BREVET DE TECHNICIEN SUPÉRIEUR

CONSTRUCTIONS METALLIQUES SESSION 2016

E4 : Analyse et Calcul des structures

U4.2 Note de calculs

Durée: 4h - Coefficient: 3

Contenu du dossier

1 page de garde 1/17

3 pages de sujet 2 à 4/17

2 pages d'annexes 5 et 6/17

11 pages de documents réponses 7 à 17/17

Barème indicatif

1 / 2 points

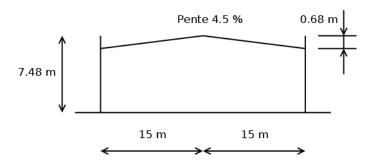
2/6 points

3/2 points

4/4 points

5 / 6 points

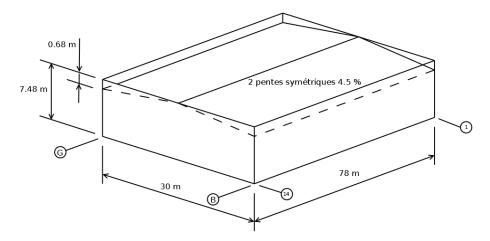
Recommandations


Les 5 parties sont indépendantes

Les 11 documents réponses sont à rendre avec votre copie classés dans l'ordre même si vous n'avez apporté aucune réponse.

CODE ÉPREUVE :	EXAMEN : BREVET DE TECHNICIEN SUPÉRIEUR			SPÉCIALITÉ : Constructions Métalliques		
SESSION 2016	SUJET	ÉPR	REUVE : U4	1 .2 Note de calculs		Calculatrice autorisée
Durée : 4 h	Coefficien	t : 3		SUJET N°	Pa	ige: 1/17

1. Action de la neige


On donne le schéma simplifié suivant en coupe sur portique courant (travées n° 2 à 13)

- 1-1 Compléter le document réponse 1/1 page 7
- 1-2 Compléter le document réponse 2/1 page 8 pour le/les cas de neige uniformément répartie
- 1-3 Compléter le document réponse 3/1 page 9 pour le/les cas de neige redistribuée

2. Action du vent

On donne la vue schématique du bâtiment en perspective pour l'ensemble des questions concernant le vent.

2-1 Action du vent

Compléter le document réponse 1/2 page 10 afin de déterminer q_o(z)

2-2 Vent sur pignon travée 14

2-2-1 Action sur les parois verticales

- a) Compléter le document réponse 2/2 page 11 en faisant apparaître :
- les zones A, B, C D et E
- les valeurs de c_{pe10} pour les zones A, B, C D et E et les reporter sur la vue en précisant le sens (surpression/dépression). On donne $c_{pe10,D}$ comme exemple.
- b) Compléter le document réponse 2/2 page 11 en donnant les longueurs des zones A, B et C.
- c) Calculer c_{pe} moyen sur le long pan.

2-2-2 Actions intérieures

On considère que les longs pans files B et G ainsi que le pignon travée 1 sont fermés. Le pignon travée 14 est ouvert, l'ouverture étant constituée de 3 portes sectionnelles de 3 x 4 m soit une ouverture totale de 36 m². On considère que la perméabilité de fond est de 0.1 % de l'aire de la face.

- a) Montrer que le pignon 14 est une face dominante.
- **b)** Lorsque ce pignon 14 est au vent déterminer c_{pi}.
- c) En considérant un coefficient c_{pe} moyen sur les longs pans $c_{pe,moyen}$ =-0.57, une pression dynamique de pointe $q_p(z)$ =0.593 KN/m² et c_{pi} =+0.63 (ces valeurs ne sont pas forcement les résultats des questions précédentes) quelle est la charge linéique totale de vent sur un poteau de portique.

EXAMEN : BTS Constructions Métalliques - Épreuve : U4.2 Note de calculs- Sujet N°- page : 2/17

- 2-3 Vent sur long pan file G, toiture avec les deux versants en dépression
 - a) Compléter le document réponse 3/2 page 12 en faisant apparaître :
 - les zones F, G, H et I
 - les valeurs de c_{pe10} pour les zones F, G, H et I et les reporter sur la vue en précisant le sens. On donne $c_{pe10,F}$ comme exemple.
 - **b)** Déterminer la valeur de c_{pe,net} sur l'acrotère au vent.

3. Combinaisons

On fait l'hypothèse des charges suivantes sur la couverture (sans rapport avec les guestions précédentes).

- Charge de neige uniformément distribuée S₁=0.54 KN/m²
- Charge de neige accidentelle Sa=0.8 KN/m²
- Charge de vent soulèvement W₋=0.5 KN/m²
- Poids propre de la couverture + isolation + structure G=0.4 KN/m²

Pour la couverture seule :

- 3-1 Déterminer la/les combinaisons ELU relatives au soulèvement et en déduire la plus défavorable
- 3-2 Déterminer la/les combinaisons ELS relatives aux charges descendantes et en déduire la plus défavorable

4. Étude de la palée cadre file G travée 7-8

Les données et les résultats du traitement informatique sont donnés en annexe 1/2

- **4-1** Sur le document réponse 1/4 page 13 positionner les numéros des nœuds, des barres et les repères locaux. Représenter le chargement avec sa valeur et la nature des appuis.
- **4-2** Sur les documents réponses 2/4a,b,c tracer les diagrammes des sollicitations N sur le DR 2/4a page 14 (5 mm pour 10 000 N), V sur le DR 2/4b page 15 (5 mm pour 10 000 N) et M sur le DR 2/4c page 16 (2 cm pour 100 000 mN) puis indiquer les points particuliers.
- **4-3** En fonction d'un critère que vous choisirez vérifier cette palée à l'état limite de service.
- 4-4 Vérification de la traverse à l'état limite ultime
 - 4-4-1) Quelle est la classe de la traverse (prendre la valeur dans un catalogue de profilés ou dans l'EC3)
 - **4-4-2)** Avec N_{Ed} =27 984 N (compression) à l'origine de la traverse, montrer que l'on peut négliger l'influence de l'effort normal.
 - **4-4-3)** Avec V_{Ed} =65 333 N à l'origine de la traverse, montrer que l'on peut négliger l'influence de l'effort tranchant.
 - **4-4-4**) Avec M_{Ed}=196 112 mN vérifier la section à l'ELU à l'origine de la traverse.

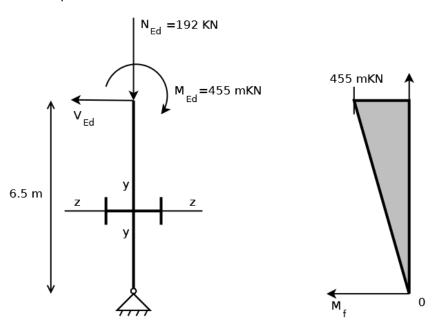
EXAMEN : BTS Constructions Métalliques - Épreuve : U4.2 Note de calculs- Sujet N°- page : 3/17

5. Étude d'un poteau portique courant

5-1 Caractéristiques mécaniques du poteau PRS

5-1-1 Sur un schéma représentant le PRS en coupe transversale, montrer les cotes b, h, t_f , t_w et donner leurs valeurs respectives.

5-1-2 Montrer que
$$I_z = \frac{1}{12} (2t_f b^3 + (h-2t_f)t_w^3)$$


5-1-3 Montrer que ly = 128516 cm⁴

5-2 Classe d'un poteau de portique courant

On donne les caractéristiques mécaniques du PRS suivantes

Section	Α	14 840	mm²
Moment quadratique / axe fort	I_{v}	128 516x10 ⁴	mm^4
Moment quadratique /axe faible	l _z	5 128x10 ⁴	mm^4
Module plastique / axe fort	$W_{Pl,y}$	4 024x10 ³	mm^3
Module plastique / axe faible	$W_{Pl,z}$	566x10 ³	mm^3
Rayon de giration / axe fort	i _v	294	mm
Rayon de giration /axe faible	i _z	59	mm
Module de torsion	I_{w}	6 528x10 ³	mm ⁶

On donne le schéma mécanique suivant à l'ELU:

5-2-1 Pour tenir compte des soudures de l'âme sur l'aile on prendra, pour la partie droite de l'âme, c=680mm et pour la partie droite de l'aile c=125mm

- a) Déterminer la classe de l'âme. Vous montrerez préalablement que α_c =0.551
- b) Déterminer la classe de l'aile et en déduire la classe du poteau.

5-2-2 Avec une longueur de flambement dans le plan du portique I_{fy} =16.4 m et dans le plan du long pan I_{fz} =6.5m, en complétant le document réponse 1/5 page 17 vérifier que le poteau convient.

NOTA Les valeurs de M_{cr}, k_{yy} et k_{zy} sont sur le document réponse

EXAMEN: BTS Constructions Métalliques - Épreuve: U4.2 Note de calculs- Sujet N°- page: 4/17

Annexe 1/2 (Données du calcul informatique)

```
| Données du problème |
+----+
4 Noeuds
3 Poutres(s)
1 Matériau(x)
1 Section(s) droite(s)
2 Liaison(s) nodale(s)
1 Cas de charge(s)
+----+
| Noeud(s) [ m ] |
+----+

        Noeud
        x
        y
        Noeud
        x
        y

        1
        0.000
        0.000
        2
        0.000
        7.000

        3
        6.000
        0.000
        4
        6.000
        7.000

+----+
| Poutres(s) [ m , rad ] |
+----+

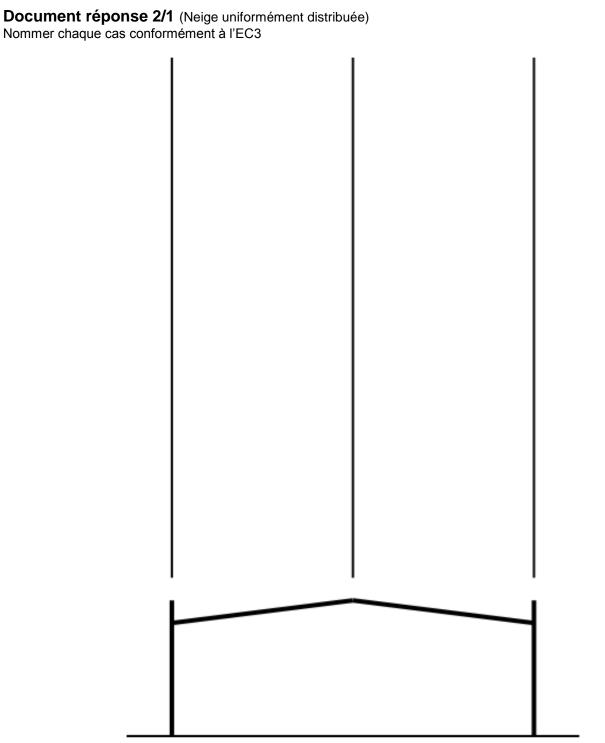
    outre
    Ori
    ->
    Ext
    Orient
    Sect
    Long
    Type

    1
    1
    2
    0.0000
    11
    7.000
    Rigide - Rigide

    2
    3
    4
    0.0000
    11
    7.000
    Rigide - Rigide

    3
    2
    4
    0.0000
    11
    6.000
    Rigide - Rigide

Poutre Ori -> Ext Orient
| Section(s) droite(s) |
+----+
Section droite 11:
  IPE - 550
| Liaison(s) nodale(s) |
Noeud 1 : dx = dy = 0
Noeud 3 : dx = dy = 0
+----+
| Cas de charge(s) 1 |
+----+
1 Charge(s) nodale(s) [ N , N.m ]
Noeud 2 : Fx = 56000.00 Fy = 0.00
```


Annexe 2/2 (Résultats du calcul informatique)

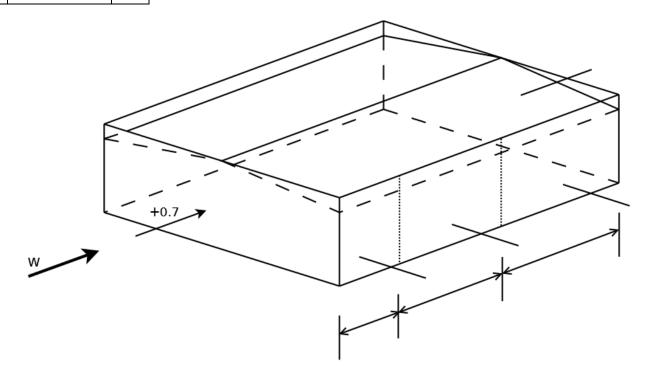
```
| Résultats : Cas 1 |
| Déplacements nodaux [ m, rad ] |
Noeud dx dy rotz
 1 0.000E+00 0.000E+00 -6.317E-03
 2 3.286E-02 1.620E-04 -1.447E-03
 3 0.000E+00 0.000E+00 -6.307E-03
 4 3.280E-02 -1.620E-04 -1.442E-03
| Action(s) de liaison [ N N.m ] |
+----+
Noeud 1 - Rx = -28016.0 Ry = -65333.3 Mz = 0.0 Noeud 3 - Rx = -27984.0 Ry = 65333.3 Mz = 0.0
+----+
| Efforts intérieurs [ N N.m ] |
+----+
N = Effort normal TY = Effort tranchant MfZ = Moment fléchissant
ELE ori No TYO MfZo dL(m) ext Ne TYe MfZe TYmax MfZmax 1 1 65333.3 -28016.0 0.0 1.620E-04
     2 65333.3 -28016.0 196112.3
                  28016.0 196112.3
    3 -65333.3 -27984.0
                               0.0 -1.620E-04
      4 -65333.3 -27984.0 195887.7
                  27984.0 195887.7
  3 2 -27984.0 65333.3 196112.3 -5.948E-05
      4 -27984.0 65333.3 -195887.7
                  65333.3 196112.3
```

Document réponse 1/1 (données de la neige)

Valeur caractéristique	S _{k,0}	KN/m²
Influence de l'altitude (s'il y a lieu)	Δs_i	KN/m²
Charge de neige sur le sol	S _k	KN/m²
Valeur accidentelle	S _{Ad}	KN/m²
Coefficient de forme	μ ₁	
Accumulation au droit de l'acrotère	μ ₂	
Longueur d'accumulation	Is	m

EXAMEN : BTS Constructions Métalliques – Épreuve : U4.2 Note de calculs– Sujet N° – page : 7/17

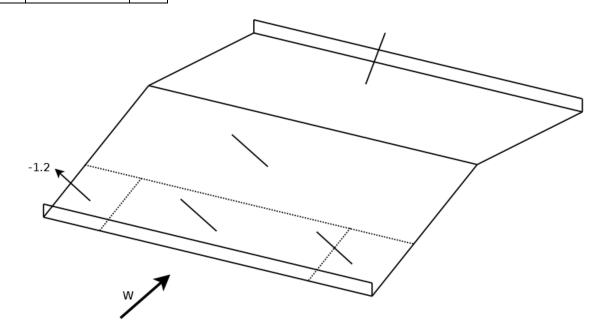
Document réponse 3/1 (Neige redistribuée) Nommer chaque cas conformément à l'EC3


Document réponse 1/2 (données du vent)

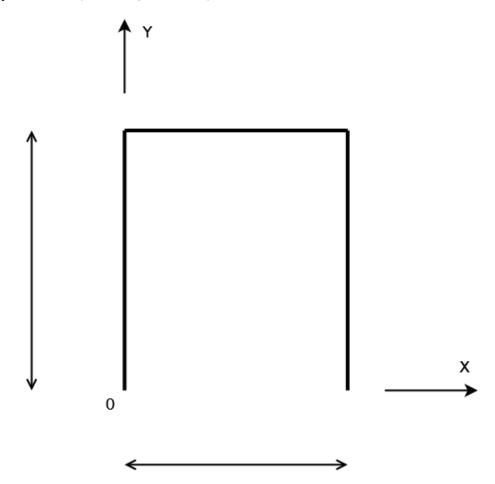
Vitesse de base	V _{b,0}	m/s
Coefficient de saisonnalité	C _{season}	
Coefficient de direction	C _{dir}	
Vitesse de référence	V _b	m/s
Masse volumique de l'air	ρ	Kg/m ³
Pression dynamique de référence	q _b	N/m²
Longueur de rugosité	z_0	m
Longueur de rugosité II	Z _{0,II}	m
Longueur de rugosité mini	Z _{min}	m
Hauteur de la construction	z	m
Facteur de terrain	k _r	
Coefficient de rugosité	C _r (z)	
Coefficient d'exposition	c _e (z)	
Pression dynamique de pointe	q _p (z)	N/m²

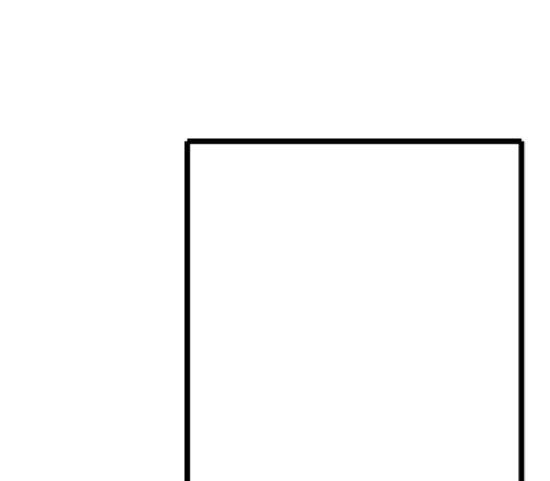
EXAMEN : BTS Constructions Métalliques – Épreuve : U4.2 Note de calculs– Sujet N°- page : 10/17

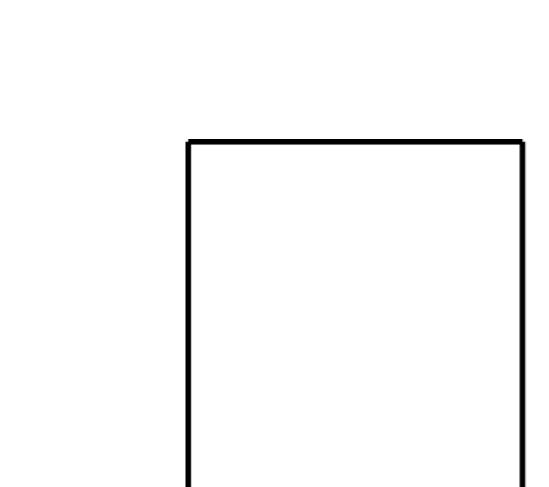
Document réponse 2/2 (vent sur pignon travée 14)


h	m
b	m
d	m
е	m
h/d	

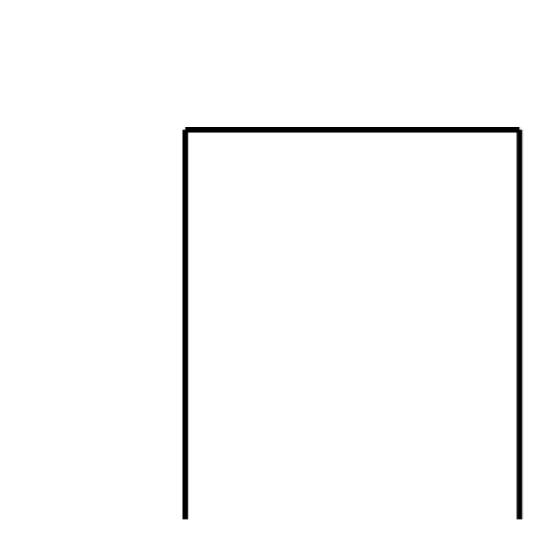
EXAMEN : BTS Constructions Métalliques – Épreuve : U4.2 Note de calculs– Sujet N°- page : 11/17


Document réponse 3/2 (vent sur long pan file G)


h	m
h _p	m
z _e	m
	m
d	m
е	m
h _n /h	


EXAMEN : BTS Constructions Métalliques – Épreuve : U4.2 Note de calculs– Sujet N°- page : 12/17

Document réponse 1/4 (données palée cadre)



Document réponse 2/4a (Effort normal)

Document réponse 2/4b (Effort tranchant)

Document réponse 2/4c (Moment fléchissant)

Document réponse 1/5 (Vérification du poteau)

$$\begin{cases} \frac{N_{Ed}}{\chi_y N_{Pl,Rd}} + k_{yy} \frac{M_{yEd}}{\chi_{LT} M_{Ply,Rd}} \leq 1\\ \frac{N_{Ed}}{\chi_z N_{Pl,Rd}} + k_{zz} \frac{M_{yEd}}{\chi_{LT} M_{Ply,Rd}} \leq 1 \end{cases}$$

Caractéristiques communes
E Mpa =
f_y Mpa =
$\gamma_{m1}=1$
Profilé
$\frac{h}{b} =$
t_f mm =
A mm ² =
N_{Ed} KN =
$N_{Pl} = \frac{Af_y}{\gamma_{m1}} \text{ KN} =$

Effort normal

B	
Caractéristiques suivant l'axe y	
$I_y \text{mm}^4 =$	
L_{cry} mm=	
$N_{cry} = \pi^2 \frac{EI_y}{L_{cry}^2} \text{ KN} =$	
$N_{cry} = \pi^2 \frac{El_y}{L_{cry}^2} \text{ KN} =$ $\overline{\lambda_y} = \sqrt{\frac{Af_y}{N_{cry}}} =$	
$\alpha_y =$	
$\chi_y = \frac{N_{Ed}}{N_{Ed}} = \frac{N_{Ed}}{N_{Ed}}$	
$\frac{N_{Ed}}{}$ =	
Xy ^N Pl,Rd	
Moment fléchissant / y	
M_{yEd} mKN =	
$k_{yy} = 1.001$	
$k_{zy} = $ 0.489	
W_{Ply} mm ³ =	
$M_{Ply,Rd} = \frac{W_{Ply}f_y}{\gamma_{m1}} \text{ mKN} = $ $M_{cr} \text{ mKN} = 1731$	
$M_{cr} \text{ mKN} = 1 731$	
$\overline{\lambda_{LT}} = \sqrt{\frac{W_{Ply}f_y}{M_{CT}}} =$	
$\alpha_{LT} =$	
$\chi_{LT} =$	
$\frac{M_{yEd}}{M_{yEd}}$	
XLT ^M Ply,Rd	

Caractéristiques suivant l'axe z
I_z mm ⁴ =
L_{crz} mm=
$N_{crz} = \pi^2 \frac{EI_z}{L_{crz}^2} \text{KN} =$
$\overline{\lambda}_{z} = \sqrt{\frac{Af_{y}}{N_{crz}}} =$
α_z =
$\chi_z=$
$\frac{N_{Ed}}{\chi_z N_{PLRd}}$

Vérification
$\frac{N_{Ed}}{\chi_y N_{Pl,Rd}} + k_{yy} \frac{M_{yEd}}{\chi_{LT} M_{Ply,Rd}} =$
$\frac{N_{Ed}}{\chi_z N_{Pl,Rd}} + k_{zz} \frac{M_{yEd}}{\chi_{LT} M_{Ply,Rd}} =$