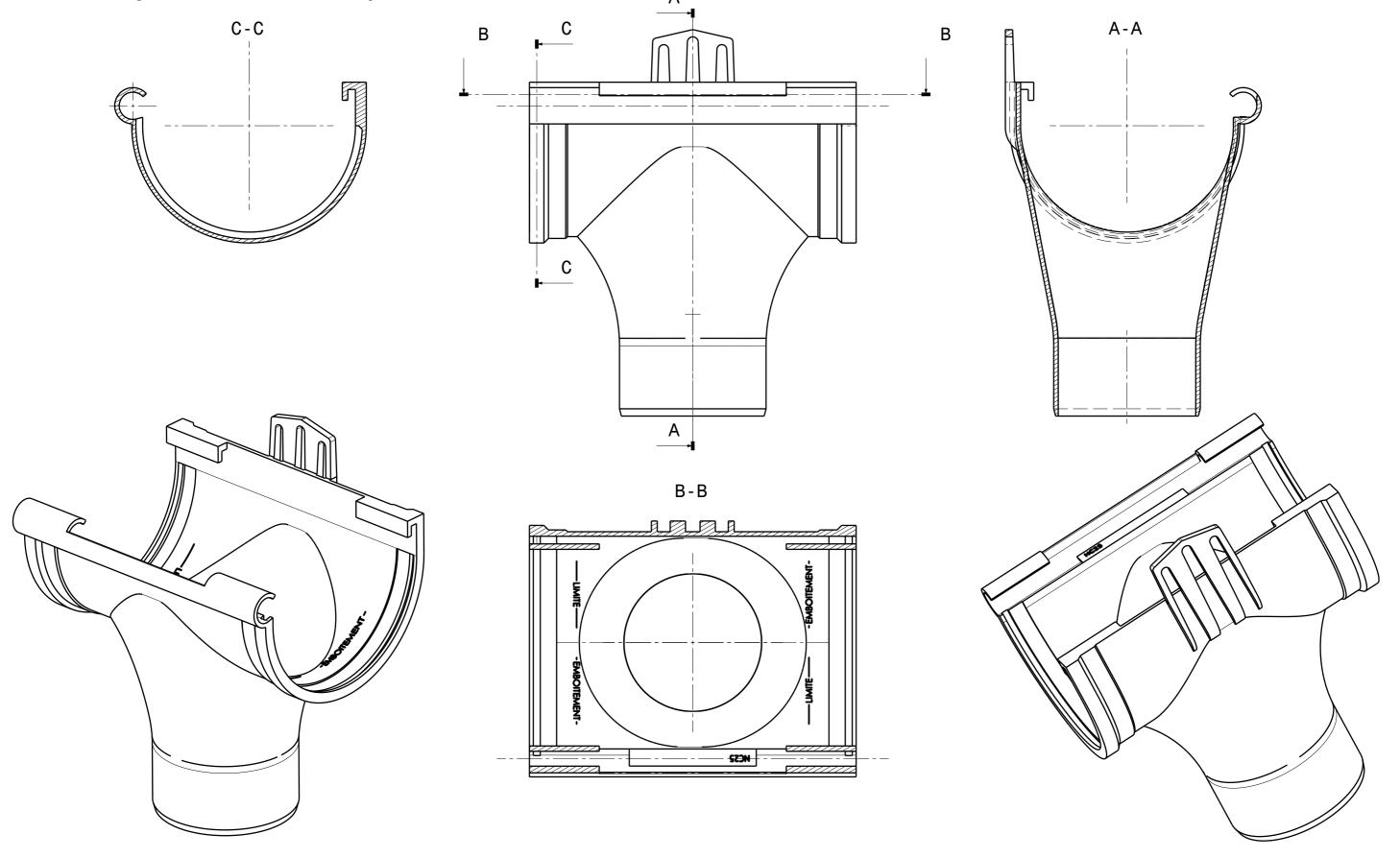
A-1.2: Zones d'injection et A-2.1: Zones d'éjection



A - '	1.	3	:	Ι	nc	lic	qu	ez]	Le	t	уp	е	d	le	S	eι	ιi	1	d	! ':	in	ij	ec	t	io	n	u	ti	il	is	sé	•	J	us	t:	if	ie	Z	С	е	С	ho	ì	Χ.						
	•			•	• •	• •		• •		٠.				•		•	• •	•	• •	•		•		•	• •	•		•		•	• •		•		•		•			•		٠.	•		•	 •	 • •	•	 •	 •	•
A - 2	2.	2	:	C	er	`ta	aiı	ns	C	e	С	es	6 (éj	e	ct	eι	ır	S	S	01	٦t	(or	ì(en	té	és		J	us	st	if	i	ez	. (се	(h	Эi	Χ.	ı									
															•						•															•										 					

BTS ETUDE ET REALISATION D'OUTILLAGES	Injection/Ejection	Document Réponse	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	NAISSANCE NC25	Code : ERE4ACO	Page 16/23

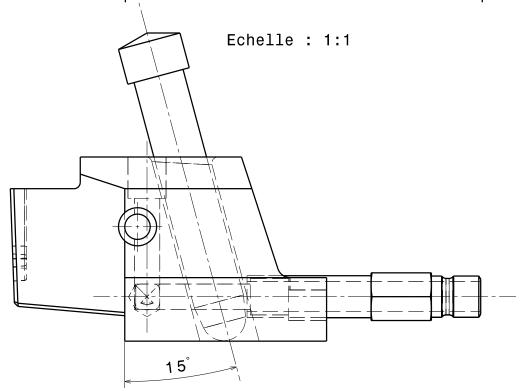
A- Injection-Ejection


. , ,	pièce(s) sont réalisées ces	• •		
A-1.5: Autre solution a : Section actuel	n pour l'arrivée de la matière	e :		
b : Nouvelle sect	ion			
c : Représentation	n de la solution	A-A	Zones à compléter	
Par	rtie Mobile		Zones a completel	Partie Fixe

Ech : 1:3

BTS ETUDE ET REALISATION D'OUTILLAGES	Conception Injection	Document Réponse	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	NAISSANCE NC25	Code : ERE4ACO	Page 17/23

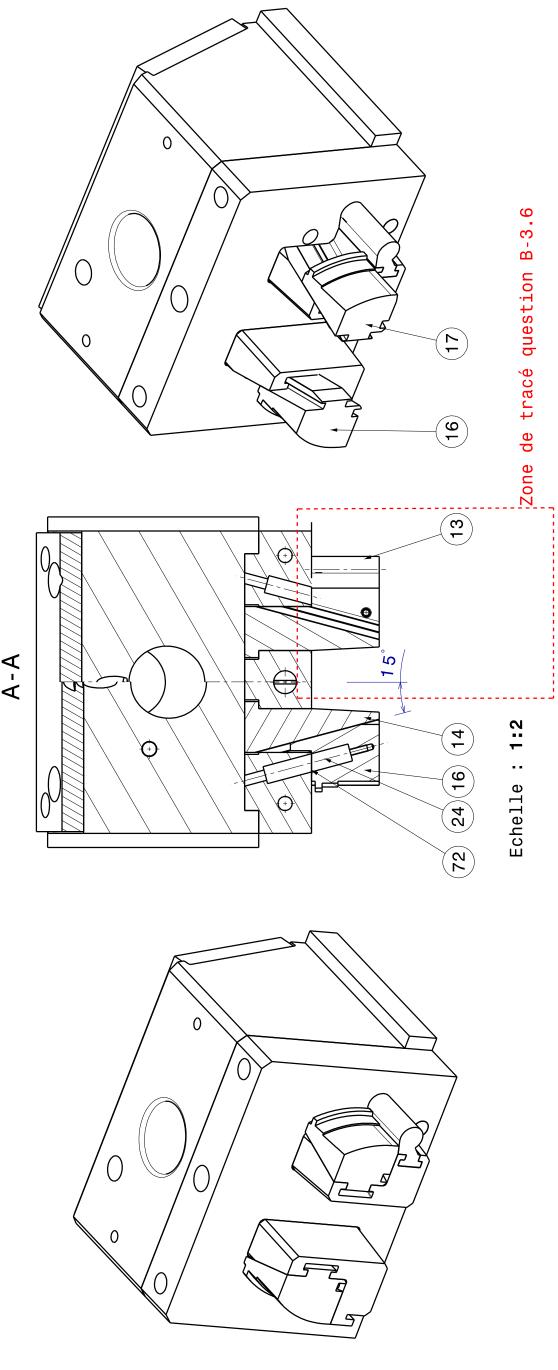
B- Analyse du démoulage B-1: Analyse des formes de la pièce



BTS ETUDE ET REALISATION D'OUTILLAGES	Contre-dépouilles	Document Réponse	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	NAISSANCE NC25	Code: ERE4ACO	Page 18/23

B- Analyse du démoulage

B-2: Analyse du démoulage de la forme réalisée par le petit chariot


B-2.1: Tracez la course réelle du petit chariot lors de l'ouverture complète du moule.

En deduire sa valeur					
B-2.2: La course est Justifiez votre répo	-elle compatible a				
B-3 — Analyse du démo	oulage des formes	réalisées pa	r le gros cha	riot	
B-3.1: Sachant que l' course est-elle compa de la gouttière ? Jus	atible pour le dém stifiez votre répo	oulage de la nse.	contre-dépou	ille liée à :	l'emboîtement
	BTS ETUDE ET REALISATI	ON D'OUTILLAGES	Démoulage	Document Réponse	SESSION 2017
	U41 : ANALYSE ET CONCEF	TION D'OUTILLAGE	NAISSANCE NC25	Code : ERE4ACO	Page 19/23

B- Analyse du démoulage

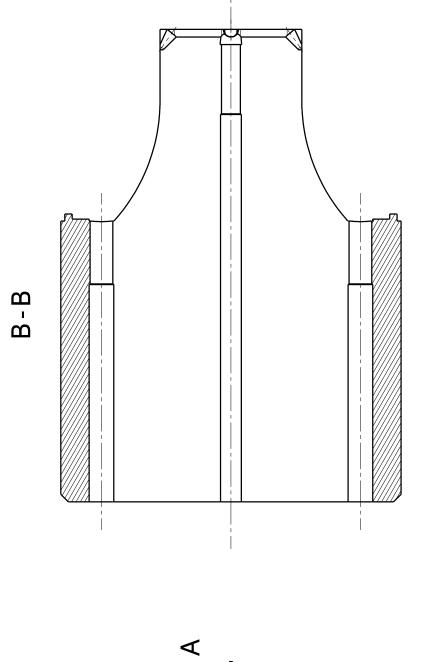
B-3 — Analyse du démoulage des formes réalisées par le gros chariot

B-3.4: Donner le rôle du ressort repéré 58. En déduire le rôle de la butée (vis à téton long M6). B-3.5: Relevez sur le document 7/23 la course de la rampe carrée 16.

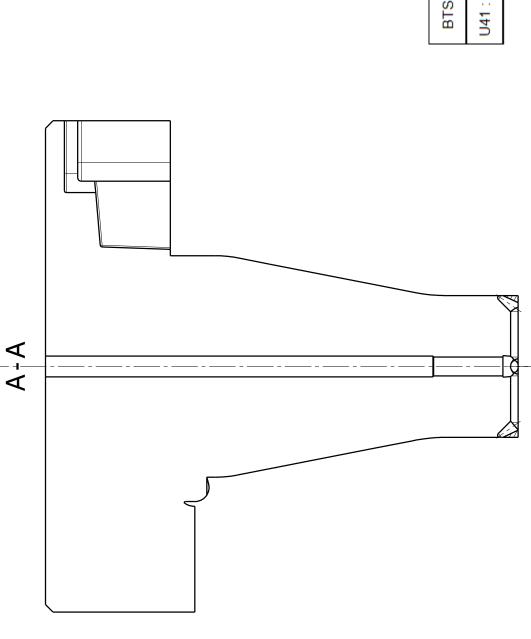
la mise en place du joint رم م à la gorge servant B-3.7: La course est-elle compatible pour le démoulage de la contre-dépouille liée Justifiez votre réponse.

BTS ETUDE ET REALISATION D'OUTILLAGES	Démoulage	Document Réponse SESSION 2017	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE NAISSANCE NC25 Code : ERE4ACC	NAISSANCE NC25	Code: ERE4ACO	Page 20/23

C- Validation du choix de la presse


C-1 — Analyse des efforts sur le plan de joint
C-1.1 — Déterminez la surface projetée sur le plan de joint.
C-1.2 — En déduire l'effort s'exerçant sur le plan de joint.
C-2 — Analyse des efforts sur les chariots
C-2.1 — Calculez l'effort s'exerçant sur le petit chariot.
C-2.2 — Déduisez la composante de cet effort sur le plan de joint.
C-2.3 — Déterminez la composante de l'effort dû aux gros chariots s'exerçant sur le plan de joint.
te plan de joint.
C-3 — Validation de la presse
C-3.1 — Déduisez des questions précédentes l'effort total qui tend à ouvrir le moule. La presse choisie est-elle compatible ? Justifiez.

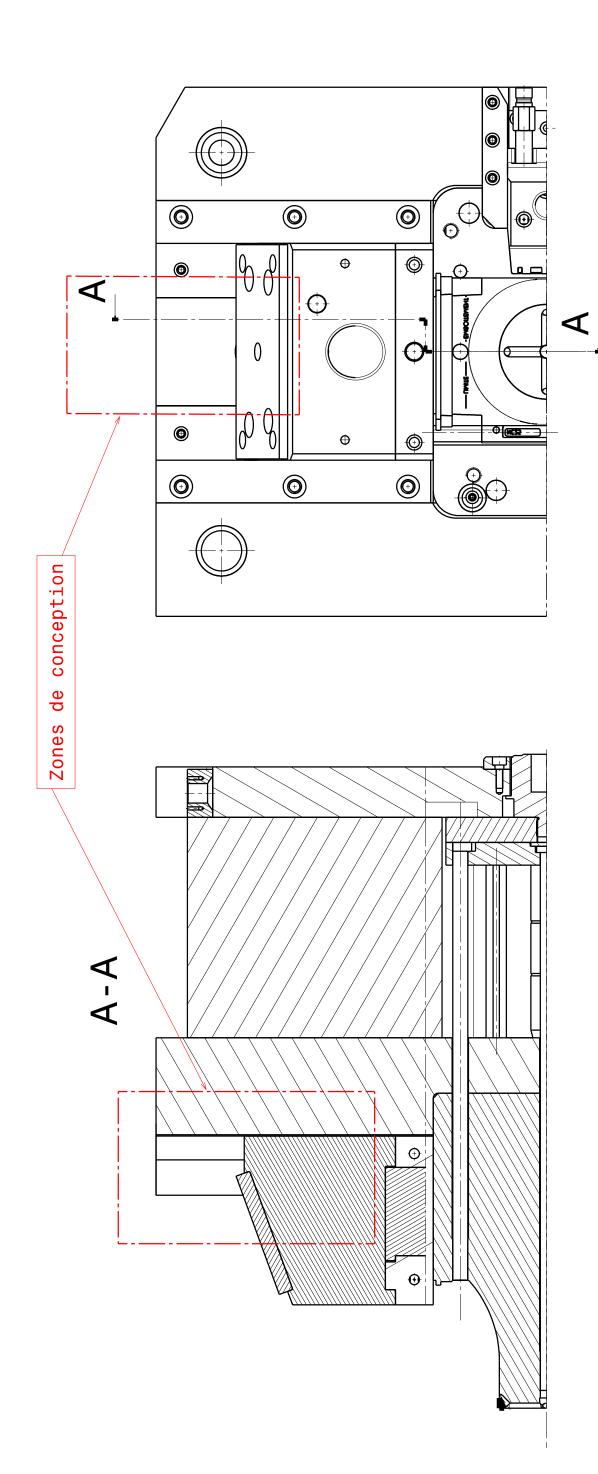
BTS ETUDE ET REALISATION D'OUTILLAGES	Choix de la presse	Document Réponse	SESSION 2017
U41 : ANALYSE ET CONCEPTION D'OUTILLAGE	NAISSANCE NC25	Code : ERE4ACO	Page 21/23


D-1 — Validation du système de refroidissement ${\bf B}$

 \bigoplus

4

Echelle: 1:2



മ

Page 22/23	Code: ERE4ACO	NAIS SANCE NC25	U41 : ANALYSE ET CONCEPTION D'OUTILLAGE NAISSANCE NC25 Code : ERE4ACO
SESSION 2017	Document Réponse	Refroidissement	BTS ETUDE ET REALISATION D'OUTILLAGES

D - Conception

D-2 — Maintien en position du gros tiroir

Echelle: 1:3

117	9
SESSION 20	Page 23/23
Document Réponse	Code: ERE4ACO
Retenue gros tiroir	NAISSANCE NC25
BTS ETUDE ET REALISATION D'OUTILLAGES Retenue gros tiroir Document Réponse SESSION 2017	U41 : ANALYSE ET CONCEPTION D'OUTILLAGE NAISSANCE NC25 Code : ERE4ACO