CONCOURS GENERAL DES METIERS PLASTIQUES ET COMPOSITES

SESSION 2016

Note à l'attention des candidats

Dans le cadre du concours général des métiers, vous allez participer à l'épreuve écrite d'admissibilité d'une durée de 4 heures.

À l'issue de cette épreuve et après correction, un jury retiendra les candidats avec les meilleurs résultats pour participer aux épreuves professionnelles d'admission.

En 2016 ces épreuves se dérouleront à Charleville-Mézières (08)

Ce dossier est constitué de 2 sous-dossiers répartis ainsi :

La présentation du sujet et le questionnaire

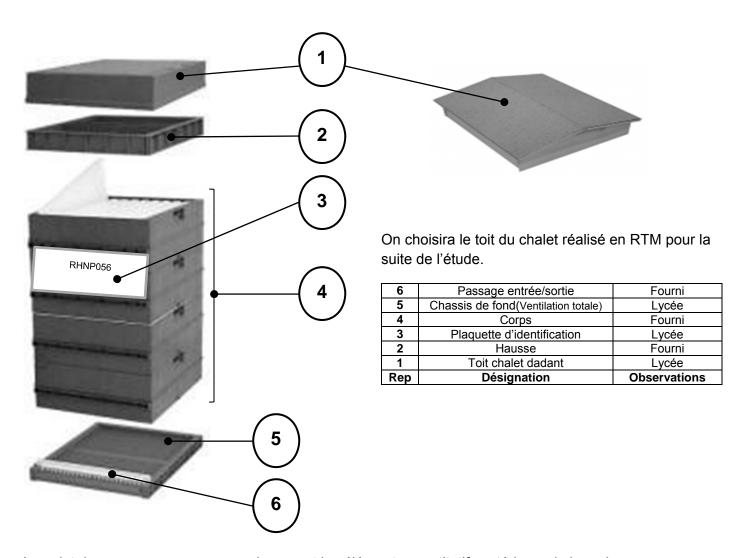
Les annexes au nombre de 3 (A1 – A2 – A3)

La calculatrice est autorisée conformément à circulaire n° 99-186 du 16 novembre 1999.

Aucun document n'est autorisé

Attention : L'ensemble du document est à rendre en fin d'épreuve

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 1/35


SOMMAIRE

Titre des documents	Repère des pages
Page de garde	page 1
Sommaire	page 2
Présentation du produit	page 3
Questionnaire	pages 4 à 21
Annexe Matière	annexe A1 pages 22 à 25
Annexe Fabrication	annexe A2 pages 26 à 28
Annexe Outillage composites	annexe A3 pages 29 à 35

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 2/35

Présentation du produit

L'étude concerne un kit de ruche à monter soi-même

Le sujet du concours concernera uniquement les éléments constitutifs extérieurs de la ruche.

Pour la fabrication de certains éléments de cet ensemble vous aurez à traiter les rubriques suivantes :

Partie A: Matières

Partie B: Techniques de mise en œuvre

Partie C : Suivi de production et qualité

Partie D: Maintenance

Partie E: Sécurité et environnement

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 3/35

Questionnaire

Partie A: Matières

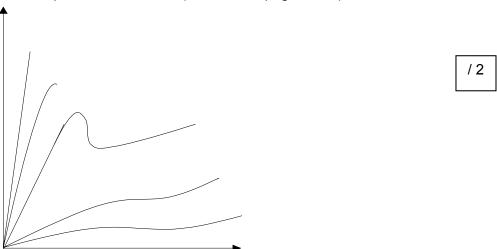
Le toit est fabriqué en thermodurcissable et le châssis en thermoplastique.

Question 1:

Relier les différentes structures avec les d méthode de réaction d'obtention des polyr		es de matières plastiques (d'un point de vi	ue de la
		Linéaires	
Les thermoplastiques : \Box		Ramifiés	/ 3
Les thermodurcissables : \Box		Tridimensionnelles	
Suivant la fiche technique du polystyrène-c masse volumique apparente est différente			s que la
Question 2:			
Rechercher les valeurs des paramètres av Densité :	ec les uni	tés	
Masse volumique :			/ 3
Masse volumique apparente :			
Question 3 :			
Quelle est la différence entre la densité et La densité :	la masse	volumique ?	
La masse volumique :			/ 4

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 4/35

Question 4:					
Donner la définition de la	masse v	olumique app	oarer	nte.	
					/ 3
Afin d'améliorer certaines	s qualités	du polymère	, on	nous demande de rajouter certains adjuvants et	renforts.
Question 5 :					
Mettre en relation les ren polystyrène Butadiène	forts et ad	djuvants en c	orre	spondance avec l'influence sur les propriétés du	
Les plastifiants :				Permettant d'améliorer une ou plusieurs propriétés ou caractéristiques (propriétés électriques, mécaniques, chimiques, coûts de production) du mélange final.	
Les stabilisants :				Sont des composés capables de rendre souples les matières pour une tenue à basse température.	
Les Colorants / Pigments :				Réduisent les frottements du polymère sur lui-même, et diminuent le frottement polymère-métal.	
Les antistatiques :				Colorent le polymère.	/ 4
Les ignifugeants :				Empêchent l'oxydation de la matière aussi bien au cours de la transformation que dans son exposition aux conditions climatiques (UV).	
Les lubrifiants :				Diminuent l'amorçage ou la propagation de la combustion qu'ils rendent dans tous les cas plus difficile.	
L'anti retrait :				Permettent de limiter l'accumulation de charges électriques à la surface des polymères et d'éviter ainsi un certain nombre de phénomènes tels que la fixation de poussières ou la production d'étincelles.	
Les renforts et charges:				On l'utilise essentiellement pour compenser le retrait des compositions à base de polyester insaturé (BMC, SMC). Le principal anti-retrait est le PVAC (poly acétate de vinyle). On l'utilise en concentration de 40%.	


CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 5/35

Le châssis s	ubit divers	s retraits lors d	e sa fabricati	on.	
Question 6:					
Expliquer le		ne de retrait.			
					/ 2
II existe 3 pri	ncipaux r	etraits, donner	les différenc	es entre les retraits.	
Le retrait imr	nédiat :				
Le retrait :					/ 3
					
Le post retra	it:				
					
		emarrage de pi la matière, voi		toit du chalet, nous devons réaliser un essai afin de page 22/35.	vérifier le
Question 7	<u> </u>				
Déterminer le	e taux de	charge en fon	ction du table	eau.	
	Masse	Masse	Masse	<u>Le calcul :</u>	
Echantillon	en gr creuset	creuset avec	creuset		
	vide (M1)	échantillon (M2)	après essai (M3)		
1	()	51,7	44.3		
2		52.4	42.6		/ 3
3 4		51.5 50.7	44.7 43.5		
5	31 gr	53.5	45.2		
6	o . g.	52.1	43.5		
Moyenne					
		llon est confor la fiche technic			/2

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 6/35

Question 8:

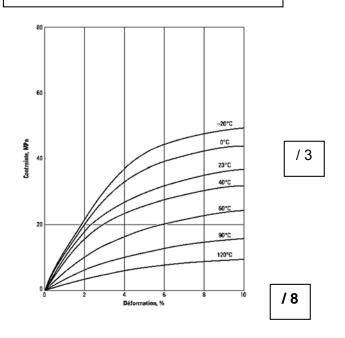
Tracer en couleur les courbes de traction représentative du PS (annexe A 2 page 27/35).

Question 9:

Expliquer	le	principe	de	l'essai	de	traction	et	schématiser	li
machine.									
Princine:									

	/3

Schéma


Question 10:

on réalise un essai de traction après moulage par injection d'éprouvette.

Positionner graphiquement le module de YOUNG ou module tangent d'élasticité (E) à 40°C.

Vous devez placer les abréviations suivantes :

 $\sigma_e\,;\,\,\epsilon\%$, et déduire la tangente.

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 7/35

Partie B: Techniques de mise en œuvre

1 Injection

Pour des raisons de simplification nous allons étudier la mise en production sur un outillage prototype. Nous utiliserons une presse d'injection BILLION 4700 H 2000, et comme matière du HDPE. Le moteur de la presse d'injection est considéré en marche et le contrôle des sécurités effectué. Afin de réaliser le montage outillage, on demande :

_		_			•	
()	ПΔ	ct	10	n	1	-
w	ue	Jι	ıv			

Etablir le mode opératoire de montage moule

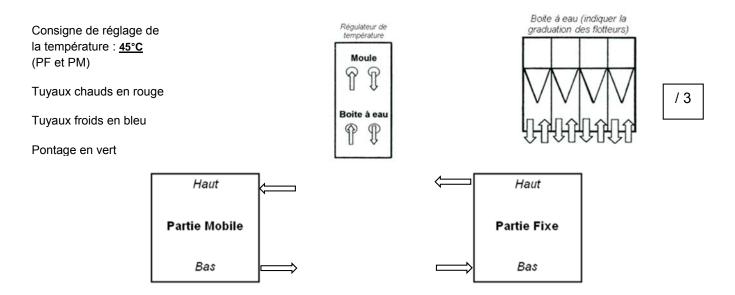
-Vérification de la masse d'outillage par rapport au palan.							
-Mise en position montage outillage.							
-	•						
-	•						
<u>=</u>	. /4						
-	/ 4						

Afin de mettre à jour le dossier de fabrication, on vous demande :(voir annexe 2)

Question 2:

Remplir l'extrait du dossier de fabrication.

Туре	Référence	Justification		
Taraudage machine	M20			
Brides			40	
Vis de réglage				
Ecrou				/ 4
Rondelle				
Goujon			Le schéma n'est pas à l'échelle.	
Clef de serrage				/8


CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 8/35

⁻Affichage des préréglages.

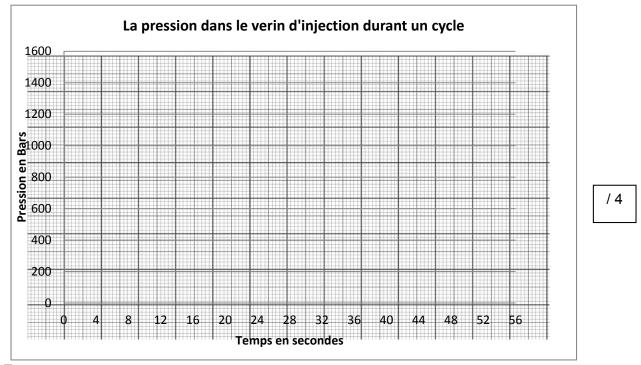
Le branchement d'un thermorégulateur est préconisé pour l'injection du châssis

Question 3:

Etablir le schéma de branchement de la régulation.

Afin de déterminer le temps de séjour de la matière dans le pot de plastification on demande : **Question 4 :**

Calculer la course de dosage sachant que le volume de la moulée est de 1560 cm³, le coefficient rétractation est égal à 0,8 et le matelas est de 0,5 cm.	de		
		/ 3	
Question 5 :			
En utilisant la page 25/35 calculer le temps de séjour, sachant que le temps de cycle estimé est c secondes.	le 12	0	
	_ _	/ 4	
	_		


CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 9/35

Question 6:

Mettre en place les paramètres de la phase d'injection et de dosage sur le graphe :

- -Pression limite d'injection en rouge
- -Pression et temps d'injection
- -Pression et temps de maintien 1
- -Pression et temps de maintien 2
- -Pression et temps de maintien 3
- -Retard de dosage
- -Temps et contre pression
- -Temps et pression de succion

Tracer la courbe en bleu

Question 7:

Calculer le temps de cycle, et mettre une croix dans la colonne correspondante

	Etapes	Durée	Réel	Masqué		
1	Fermeture					
2	Sécurité					
3	Verrouillage					
4	Avance Ponton					
5	Injection Mesuré					
6	Maintien 1					
7	Maintien 2					
8	Maintien 3				Temps de cycle =	/4
9	Refroidissement				· · · · · · · · · · · · · · · · · · ·	
10	Retard Dosage					
11	Dosage					
12	Succion					
13	Retard du Recul					
14	Recul Ponton					
15	Déverrouillage					
16	Ouverture					/ 8
17	Ejection					
18	Pause					

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 10/35

2 La technique du RTM

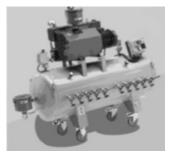
Le « toit chalet » de la ruche (repère 1) est réalisé sur un outillage prototype qui est obtenu par la technique de RTM.

Question 1 : Que veut dire RTM ?	
En anglais :	
	/ 2
En français :	
Question 2 : Expliquer le principe du moulage RTM.	
	/ 3
	<u> </u>
	<u>_</u>

A l'aide des vues en perspective de l'outillage partie fixe RTM: voir annexe A3 page 34 :

Question 3 :
Colorier ou hachurer en vert : la surface moulante (empreinte de l'outillage)

Colorier ou hachurer en bleu : la surface de verrouillage (fermeture par aspiration de l'outillage).



CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 11/35

Question 4:

Réaliser le plan de branchement de l'outillage.

Centrale de vide

Machine RTM

-Tuyaux de vide en bleu

vert

-Tuyaux d'injection résine en

/ 3

Etablir le mode opératoire de préparation du moule avant injection de la résine.

Outillage Fermé

Appliquer la cire de démoulage

-	D	é	CO	u	pe	er	le	m	ıat	Ĺ

Question 5:

-	
-	

-Raccorder le tuyau du « vide injection (fluage) » à l'orifice du piège à résine.

Question 6:

Quels sont les avantages et les inconvénients du moulage par RTM?

Avantages	Inconvénients

/ 10

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 12/35

Question 7:

Tracer la courbe de l'évolution de la température en fonction du temps.

Temps (en minute)	Température (en °C)	160	<u> </u>	Temps de pic e	xothermic	nue.					
0	20	140	7	. отпро чо раз с		100	4				
2	30	140									
4	38	120		Temps de ge							
6	45		1			7/					
8	46	100 ء									/3
10	47	Température en °C									/ 3
12	48	at 80									
14	50	pér									
16	102	ا اور 60									
18	134										
20	129	40									
22	124	20									
24	119	20									
26	110	0									
28	85		0	5	10	15	20	25	30	35	
30	70						n Minutes				
32	40					•					

Question 8:

A quel moment peut-on enlever le contremoule ?	
	/ 2
A qual mamont nouvons nous démaular la pièce en toute sécurité 2	_
A quel moment pouvons-nous démouler la pièce en toute sécurité ?	
Question 9 :	_
Quels sont les EPI à prévoir lorsqu'on utilise cette technique ?	
	/2

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 13/35

3 La technique du SMC

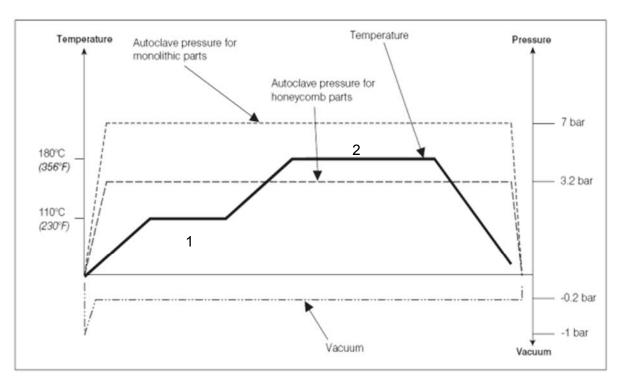
La plaquette d'identification de la ruche est réalisée en SMC.

Question 1:

Oue	Veut	dira	SMC?
Que	veui	ulle	SIVIC

En anglais : _____

En français :


/ 2

Question 2:

Expliquer le principe du moulage SMC.

/ 3

On donne la courbe caractéristique de cuisson en autoclave du SMC

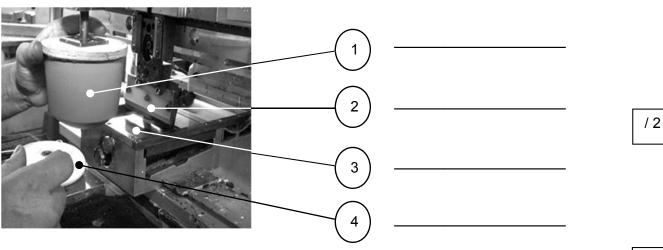
CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 14/35

Question 3:

A l'aide de ce diagramme et du document constructeur, remplir la fiche de préréglages ci-dessous.

CONS	SIGNES PAL	JERS	CONSIGNES PALIERS			
NOM	VALEURS	UNITES	NOM	VALEURS	UNITES	
NUM PALIER	1	1 à 9	NUM PALIER	2	1 à 9	
TYPE PALIER	0	012	TYPE PALIER		012	
VIT TRAV	10	mm/s	VIT TRAV	10	mm/s	
PRE TRAV	7	bar	PRE TRAV		bar	
RAMP PRE	2	bar/s	RAMP PRE	2	bar/s	
RAMP CH	2	°C/mn	RAMP CH		°C/mn	
TEMP SUP	110	°C	TEMP SUP		°C	
TEMP INF	110	°C	TEMP INF		°C	
TPS PAL	60	s	TPS PAL		s	
TPS DEGZ	0	10è/s	TPS DEGZ	0	10è/s	
CTE DEGZ	0	1/10mm	CTE DEGZ	0	1/10mm	

/ 6


Les informations sont marquées sur la plaquette d'identification par la technique de la tampographie

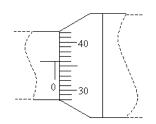
Question 4:

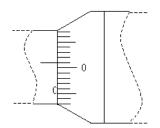
Expliquer le principe du marquage par tampographie.	

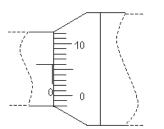
Question 5:

A l'aide de la photo de l'appareil de marquage, compléter la nomenclature.

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	SESSION 2016	
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 15/35


PARTIE C : Suivi de production et Qualité


1 Métrologie


Lors de la fabrication en extrusion-gaine des films rétractables plastiques pour emballer les hausses de la ruche, le service qualité a remarqué un défaut d'épaisseur et on demande de l'analyser. Epaisseur **0.06**±0.02

Question 1:

A l'aide des schémas, relever la valeur de la cote affichée sur le micromètre.

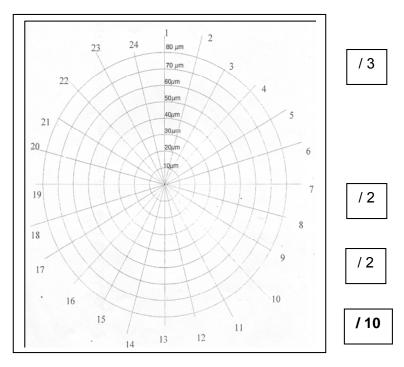
/ 3

Lecture échantillon 1		Lecture échantillon 2		Lecture échantillon 3	
Conforme	Non conforme	Conforme	Non conforme	Conforme	Non conforme

Le tableau ci-dessous recense 24 mesures d'épaisseur de film effectuées à 360° sur un tronçon de ce dernier.

1	2	3	4	5	6	7	8	9	10	11	12
0,035	0,04	0.04	0.045	0.05	0.05	0.055	0,055	0,06	0.06	0.065	0.065
13	14	15	16	17	18	19	20	21	22	23	24
0,07	0,07	0.065	0,065	0,065	0,06	0.055	0,055	0.045	0.04	0.03	0.035

Question 2:


Tracer les épaisseurs sur la rosace ci-contre et Indiquer les limites inférieure et supérieure de contrôle en vert.

Question 3:

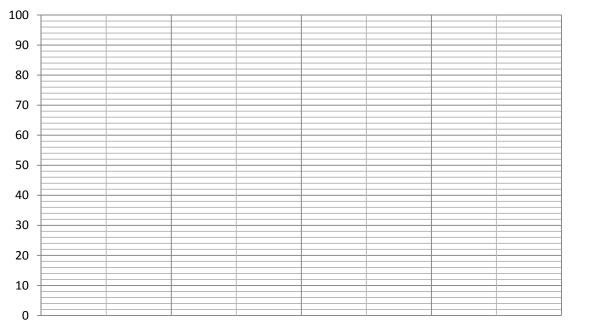
Que peut-on conclure de ce tracé ?

Question 4:

Que peut-on conclure du réglage de la tête de filière ?

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 16/35

2 Etude des défauts d'aspect


Lors de la production du châssis en injection, on se propose de réaliser une étude du suivi qualité à l'aide des diagrammes de Pareto. En utilisant les données ci-dessous :

Question 1 : Compléter le tableau :

Défauts	Codes	Nombre	Coefficient	Valeur pondérée	Codes	% nombre décroissant	% cumulé
retassures	105	125	1.2				
bavures	104	110	1.6				
incomplets	103	120	1.1				
déformations	102	90	1.4				
marbrures	101	75	1.2				
points noirs	100	70	1.4				
			TOTAL				

Question 2:

Tracer les histogrammes de distribution ainsi que la courbe cumulée. Pourcentage %

/ 4

Codes

Question 3:

Les règles du principe 80/20 sont-elles respectées ?

/ 1

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	JET	SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 17/35

3 Exploitation de la carte de contrôle

La fabrication du châssis en injection TP nécessite un suivi par MSP ou SPC.

Question 4:

\sim			11	
Que	e ve	tu:	aire.	

MSP (en français) :_____

SPC (en anglais) :_____

Question 5:

Compléter la carte de contrôle (\overline{X} ,R) ci-dessous :

Etendue R Moyenne \overline{X}										
Equipe	Matin	Soir	Matin	Soir	Matin	Soir	Matin	Soir	Matin	Soir
Date	17/03	17/03	18/03	18/03	19/03	19/03	20/03	20/03	21/03	21/03
Heure	9h	16h	9h30	17h30	8h	14h	9h	14h30	7h30	19h
X ₁	4,82	4,68	4,63	4,68	4,75	4,78	4,82	4,68	4,72	4,86
X ₂	4,78	4,74	4,70	4,73	4,71	4,70	4,78	4,74	4,68	4,92
Х3	4,77	4,71	4,73	4,65	4,69	4,72	4,83	4,71	4,73	4,84
X ₄	4,80	4,75	4,75	4,78	4,73	4,81	4,77	4,78	4,67	4,85
X ₅	4,76	4,72	4,74	4,66	4,72	4,79	4,80	4,72	4,66	4,88
Σχ										
\overline{x}										
R										
	Désignation pièce : Caractéristique :		Spécificati	on :	Instrumer	nt de mesure	:	Machine :		
	on pièce :	Caracteris	uque .	Оросински						

/ 8

/ 2

/ 2

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SU	JET	SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 18/35

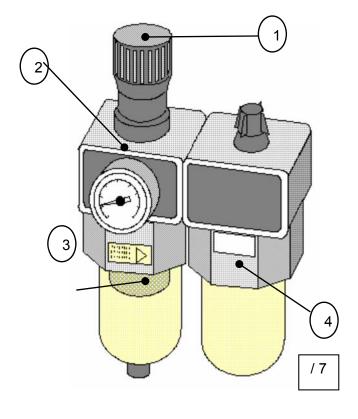
PARTIE D : Maintenance

Nous avons mis en place une prise par robot des pièces produites en injection. Vous devez intervenir dans la zone protégée du robot pour vérifier l'état des ventouses du préhenseur.

	Q	u	е	s	ti	0	n	1	
--	---	---	---	---	----	---	---	---	--

/ 2
/2
/ 2

Le robot est équipé de l'ensemble d'alimentation pneumatique (F.R.L.) ci-contre


Question 4:

Que F:_	e veut dire(F.R.L.) ?
R:_	
1 .	

Question 5:

Identifier les différents éléments de l'ensemble.

Repère	Désignation
1	
2	
3	
4	

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 19/35

En cours de production de la porte repère **6**, le régleur constate que la masse de la moulée varie d'une façon importante.

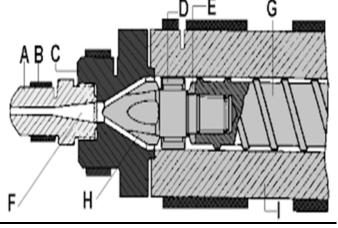
Question 6

Donner une cause qui peut être à l'origine de ce dysfonctionnement :	
zemier and cauce qui peut eue a rengine ac ec ayeremenent i	/ 2

Le régleur suspecte un problème d'étanchéité sur le clapet anti-retour de la presse.

Question 7

Quel paramètre de la presse peut-il suivre pour valider son analyse ?


/ 2

Le service des méthodes préconise le remplacement de cet élément défaillant (ici le clapet antiretour).

Question 8

Compléter la nomenclature et établir la fiche de procédure détaillée de démontage du clapet

/ 8

		,	_
1)	 	 · · · · · · · · · · · · · · · · · · ·	_
2)	 	 	
3)	 	 	
4)	 	 	
5)	 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	

I	Fourreau
Н	Pointe
G	
F	Antichambre
E	
D	Clapet anti-retour
С	Support de buse (camembert) fixé Par 6 vis CHC
В	Collier chauffant
Α	Buse machine
Rep	Désignation

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 20/35

PARTIE E : <u>Sécurité et Environnement</u>

Question 1 :

Lors de l'installation de l'outillage en injection	ΓP, quelles précautions doit prendre le régleu	ır pour
manipuler le moule en toute sécurité ?		
1)		
		/ 2
2)		
Quels sont les risques encourus lors du chang	ement d'une buse d'injection ?	
		/3
Pour la fabrication des hausses de ruches, la s	société est certifiée ISO 14000.	
Question 3:		
Que veut dire ISO 14000 ?		
		/ 2
Sur le film d'emballage, on distingue les logos		
Question 4 : Donner la signification du logo.		
×4 ⁻ \		/1
LDPE		
La fiche signalétique du bidon contenant le cat	alyseur LUPEROX montre les étiquettes suiv	vantes :
Question 5 : Donner la signification de ces lo	gos.	
		/1
		/1
<u></u>		
		/ 10
DNCOURS GENERAL DES METIERS	SILIFT	SESSION 20

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 21/35

Annexe matière et qualité A1

Extrait de la fiche matière HEXEL

A. *HexPly® 8552

Epoxy matrix (180°C/356°F curing matrix)

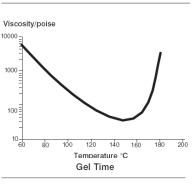
Description

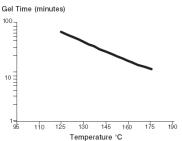
HexPly ® 8552 est une matrice époxy résistant de haute performance pour utilisation dans la construction primaire. Il résiste bien aux chocs.

Il a été développé comme un système à écoulement contrôlé et fonctionne dans des environnements à 121°C (250°F).

Avantages et caractéristiques :

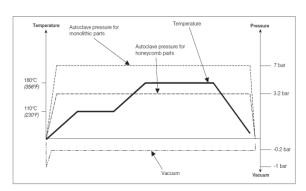
- Trempé matrice époxy avec d'excellentes propriétés mécaniques.
- Performance température élevée bonne traduction de fibres propriétés.
- Contrôlées matrice flux en traitement.
- Disponible sur divers renforts.
- Excellent drapé.


INFORMATIONS TECHNIQUES


Type de fibres
Proportion de résine
Température maximale d'utilisation
Température de transition vitreuse
Absorption d'eau
Durée de vie

Carbone 37 +/-3 % 218 °C 251 °C

0,77 % après 72 heures à l'eau bouillante


6 mois à 25 °C 12 mois à -17 °C

CYCLE DE CUISSON pour les composants monolithiques

- 1. Appliquer 7 bars pression.
- 2. Monter en température de 1 3 ° C/min jusqu'à 110 ° C ± 5 ° C
- 3. Maintenir la température de 110 ° C ± 5 ° C pendant 60 minutes ± 5 minutes.
- 4. Monter en température de 1-3 ° C/min jusqu'à 180 ° C ± 5 ° C
- 5. Maintenir la température de 180° C ± 5 ° C pendant 120 minutes ± 5 minutes
- 6. Laisser refroidir à 2-5 °C par minute

Détermination du taux de charge

On utilisera la méthode par calcination simple. On réalisera une combustion des matières organiques et on traitera les résidus à haute température jusqu'à obtention d'une masse constante.

Expression des résultats:

M₁ creuset sec vide

M₂ creuset rempli de matière organique à calciner

M₃ creuset rempli de charges

Taux (%) =
$$\frac{M_3 - M_1}{M_2 - M_1} \times 100$$

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 22/35

Extrait de la fiche matière DOW HDPE KS 10100 UE

Informations techniques

DOW™ HDPE KS 10100 UE High Density Polyethylene Resin

Aperçu

La Résine Polyéthylène HDPE KS 10100 UE est une résine polyéthylène haute densité conçue pour assurer une meilleure mise en oeuvre, une excellente résilience, résistance à la fissuration sous tension et stabilité UV, pour un usage en extérieur, avec un gauchissement minimum.

Note: La Résine Polyéthylène HDPE KS 10100 UE doit être conforme à la réglementation 177.1520 de la FDA et à la plupart des réglementations européennes de contact avec les aliments, si utilisée non-modifiée et usinée selon les bonnes pratiques de mise en œuvre alimentaire. Veuillez contacter votre bureau Dow concernant les déclarations de conformité alimentaire. L'acheteur est tenu de déterminer si l'usage auquel le produit est destiné est conforme à toutes les réglementations applicables.

Applications:

- Poubelles
- · Larges récipients
- · Pièces rigides

Additif • Antiadhérent: Non	Glissement: No	on	 Adjuvant 	de fabricatio	n: Non
Physique	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Densité	0,955	g/cm³	0,955	g/cm³	ASTM D792
Indice de fluidité					ISO 1133
190°C/2,16 kg	4,0	g/10 min	4,0	g/10 min	
190°C/5,0 kg	12	g/10 min	12	g/10 min	
Spiral Flow ^{1, 2}	25,0	in	63,5	cm	Méthode interne
Retrait au moulage - Écoulement ³ (482°F (250°C))	0,026	in/in	2,6	%	ASTM D955
Résistance à la fissuration sous contrainte prolongée ⁴					ASTM D1693
122°F (50°C), Antarox 100 %, Moulé par compression	10,0	hr	10,0	hr	
Mécanique	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Résistance à la traction					ASTM D638
Élasticité, Moulé par compression	3630	psi	25,0	MPa	
Rupture, Moulé par compression	3920	psi	27,0	MPa	
Allongement en traction					ASTM D638
Rupture, Moulé par compression	> 1600	%	> 1600	%	
Module de flexion - Sécant 2 % (Moulé par compression)	123000	psi	850	MPa	ASTM D790
Choc	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Résistance au choc en traction					ASTM D1822
Moulé par compression	40,4	ft·lb/in²	85,0	kJ/m²	
Dureté	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Dureté Shore					ISO 868
Shore D, Moulé par compression	65		65		
Thermique	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Point Vicat	262	°F	128	°C	ISO 306/A

Remarques

Les informations ci-dessus ne sont que des propriétés typiques et ne doivent pas être interprétées comme des spécifications. L'utilisateur doit confirmer les résultats par ces propres tests.

⁴ Avec entaille

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 23/35

¹ Température de fusion: 482°F (250°C)

² Injection 2 secondes

³ Injection 0,5 seconde

DOW™ HDPE 25055E High Density Polyethylene Resin

Aperçu

Le polyéthylène haute densité 25055E Résine polyéthylène haute densité est une résine avec une distribution de poids moléculaire très étroite, développée pour conférer d'excellentes propriétés mécaniques, une finition de surface d'un brillant élevé et de grande qualité pour les pièces moulées par injection, tout en fournissant un traitement facile.

Applications:

- · Articles ménagers
- Récipients de qualité alimentaire
- Jouets

Conforme à :

- EU, No 10/2011
- U.S. FDA 21 CFR 177.1520
- DGPSA canadienne (non-objection) Consulter la

règlementation pour plus de détails.

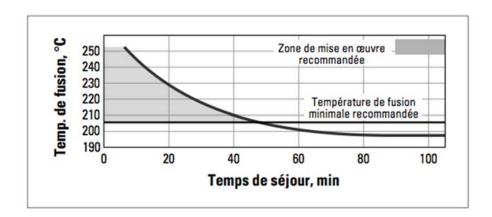
_					_
Α	dc	łi	t	İ	t

- Antiadhérent: Non
- Glissement: Non
- · Adjuvant de fabrication: Non

Physique	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Densité	0,955	g/cm³	0,955	g/cm³	ASTM D792
Indice de fluidité					ISO 1133
190°C/2,16 kg	25	g/10 min	25	g/10 min	
190°C/5,0 kg	62	g/10 min	62	g/10 min	
Spiral Flow ^{1, 2}	42,9	in	109	cm	Méthode interne
Retrait au moulage - Écoulement	0,021	in/in	2,1	%	ASTM D955
Résistance à la fissuration sous contrainte prolongée					ASTM D1693
Antarox CO-630 100 %, Moulé par compression	0,700	hr	0,700	hr	
Mécanique	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Résistance à la traction					ASTM D638
Élasticité, Moulé par compression	3630	psi	25,0	MPa	
Rupture, Moulé par compression	3920	psi	27,0	MPa	
Allongement en traction					ASTM D638
Rupture, Moulé par compression	200	%	200	%	
Module de flexion - Sécant 2 % (Moulé par compression)	126000	psi	870	MPa	ASTM D790
Choc	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Résistance au choc en traction					ASTM D1822
Moulé par compression	26,2	ft·lb/in²	55,0	kJ/m²	
Dureté	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Dureté Shore					ISO 868
Shore D, Moulé par compression	65		65		
Thermique	Valeur nominale	(Anglais)	Valeur nominale	(SI)	Méthode de test
Point Vicat	255	°F	124	°C	ISO 306/A

Remarques

Les informations ci-dessus ne sont que des propriétés typiques et ne doivent pas être interprétées comme des spécifications. L'utilisateur doit confirmer les résultats par ces propres tests.


² Injection 2 secondes

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 24/35

¹ Température de fusion: 482°F (250°C)

Extrait catalogue DOW

Temps de séjour de la matière

Temps de séjour moyen =

= poids de la résine dans le cylindre poids de la moulée x durée de cycle

Voici comment obtenir une approximation rapide:

Temps de séjour moyen =

= course maximale de la vis x 2 course de la vis* de cycle

*Course effective de la vis = distance parcourue par la vis durant la rotation uniquement.

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 25/35

Le temps de séjour moyen dans la presse à injection est lié à la quantité de polymère présent dans le cylindre, au poids de la moulée et à la durée de cycle. Il est possible de le calculer à l'aide de l'équation suivante:

Polystyrene

Annexe fabrication A2

Extrait de la fiche matière TOTAL PS CHOC 6540

POLYSTYRENE CHOC 6540

Fiche Technique Polystyrène choc fluide Fabriqué en Europe

Description

Le POLYSTYRENE CHOC 6540 est un grade polystyrène ayant un bon compromis de propriétés mécaniques et thermiques.

Le POLYSTYRENE CHOC 6540 combine une bonne fluidité nécessaire au moulage par injection de pièces de grande taille ou complexes, une bonne résistance à l'impact pour des propriétés mécaniques suffisantes dans les sections fines, et de bonnes propriétés thermiques pour les articles soumis à des températures d'utilisation élevées. Cette combinaison de propriétés permet aussi des cadences de production élevées.

Applications

Le POLYSTYRENE CHOC 6540 satisfait les exigences d'une très grande variété de pièces injectées : jouets, boîtes, coffrets extérieurs de téléviseurs, pièces pour réfrigérateurs, articles de bureaux et ménagers,...

Propriétés

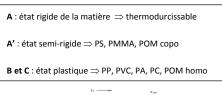
Rhéologiques	Méthode	Unité	Valeur
Indice de fluidité (200°C-5kg)	ISO 1133 H	g/10mn	11.5
Thermiques			
Température Vicat 10N (Montée en T = 50°C/h)	ISO 306A50	°C	92
Température Vicat 50N (Montée en T = 50°C/h)	ISO 306B50	°C	83
Température de fléchissement sous charge 1.8 MPa non recuit	ISO 75-2A	°C	68
Température de fléchissement sous charge 1.8 MPa recuit	ISO 75-2A	°C	80
Coefficient de dilatation linéaire		mm/°C	9.10 E-5
Mécaniques			
Choc Izod entaillé	ISO 180/1A	kJ/m²	9.5
Résistance au seuil d'écoulement	ISO 527-2	MPa	25
Contrainte de traction à la rupture	ISO 527-2	MPa	20
Allongement à la rupture	ISO 527-2	%	45
Module d'élasticité en flexion	ISO 178	MPa	2100
Dureté Rockwell	ISO 2039-2		R 78
Electriques			
Rigidité Diélectrique		kV/mm	150
Résistivité superficie	ISO IEC 93	Ohms	>10 E+13
Divers			
Densité	ISO 1183	g/cm³	1.04
Retrait au moulage		%	0.4-0.7
Absorption d'eau	ISO 62	%	<0.1

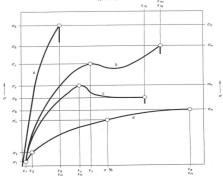
Informations générales

- ✓ Tous les tests sont effectués à 23°C sauf indication contraire. Les propriétés mécaniques sont mesurées sur éprouvettes injectées.
- ✓ Masse volumique apparente : La masse volumique apparente de tous nos grades est 0.6 g/cm³.

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 26/35

L'ESSAI DE TRACTION


Principe de l'essai


La Figure représente le comportement contrainte-déformation de cinq catégories types de matériaux polymères.

La courbe d'un matériau dur et fragile tel qu'un polymère amorphe a une pente initiale qui indique un module d'élasticité très élevée, une résistance modérée, un faible allongement à la rupture (voir figure). Tandis que l'allongement typique est de 2%. En général, la déformation de ces matériaux est élastique jusqu'à la rupture, qui est une cassure fragile. Le polystyrène, le poly (méthacrylate de méthyle) homo et de nombreuses résines phénol-formol sont des exemples de matériaux polymères durs et fragiles à la température ambiante ou au-dessous.

Le module d'élasticité et la résistance des polymères durs et résistants sont élevés. Leur allongement à la rupture est de 5%. La forme de la courbe permet souvent d'affirmer que la rupture du matériau s'est produite à un endroit où on pouvait s'attendre à une limite d'écoulement plastique. Ce type de courbe caractérise certains composés rigides de polychlorure de vinyle et des mélanges de polystyrènes.

Certains polymères, comme l'acétate de cellulose, le nitrate de cellulose et les nylons, ont un comportement dur et tenace. Leur contrainte à la limite élastique, module d'élasticité, résistance et leur allongement sont élevés.

Sous l'effet d'un étirage, la plupart des polymères de ce groupe subissent un écoulement à froid qui produit une striction dans l'éprouvette. L'étirage à froid améliore la résistance et constitue donc un procédé très important de la technologie des fibres synthétiques.

Les polymères mous et tenaces ont un faible module d'élasticité, des contraintes à la limite élastique peu élevées, une résistance à la rupture modérée et un allongement pouvant aller de 20 à 1000%. Les courbes contraintes - déformation de ce type caractérisent le PVC plastifié et les caoutchoucs (élastomères).

Calculs et expression des résultats

On mesure l'effort en fonction de l'allongement.

Δl est la variation d'allongement correspondant à une force F.

Les courbes données par les fabricants de matière sont : Contrainte en fonction de l'allongement pour cent.

La contrainte σ

La contrainte set le rapport de la force sur la section de l'éprouvette.

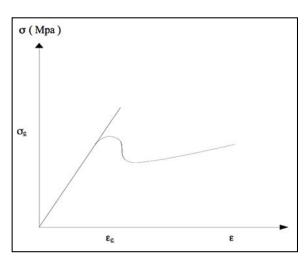
F est exprimé en Newton (N) S est exprimé en mm2 $\mathbf{F} = \frac{\mathbf{F}}{\mathbf{S}}$

σ peut donc s'exprimer en N/mm2 mais l'unité légale est le MPa. Remarque : 1 MPa = 1 N/mm2

 $F \\ \sigma = \frac{F}{S}.$ La section normalisée de l'éprouvette est de 40 mm2 (épaisseur 4 mm x largeur 10 mm) $\sigma = \frac{F}{S}.$

L'allongement ε

La partie calibrée de l'éprouvette est égale à l_0 . l_0 = 50 mm L'allongement ϵ exprimé en % est égale à :


$$\varepsilon(\%) = \frac{\Delta l}{l_0} * 100$$

A partir de ces courbes, on peut définir:

- Le module de YOUNG ou module d'élasticité :

Pour la détermination du module de YOUNG ou module tangent d'élasticité, on prend deux points \mathcal{E}_1 et \mathcal{E}_2 qui correspondent à deux valeurs de σ (σ_1 et σ_2), on définit E.

$$E = \frac{\sigma_2 - \sigma_1}{\varepsilon_2 - \varepsilon_1}$$

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 27/35

Formulaire MSP (Maîtrise Statistique des Procédés)

1° Carte des moyennes :

-Ligne centrale= $\overline{\overline{X}}$

- Limite inférieure de contrôle : LIC $\overline{X} = \overline{\overline{X}}$ - $A_2 * \overline{R}$

- Limite supérieure de contrôle : LSC $\overline{X} = \overline{\overline{X}} + A_2 * \overline{R}$

Avec:

 \overline{R} = Moyenne des étendues des échantillons

 A_2 = Coefficient

 $\overline{\overline{X}}$ = Moyenne des moyennes des échantillons

2° Carte des étendues :

-Ligne centrale= \overline{R}

- Limite inférieure de contrôle : LIC $R = D_3 \cdot \overline{R}$ D_3 et D_4 = coefficients (constantes)

- Limite supérieure de contrôle : LSC $R = D_4 \cdot \overline{R}$ \overline{R} = Moyenne des étendues des échantillons

3°Capabilité du procédé:

L'indice de capabilité procédé **c**P permet d'apprécier la dispersion du procédé sans tenir compte du centrage.

$$C_P = \frac{Ts - Ti}{6.\sigma}$$
 soit $\frac{IT}{6.\sigma}$ avec : $Ts = Tolérance supérieure$

Pour s'affranchir du calcul fastidieux de l'écart-type σ , on adopte la formule Ti = Tolérance inférieure

approximée de σ ainsi que les critères du tableau suivant : IT = Intervalle de tolérance

Taille de	Constantes			
l'échantillon	A ₂	D ₃	D ₄	D _n
5	0.577	0	2.114	2.326

$$\sigma = \frac{\bar{R}}{Dn}$$

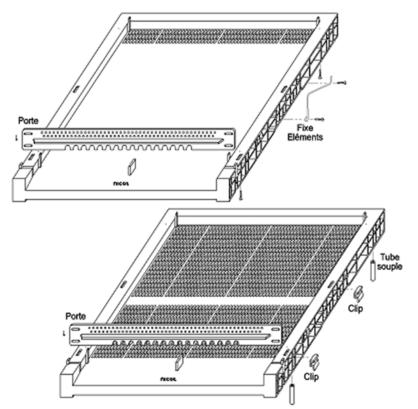
Le coefficient de capabilité procédé cpk permet d'apprécier la dispersion e

$$Cpk_1 = \frac{cote \, sup - \overline{\overline{X}}}{3.\sigma} \qquad \text{et} \qquad Cpk_2 = \frac{\overline{\overline{X}} - cote \, inf}{3.\sigma}$$

Soit Cpk₁ et Cpk₂, puis on choisit la plus petite valeur comme indice Cpk₁

Le procédé est capable lorsque Cpk ≥ 1

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 28/35


Annexe outillage composites A3

DOSSIER CHASSIS DE FOND

1°Photo de la pièce

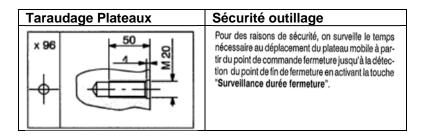
2°Critères du cahier des charges

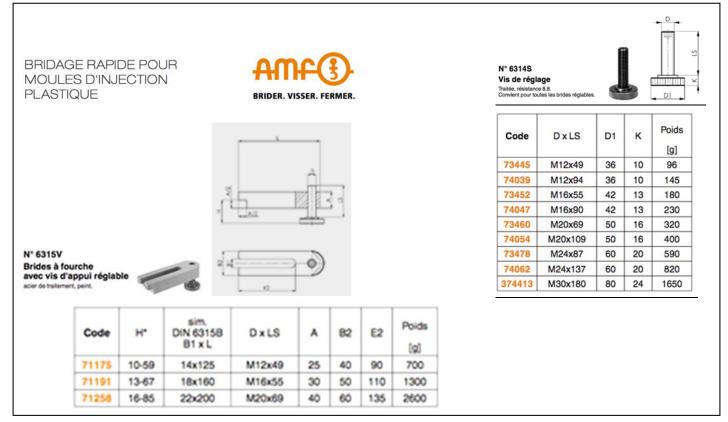
2 types de ventilation : Arrière / Totale

Dimensions externes: 430 x 540 x 45 mm Avantages: Matière, Alimentarité, nettoyage,

Spécifications techniques :

- Grillages injectés dans la masse, de dimensions idéales pour les pelotes de pollen.
- -Entrée de 16 mm avec encoche pour une porte d'entrée.
- Longueur totale : 540 mm. La planche d'envol pourra être recoupée tous les 10
- Emplacements sur les côtés des trous de vis pour les fixe-éléments ou 4 emplacements sur le dessus pour fixer le fond au corps avec des vis à tête ronde.
- Emplacements sur les côtés pour monter 2 clips (vendus séparément). Emplacements identiques sur le corps, la hausse, le nourrisseur couvre-cadres... Possibilité de monter 4 clips entre le fond et le corps.
- Crans antiglisse sur la semelle du fond de
- 2 butées à l'avant et 4 centreurs qui se situeront dans les angles intérieurs du corps.
- Une nervure au centre de la planche d'envol évite la déformation de celle-ci.


CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 29/35

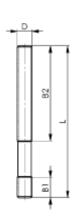

Dossier machine BILLION GM & Accessoires de bridage 1/2

La société sous-traitante possède une presse BILLION Gamme GM 4700 H 2000 (suivant EUROMAP)

Passage entre	Forces de	U	nités d'in	jection /	Injectio	n units / S _i	oritzeinheite	n
colonnes H x V	fermeture	H2000	H3500	H4200	H6860	H10140	H16470	
Space between tie	Clamping							
bars H x V	forces	Diamètres de vis / Screw diameters / Schneckendurchmesser (mm)						
Holmenabstand	Schliesskräfte	65	75	75	90	105	120	
H x V		70 75	80 85	80 85	96 105	120 140	140 160	
mm	T.	80	90	90	120			
820 x 820	430							
820 x 820	470							
930 x 930	550							
930 x 930	600							
1100 x 1100	750							
1100 x 1100	800							
1400 x 1200	1000							
1400 x 1200	1100							

Diamètre de la vis = 70 mm

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 30/35


Dossier machine BILLION GM & Accessoires de bridage 2/2

DIN 6379

Goujons

à filet roulé. M 6 à M12: résistance 10.9. M14 à M42: résistance 8.8. (Longueurs normalisées)

Code	DxL	B1	B2	Unité d'emballage	Poids
Code					
					[g]
84772	(M 6x 32)	9	16	50	8
86546	(M 6x 40)	9	20	50	9
84780	M 6x 50	9	30	50	11
85522	(M 6x 63)	9	40	50	14
84798	M 6x 80	9	50	50	18
81257	M 8x 40	11	20	100	10
84806	M 8x 63	11	40	50	20
81273	(M 8x 80)	11	50	50	25
84814	M 8x100	11	63	50	30
84756	(M 8x125)	11	75	50	36
84822	(M 8x160)	11	100	50	45
81299	M10x 50	13	25	50	25
84830	M10x 80	13	50	50	40
86041	(M10x100)	13	75	50	50
81315	M10x125	13	75	25	62
85928	(M10x160)	13	100	50	80
84848	(M10x200)	13	122		100
84855	M12x 50	15	25	25	37
81331	(M12x 63)	15	32	25	45
84863	M12x 80	15	50	50	55
81349	(M12x100)	15	63	50	70
84871	M12x125	15	75	25	90
85480	(M12x160)	15	100	25	113
84889	(M12x200)	15	122		140
81372	(M14x 63)	17	32	25	80
84467	(M14x80)	17	50	25	85
81380	(M14x100)	17	63	25	90
84475	(M14x125)	17	75	25	120
81398	(M14x160)	17	100	25	150
86553	(M14x200)	17	122		195
84897	(M14x250)	17	160		240
84905	M16x 63	19	32	25	85
81414	(M16x 80)	19	50	25	105
84913	M16x100	19	63	25	130
81422	(M16x125)	19	75	25	160
84921	M16x160	19	100	25	218
85498	(M16x200)	19	122		280
84939	M16x250	19	160		325 425
85548	(M16x315)	19	180		
85472	(M16x500)	19 23	315 50	25	650 130
84947 84954	(M18x 80)	23	75	25	200
	(M18x125)				
86561	(M18x160)	23	100 122		255 320
81471 81489	(M18x200)	23	150		400
	(M18x250)				
84962 84970	(M18x315)	23 27	180 32		500 185
	M20x 80				_
84988 85506	M20x125 (M20x160)	27 27	70 100		255 330
	,	27	100		
81513	M20x200				410
81521 84996	(M20x250) M20x315	27 27	160 200		510 640
54995	M20X315	21	200	•	640

Code	Modèle	E	М	R	s	Poids [g]
82396	M12	21,9	18	17	*19	28
82321	(M14)	24,2	21	20	21	34
82412	M16	27,7	24	22	24	58
82420	(M18)	31,2	27	24	27	83
82438	M20	34,6	30	27	30	110
82339	(M22)	39,2	33	30	34	185
82453	M24	41,5	36	32	36	195
82479	M30	53,1	45	41	46	405
82487	M36	63,5	54	50	55	715

* Ancienne norme DIN. () Norme DIN étendue.

DIN 6340
Rondelles plates
traitées (350 + 80 HV30)

Code	Modèle	Modèle pouce	D1	D2	s	Poids
						[q]
82842	M12	1/2	13	35	5	35
82859	(M14)		15	40	5	40
82867	M16	5/8	17	45	6	60
82875	(M18)	-	19	45	6	60
82883	M20	3/4	21	50	6	73
82891	(M22)	7/8	23	50	8	92
82909	M24	7/8	25	60	8	170
82925	M30	1 1/8, 1 3/16	31	68	10	230
82925	(M36)	1 1/4, 1 3/8	38	80	12	350

() extension de la DIN.

Cotes selon DIN, mais poinçonnées et planées à la presse.

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 31/35

Caractéristiques du produit

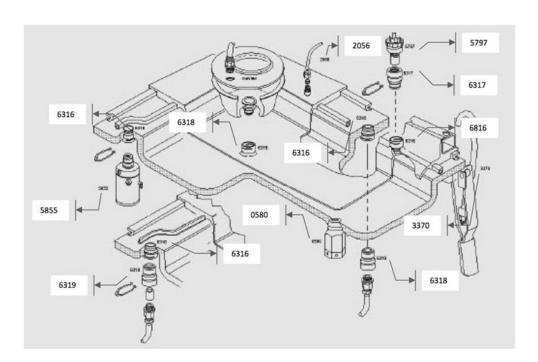
Désignation du produit :	Châssis de fond	Référence du produit :	ChassFon HDPE
Dimensions hors-tout	450x 540 x 45 mm	Masse pièce en kg	1.5

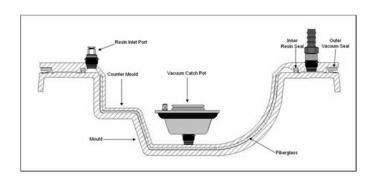
Caractéristiques de la presse

Machine :	Billion 4700 H 2000	Diamètre de la vis :	Ø 70 mm
Force de verrouillage maxi :	4700 kN	Temps de cycle à vide :	120 s
Pression d'injection maxi :	2000 bars	Cadence horaire :	30 p/h
Moule n°	PL T01	Disquette n°	

Matière

Abréviation	HDPE	Référence :	DOW HDPE 25055E
Broyé	OUI	Pourcentage :	5%
Colorant	HDPE marron	Pourcentage :	En masse


Paramètres de moulage


		VALEUR	UNITE			VALEUR	UNITE
COURSES	Ouverture Sécurité outillage Verrouillage Ejection Commande éjection Vitesse LR Vitesse RL Contact buse Recul ponton Point de commutation Dosage Décompression AV Décompression après dosage	300 40 0.5 20 300 240 200 35 20 8 A calculer /	mm mm mm mm mm mm mm mm mm mm mm	VITESSES	Ouverture palier n°1 Ouverture palier n°2 Ouverture palier n°3 Fermeture palier n°3 Fermeture palier n°3 Verrouillage Sortie éjection Rentrée éjection Injection palier n°1 Injection palier n°2 Injection palier n°3 Dosage Avance ponton Recul ponton	100 200 50 50 200 50 / 45 120 215 / 150 30	mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s
FORCES	Ouverture Fermeture Sécurité outillage Verrouillage Ejection sortie Éjection rentrée Appui ponton Injection affichée Injection réelle Maintien paliers N°1/2/3 Décompression Contre-pression	125 130 75 420 50 35 60 1400 1320 1050/950/650 250 180	kN kN kN kN kN kN bars bars bars bars	TEMPERATURES	Zone N°1 (buse) Zone N°2 Zone N°3 Zone N°4 Zone N°5 Buse chaude du moule Bloc chaud n°1 Bloc chaud n°2 Bloc chaud n°3 Bloc chaud n°4 Régulation PF moule Régulation PM moule	A déterminer A déterminer A déterminer A déterminer A déterminer / / / / / 65 65	သိလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလို
TEMPS	Injection réelle Sécurité outillage Maintien paliers n° 1/2/3 Refroidissement Entre cycle Contrôle cycle Cycle réel Dosage Décompression / Succion Verrouillage	6.5 3.5 4 /3/ 2 80 2 150 A déterminer 20 2	5 5 5 5 5 5 5	AUTRES	Temps de réglage Temps de montage Retard dosage Température de masse Température trémie Temps d'ouverture Temps de fermeture Temps avance/ recul Temps sortie éjection Temps rentrée éjection	60 45 10 230 240 65 3.5 4.5 2/ 2 2.5 2	min min s °C °C S S S S

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 32/35

Extrait catalogue accessoires RTM MATRASUR / DIATEX

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 33/35

Extrait catalogue accessoires RTM MATRASUR

Récapitulatif de besoins en consommables composites

		Accessoires RTM		
Eléments	Piège à résine	Joint à lèvres	Insert universel	Insert pour tuyau
Référence	XE-0213	5895	6316	6318

Les joints et les profils de joint :

Réf.: 3391 Profil pour empreinte de joint à lèvres. Rainure 26x13mm. Fourni en longueur de 25m.

Réf.: 3340 Profil rouge pour empreinte de joint dynamique. Réutilisable. Fourni en longueur de 25m.

Réf.: 4530 Profil pour réalisation du canal de circulation résine lors de la construction d'un moule. Fourni en longueur de 25m.

Réf.: 6438 Profil pour réalisation du canal de circulation résine avec plus petite section (la moitié de celle de réf. 4530).

Réf.: 1680 Joint pour empreinte de joint à lèvres en néoprène. Rainures: 26x13mm Fourni en longueur de 25m.

Réf.: 5895
Joint à lèvres en silicone pour moules RTM.
Rainures: 26x13mm.
Fourni en longueur de 25m.

Réf.: 1114
Joint dynamique silicone.
Grande souplesse d'ajustement, ouverture sécurisée du moule.
Permet une meilleure étanchéité sur les portées verticales de fermeture du moule.
Fourni en longueur de 25m.

Réf.: 6439
Joint en V alternatif au joint dynamique. Se monte dans le même rainurage. Joint à portée réduite.

Ronne fermeture, même sur

Bonne fermeture, même sur surfaces polluées par le gelcoat. Fourni en longueur de 25m.

Réf.: 2056 Kit d'installation de joints dynamiques. Permet la connexion d'air au joint dynamique.

Accessoires:

Réf. : 6316 Insert universel avec clip.

Réf.: 2146-view-uni Piège à résine avec couvercle transparent. Corps en inox, verrouillé et jointé. Permet une déconnexion facile après polymérisation. Cap. 1 L.

Réf.: 6318 Adaptateur pour tuyau de vide 10mm sur insert universel. Alternative au piège à résine.

Réf.: 6319 et 6319-6mm Adaptateur 10mm/6mm pour fixation tuyau de résine sur insert universel.

Réf.: 6315 Adaptateur pour tube ¾" sur moule via l'insert universel. Canule pour adaptateur: réf. 6028.

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 34/35

Vues simplifiées du moule RTM

PARTIE FIXE

PARTIE MOBILE

CONCOURS GENERAL DES METIERS Spécialité PLASTIQUES ET COMPOSITES	SUJET		SESSION 2016
Epreuve écrite d'admissibilité	Durée : 4 heures	Code examen : JK	Page : 35/35