BREVET DE TECHNICIEN SUPÉRIEUR

CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

SESSION 2016

ÉPREUVE E5: CONCEPTION DÉTAILLÉE

SOUS-ÉPREUVE E51:

CONCEPTION DÉTAILLÉE: PRÉ-INDUSTRIALISATION

Durée : 4 heures

Coefficient: 2

AUCUN DOCUMENT AUTORISÉ

Matériel autorisé :

L'emploi de toutes les calculatrices programmables, alphanumériques ou à écran graphique est autorisé à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (circulaire n°99-186 du 16 novembre 1999). L'échange de calculatrices ou de tout autre objet est interdit pendant l'épreuve.

Le sujet comporte 3 dossiers de couleurs différentes :

- Dossier Technique (DT 1/14 à DT 14/14) jaune
- Dossier Travail Demandé (TD 1/4à TD 4/4) vert
- Dossier Documents-Réponse (DR 1/8 à DR 8/8) blanc

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Tous les documents-réponse, même vierges, sont à remettre en fin d'épreuve.

Tous les documents-réponse doivent être agrafés dans la feuille de copie.

BREVET DE TECHNICIEN SUPÉRIEUR

CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

SESSION 2016

ÉPREUVE E5: CONCEPTION DÉTAILLÉE

SOUS-ÉPREUVE E51:

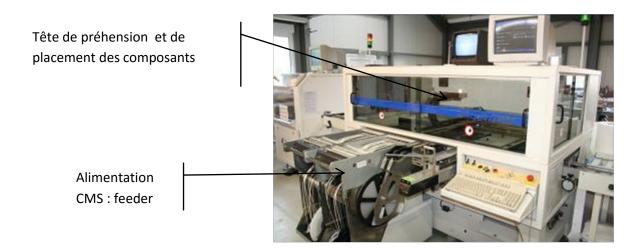
CONCEPTION DÉTAILLÉE: PRÉ-INDUSTRIALISATION

Durée : 4 heures

Coefficient: 2

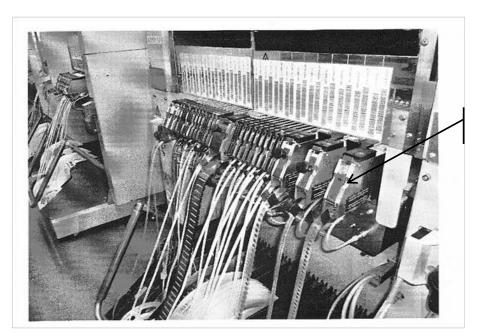
FEEDER

DOSSIER TECHNIQUE


Ce dossier comporte 14 documents repérés DT1/14 à DT 14/14

A. Mise en situation et présentation du produit	DT 2-3/14
B. Principe de fonctionnement du module support mot	eur et DT 3-4/14
de la molette d'entraînement	
C. Problématique	DT 5/14
D. Étude du support moteur	DT5 à 11/14
E. Étude de la molette d'entraînement	DT12 à 14/14

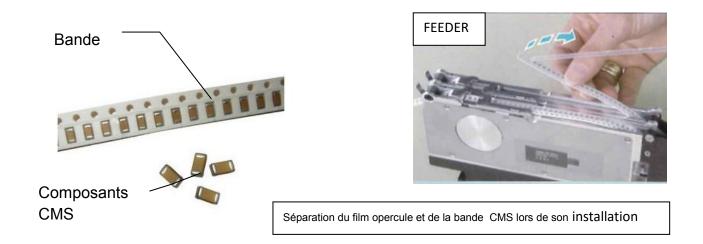
BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 1 / 14


A. Mise en situation et présentation

Le FEEDER est utilisé sur les machines de placement des **C**omposants **M**ontés en **S**urface (CMS). Ces machines industrielles de placement sont présentes sur les chaînes automatisées de fabrication des cartes électroniques.

Le FEEDER ou nourrisseur permet d'amener et de présenter le CMS devant la pince de préhension et de placement du composant.

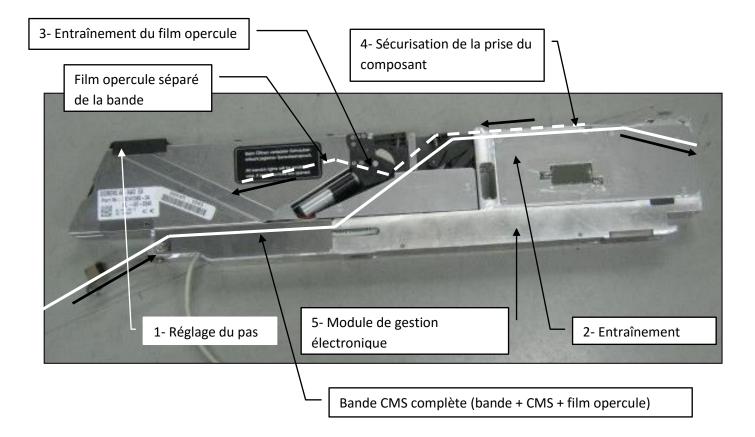
Ce composant pourra ainsi être mis en place sur la carte électronique en cours de fabrication.



FEEDER

Le CMS est conditionné sur des bandes en bobines.

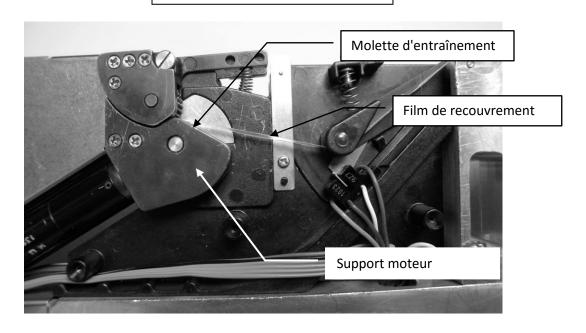
BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 2 / 14

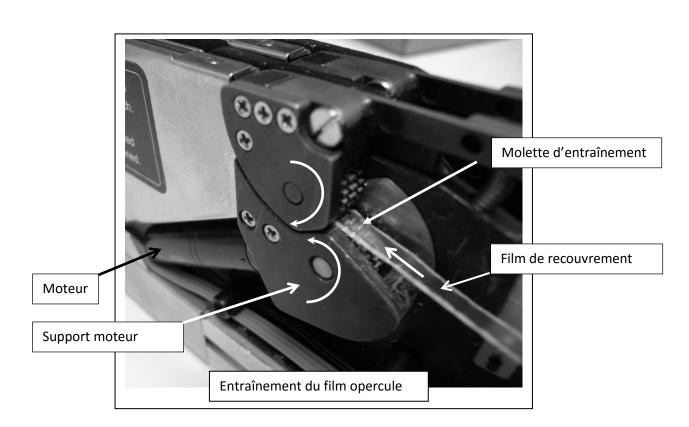

Présentation du conditionnement

- Présentation du FEEDER

Le FEEDER rassemble cinq modules fonctionnels distincts : (Voir figure ci-dessous).

- 1. Le module réglage du pas d'avancement de la bande. Ce pas dépend de la taille du CMS à installer
- 2. Le module entraînement de la bande support du composant.
- 3. Le module entraînement et récupération du film opercule de protection du composant.
- 4. Le module sécurisation de la prise du composant.
- 5. Module de gestion électronique.




BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 3 / 14

B. Principe de fonctionnement du module d'entraînement du film opercule

Le support-moteur intègre le moteur et la molette d'entraînement qui assure le défilement de la bande opercule.

ENTRAÎNEMENT DU FILM OPERCULE

BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 4 / 14

C. Problématique

1. L'entreprise prévoit une nouvelle fabrication de 5 000 Feeder. Le coût de fabrication est excessif pour une telle série. L'entreprise recherche des solutions pour réduire ce coût.

La première étude porte sur la possibilité de réaliser le support moteur (DT 4/14) en injection plastique, alors que jusqu'à présent il était usiné en fraisage à commande numérique.

2. Les changements de formes du support moteur ont entraîné des changements de formes de la molette.

La deuxième étude porte sur la réalisation de la molette sur un tour à commande numérique en optimisant la chronologie d'usinage.

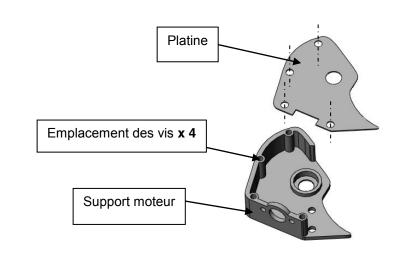
D. Etude du support moteur

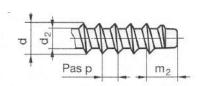
Données pour l'injection de 2 pièces par moulée		
MATIÈRE	РОМ	
Prix matière (en € par kg)	25 €	
Masse d'une pièce (en gramme)	3 gr	
Masse de la carotte et des canaux (en gramme)	4 gr	
MOULE	CARCASSE STANDARD	
Coût de l'outillage (carcasse et fabrication)	6000 €	
Nombre d'empreintes	2	
MACHINE	PRESSE À INJECTER	
Taux horaire machine (en € par heure)	50 €	
Temps de cycle, 2 pièces par moulée (en minute)	1 minute	
Coût de montage de l'outillage sur la presse (en €)	100 €	
Données pour l'usinage commande numérique		
Prix de revient d'une pièce pour l'usinage en	3 €	
commande numérique (en €)		

Tableau 1- Données des caractéristiques techniques concernant la réalisation du support moteur

BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 5 / 14

Fixation par vis auto-taraudeuses:


L'ensemble platine / support moteur est assemblé par 4 vis autotaraudeuses dont voici les caractéristiques :


• Tête cylindrique large fendue

• Diamètre d: 2,2 mm

• Longueur L = 6,5 mm

Bout plat (symbole F)

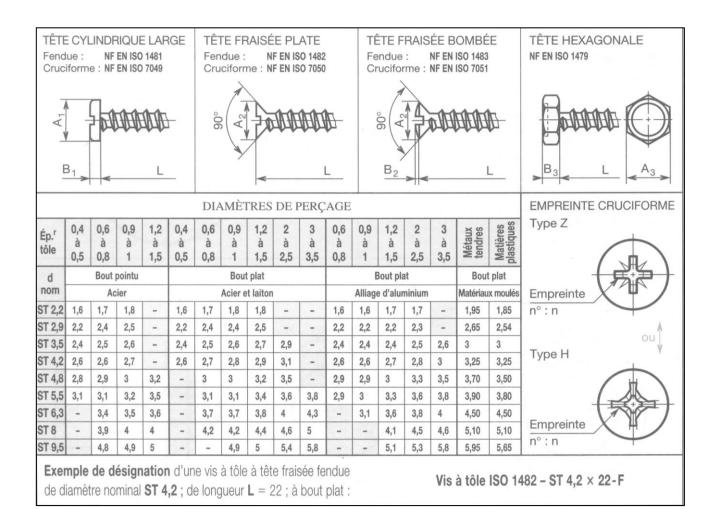
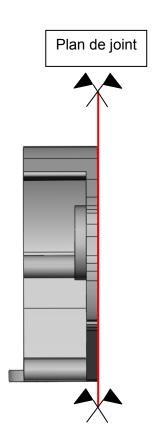
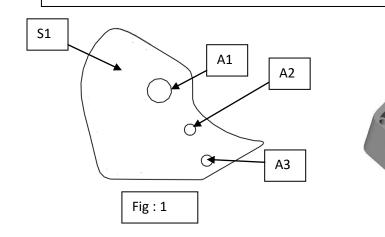



Tableau 2- Données des caractéristiques des vis auto-taraudeuses et leurs références


BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation		Session 2016	
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 6 / 14

Force de verrouillage et choix de la presse à injecter (2 PIÈCES INJECTÉES PAR MOULÉE)

Position de la pièce dans l'outillage d'injection, caractéristiques de la matière injectée et les différentes surfaces projetées.

Matière du support moteur :	POM
Pression d'injection :	200 Mpa
Retrait :	2,2 %
Surface d'alimentation (carotte et canaux) :	95 mm2
Surface 1:	694.8 mm2
Ajourage 1 :	19.62 mm2
Ajourage 2 :	4.33 mm2
Ajourage 3 :	4.33 mm ²

PRESSE N°1

Boy XS

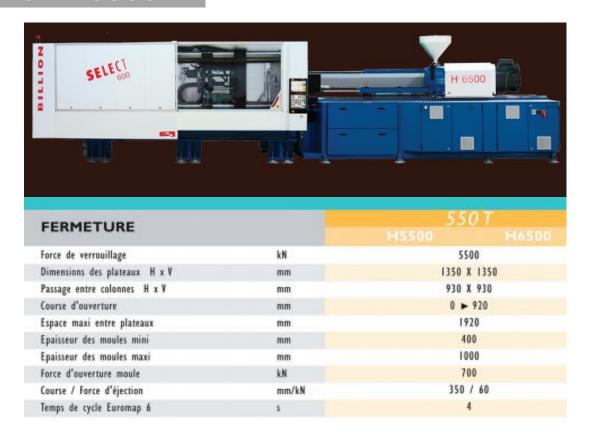
Caractéristiques techniques

	xs
Dimensions caractéristiques Euromap	100-14
Force de fermeture	100 kN
Ecartement des plateaux	250 mm
Course d'ouverture du moule	150 mm maxi
Passage entre colonnes	160 mm horizontal 205 mm diagonal
Poids injectable (PS)	de 0,1 g à 7,8 g
Volume max. injectable (théorique)	de 0,1 cm³ à 8,0 cm³
Diamètre de vis	12, 14 et 16 mm
Dimensions (Lxlxh) / Surface d'installation [mm/	1480 x 520 x 1380 / 0,77
Dimensions pour le transport (Lxlxh) [mm]	1500 x 700 x 1500

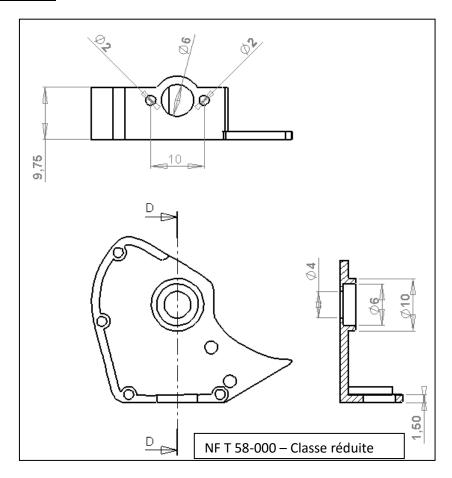
BTS CIM - Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 7 / 14

PRESSE N°2

babyplast 610P

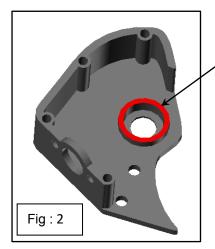

CARACTERISTIQUES

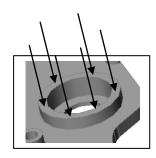
Diamètre du piston (mm)	10	12	14	16	18	
Pression d'injection (KG/cm)	2650	1830	1340	1030	815	
Force de fermeture			62,5 KN			
Force d'ouverture			4 KN			
Course d'ouverture		30	0-110 m	m		
Force d'éjection			7,5 KN			
Course d'éjection			45 mm			
Pression hydraulique	130 bar					
Capacité réservoir d'huile	16 litres					
Cycle à vide	2,4"					
Puissance installée			2,95 Kw	1		
Epaisseur moule (min-max)		70	0:135 m	m		
Mémorisation de paramètres		10	00 moule	es		
Réfrigération		circuit	t o uvert	d'eau		
Réfrigération (optionnel)	Gro	oupe fro	oid en cir	cuit fen	mé	
Poids	125 Kg					
Dimensions		1100 x	500 x 7	'00 mm		
Alimentation	3x380 Vac (3 phases+neutre+terre					


PRESSE N°3

billon H6500

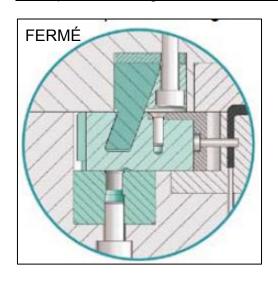
BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 8 / 14

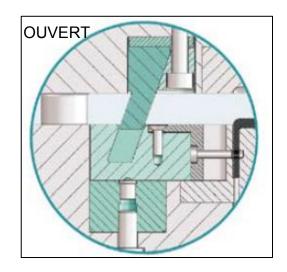

Dessin de définition partiel avec les côtes utiles à la conception du système d'éjection tubulaire et du choix du type de tiroir.


EXTRAIT DES NORMES DE TOLÉRANCES GÉNÉRALES (guide du dessinateur industriel)

16.45 Moulages par injection* - Écarts par cote ne comprenant pas de plan de joint

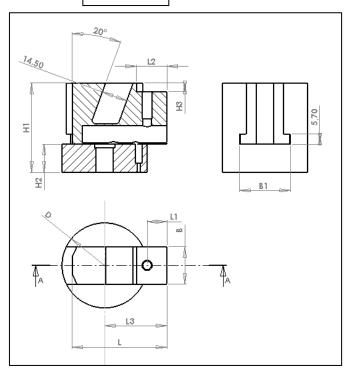
Pièces en plastique NF T 58-000													-000		
Classe de précision	≤1	3	6	10	15	22	30	40	53	70	90	115	150	200	250
Normale	± 0,13	± 0,15	± 0,17	± 0,20	± 0,22	± 0,25	± 0,27	± 0,30	± 0,35	± 0,38	± 0,43	± 0,50	± 0,60	± 0,75	± 0,90
Réduite	± 0,06	± 0,07	± 0,08	± 0,09	± 0,10	± 0,11	± 0,13	± 0,15	± 0,17	± 0,20	± 0,24	± 0,29	± 0,35	± 0,44	± 0,55
De précision	± 0,04	± 0,05	± 0,06	± 0,07	± 0,08	± 0,09	± 0,10	± 0,11	± 0,13	± 0,15	± 0,17	± 0,20	± 0,24	± 0,30	± 0,36



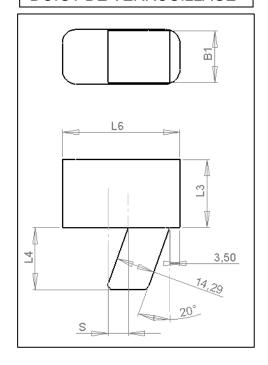

Face sur laquelle l'éjecteur tubulaire agit

BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 9 / 14

Exemple de montage avec élément standard Rabourdin, Référence 414



TYPE 1 et 2


Ce type de tiroir est disponible en 2 dimensions

TIROIR

DOIGT DE VERROUILLAGE

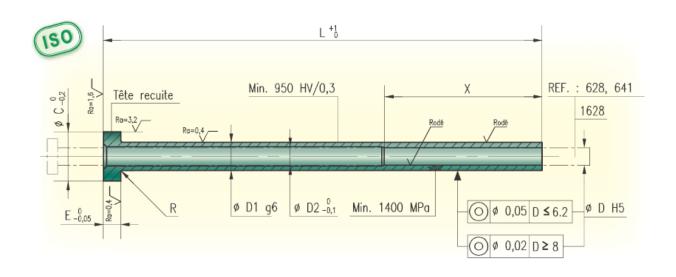
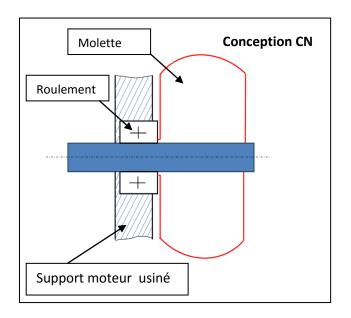
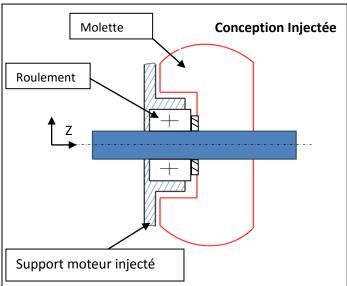

	Type	D	S	В	B1	H1	H2	Н3	L	L1	L2	L3	L4	L6
REF: 414	1	31,7	1,3	9.9	9,0	33,3	10,5	3,2	35,3	7,3	11,3	16,7	16,7	28,7
1	2	47,5	3	20,9	20	50	15,8	4,75	53	11	17	25	25	43

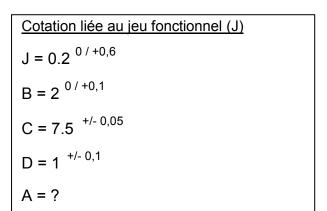
Tableau 3 - Caractéristiques des tiroirs

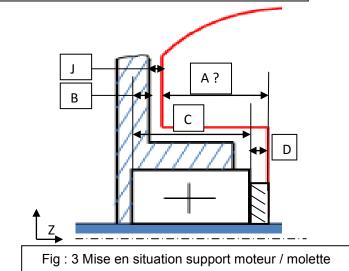
BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 10 / 14

DOCUMENTATION TECHNIQUE RABOURDIN

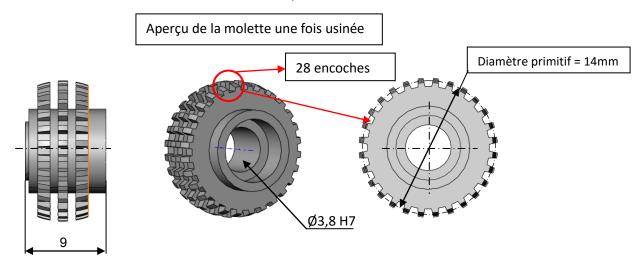

أبد	RE	F. 62	6 D=	4 L=	150	mm		}	626-	4-150					Fabrica Special Spezial	tions spéc manufacti herstellun	iales sur d ure on requ g auf Anfr	emande jest age
С	Е	R	D2	х	D1) L	75	100	125	150	175	200	225	250	275	300	325	350
12	5	0,5	4,5	45	6	3,5 3,7 4												
14	5	0,5	5	45	8	4,2 4,5 5												
16	5	0,5	5,5 6,5	45	10	5,2 6 6,2												
20	7	0,8	7,5	45	12	7												
20	7	0,8	8,5	45	12	8 8,2												
20	7	0,8	9	45	12	8,5												
22	7	0,8	9,5	45	14	9												
22	7	0,8	10,5 11	45	14	10 10,2 10,5												
22	7	0,8	11,5	45	14	11												
22	7	0,8	12,5 13	45	16	12 12,5												
26	7	8,0	14,5	45	18	14												
26	8	1	16,5	55	20	16												


Tableau 4 - Données des dimensions des éjecteurs tubulaires

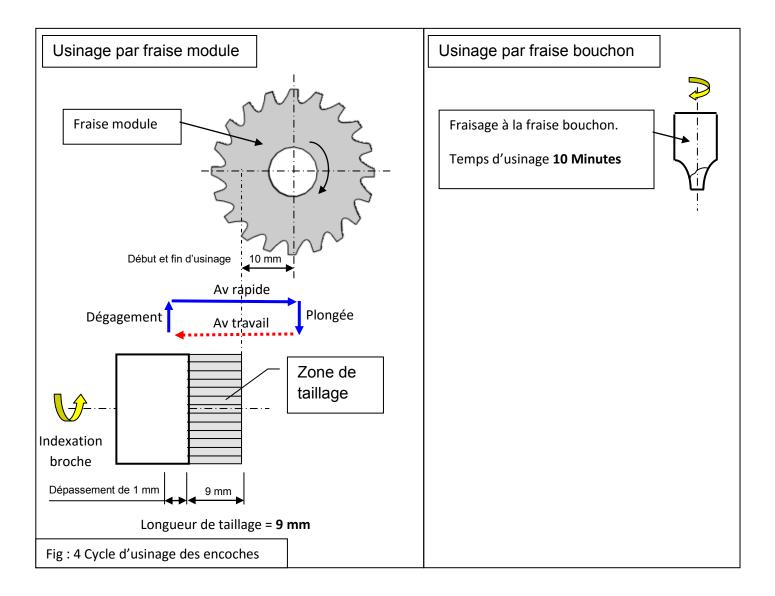

BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 11 / 14


Étude de la molette d'entraînement

Les formes du support moteur en injection plastique entrainent une modification de forme de la molette.



La molette sera usinée sur un tour à commande numérique 3 axes avec outil tournant.


BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 12 / 14

L'industriel cherche à baisser le coût de réalisation des 28 encoches de la molette. Il dispose de deux procédés de fabrication, fraisage par fraise module et fraisage par fraise bouchon.

Le bureau des méthodes a d'ores et déjà établit un calcul de temps pour le procédé d'usinage par fraise bouchon qui est de **10 minutes**. Chaque encoche est réalisée en une seule passe.

Paramètres d'usinage pour la fraise module :

Avance travail:	300 mm/min
Avance rapide:	1 000 mm/min
Temps d'indexation broche entre 2 encoches :	2 secondes
Plongée et dégagement fraise (en avance rapide, à chaque encoche) :	5 mm
Diamètre de la fraise :	30 mm

BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 13 / 14

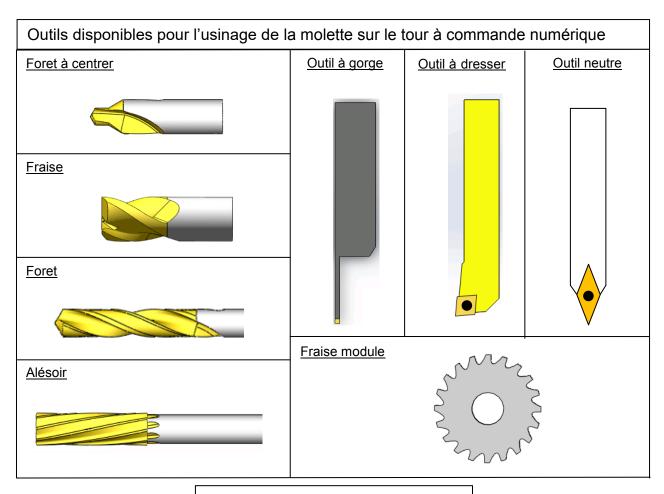


Tableau 5 – Banque de données d'outils

BTS CIM - Epreuve E51 Conception détaillée	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DT 14 / 14

BREVET DE TECHNICIEN SUPÉRIEUR

CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

SESSION 2016

ÉPREUVE E5: CONCEPTION DÉTAILLÉE

SOUS-ÉPREUVE E51:

CONCEPTION DÉTAILLÉE: PRÉ-INDUSTRIALISATION

Durée: 4 heures

Coefficient: 2

FEEDER

DOSSIER TRAVAIL DEMANDÉ

Ce dossier comporte 4 documents repérés TD 1/4 à TD 4/4

ÉTUDE 1 : SUPPORT MOTEUR

- 1. Étude de rentabilité
- 2. Conception pièce et choix d'une référence de vis
- 3. Choix d'un moyen de production
- 4. Étude de l'outillage d'injection
- 5. Étude et dessin du système d'éjection tubulaire
- 6. Dessin de l'outillage

ÉTUDE 2 : MOLETTE D'ENTRAÎNEMENT

- 7. Jeu fonctionnel
- 8. Usinage de la molette d'entraînement

BTS CIM- Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	ve : Durée : 4h Coef : 2		TD 1 / 4

ÉTUDE 1 : SUPPORT MOTEUR

1. Étude de rentabilité

Q1. Afin de valider le choix de l'injection plastique

Sur document réponse DR 2/8 et DR 3/8 et d'après les données techniques DT 5/14 (tableau1)

- a. Compléter le tableau du coût de revient d'une pièce (détailler les calculs)
- b. Tracer la courbe d'une série de pièces usinées en commande numérique
- c. Tracer la courbe d'une série de pièces injectées
- d. Indiquer sur le tracé des courbes le seuil de rentabilité
- e. Justifier le choix de l'injection plastique

2. Conception pièce et choix de vis

Q2. On veut assurer le maintien de la platine sur le support moteur

Sur feuille de copie et d'après les données techniques DT 6/14

- a. Trouver le diamètre de logement des vis auto-taraudeuses
- b. Donner la référence de la vis dans l'objectif d'une commande

3. Choix d'un moyen de production

Q3. On souhaite valider l'utilisation de l'une des presses à injecter proposées Sur feuille de copie et d'après les données techniques DT 7/14 et DT 8/14

- a. Calculer l'effort de verrouillage (détailler les calculs)
- b. Choisir la presse
- c. Justifier votre choix

4. Étude de l'outillage d'injection

- Q4. Sur document réponse DR 4/8 et d'après les données technique DT 7/14, DT 9/14 et DT 10/14
 - a. Colorier en rouge les surfaces en contre-dépouille
 - b. Donner la course minimum du tiroir qui permet l'obtention des formes en contre-dépouille
 - c. Entourer sur la figure Q4.c, la cote concernée
 - d. Choisir l'élément standard Rabourdin 414

BTS CIM- Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Code de l'épreuve : Durée : 4h Coef : 2		TD 2 / 4

5. Étude et dessin du système d'éjection tubulaire

Q5. La pièce est en partie éjectée à l'aide d'un éjecteur tubulaire (Fig. : 2 sur DT 9/14) et d'après le tableau 4 Rabourdin DT 11/14

Sur document réponse DR 5/8

- a. Dessiner à main levée (Vues 1 et 2) le système d'éjection tubulaire :
 - Nommer les éléments : broche et éjecteur
 - Préciser la mise en position et le maintien de ces éléments

Sur feuille de copie

- b. Calculer les diamètres de la broche centrale épaulée en tenant compte du retrait de la matière injectée (voir DT 7/14)
- c. Choisir l'éjecteur tubulaire et donner sa référence (longueur du tubulaire 125mm)

Sur document réponse DR 5/8

d. Préciser sur la vue 2 la cotation des différents diamètres

6. Dessin de l'outillage

- Q6. Sur document réponse DR 6/8 et d'après les données techniques DT 10/14 (utiliser différentes couleurs)
 - a) Dessiner à main levée le tiroir partie mobile en vous aidant du tableau 3 (DT10/14)
 - b) Dessiner à main levée le doigt de verrouillage voir le tableau 3 (DT10/14)
 - c) Implanter / dessiner, les broches du tiroir qui permettent d'obtenir les formes en contre-dépouille
 - d) Dessiner à main levée le noyau coté mobile qui permet d'obtenir les formes intérieures de la pièce. Préciser son maintien et sa mise en position

BTS CIM- Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	TD 3 / 4

ÉTUDE 2 : MOLETTE D'ENTRAÎNEMENT

7. Calcul de la cote de fabrication A

- Q7. A partir du jeu fonctionnel (**J**) figure 3 DT12/14 on souhaite obtenir la cote de fabrication (**A**)

 Sur document réponse DR 7/8 et d'après les données techniques DT 12/14
 - a. Tracer la chaine de cotes relative au jeu fonctionnel (J)
 - b. Calculer la cote à fabriquer (A) et son intervalle de tolérance

8. Usinage de la molette d'entraînement

Q8. D'après les données techniques DT 13/14

Sur feuille de copie

- a. Calculer le temps d'usinage avec une fraise module
- b. Quel est le procédé le plus rentable entre l'usinage avec une fraise module et l'usinage avec une fraise bouchon et justifier votre réponse
- c. Proposer un autre procédé de taillage qui permettrait de gagner de temps

Sur document réponse DR 8/8 et d'après le DT 14/14 (tableau 5)

Remarques

- Attention, privilégier le minimum de changements d'outils
- 12 opérations au maximum
- La pièce sera entièrement usinée
- d. Compléter la chronologie d'usinage. Pour chaque opération :
 - Surligner les arêtes usinées
 - Mettre en place les outils
 - Dessiner à l'aide de flèches la trajectoire des outils
 - Indiquer le nom de chaque opération dans les cadres prévus (La première opération a déjà été traitée)

BTS CIM- Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	TD 4 / 4

BREVET DE TECHNICIEN SUPÉRIEUR

CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

SESSION 2016

ÉPREUVE E5: CONCEPTION DÉTAILLÉE

SOUS-ÉPREUVE E51:

CONCEPTION DÉTAILLÉE: PRÉ-INDUSTRIALISATION

Durée : 4 heures

Coefficient: 2

FEEDER

DOSSIER DOCUMENTS RÉPONSES

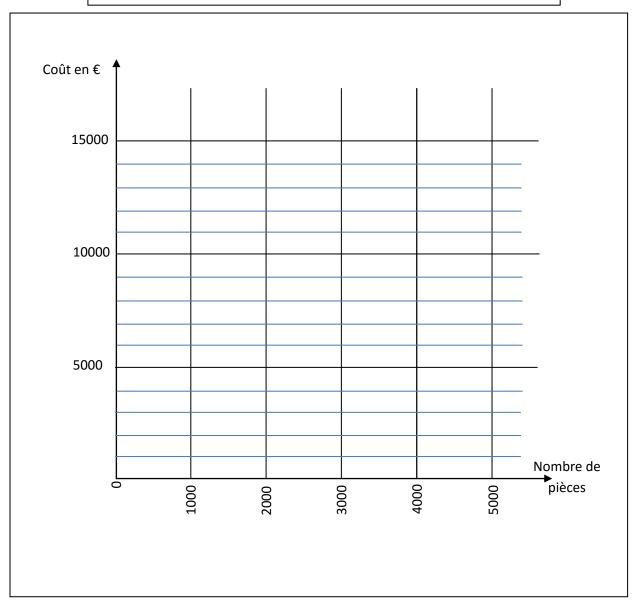
Ce dossier comporte 8 documents repérés DR1/8 à DR 8/8

ÉTUDE 1 : SUPPORT MOTEUR

<u>ÉTUDE 2 : MOLETTE D'ENTRAÎNEMENT</u>

BTS CIM Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	euve : Durée : 4h Coef : 2		DR 1/8

Q1 Étude de rentabilité


<u>Q1.a</u>

Q1.a Tableau réponse 1 : Calcul du coût de revient d'une pièce pour une série de 5 000

DÉSIGNATION	CALCULS DÉTAILLÉS
Masse injectée pour 1 pièce	gr
Coût matière pour 1 pièce	€
Coût machine pour 1 pièce	€
Exprimer, sous forme d'une équation, le coût de production en fonction du nombre de pièces	€
Coût d'une pièce pour une série de 5000 pièces	€

BTS CIM Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Code de l'épreuve : Durée : 4h Coef : 2		DR 2/8

Q1.b/ Q1.c Tableau réponse 2 : Tracé des courbes

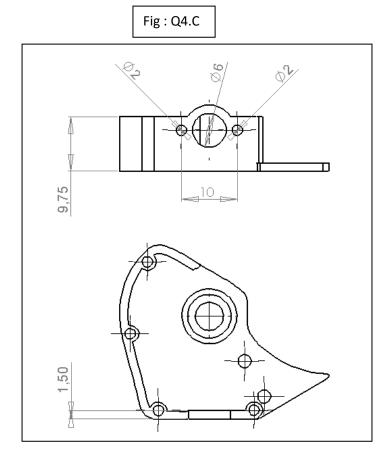
\cap	1	Ч

Seuil de rentabilité = ______ Nombre de pièces

<u>Q1.e</u>

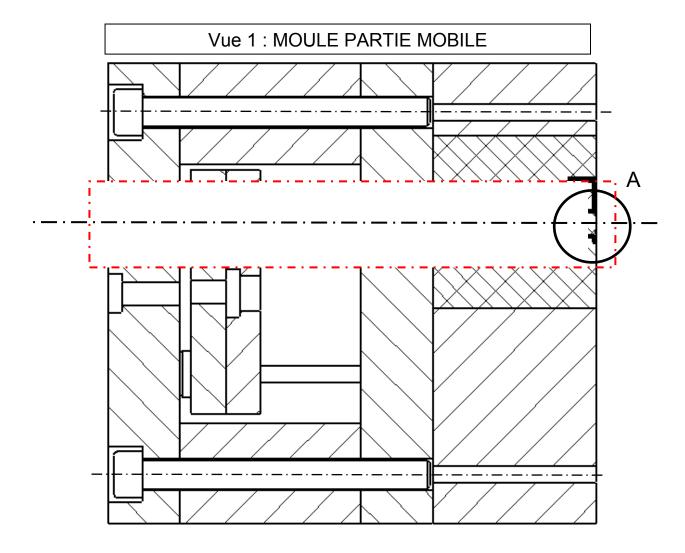
Justifier le choix de l'injection plastique :

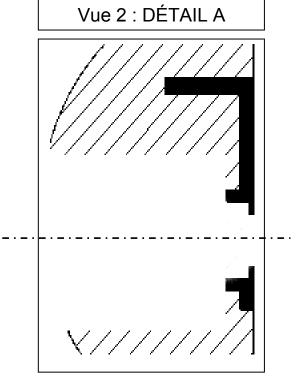
BTS CIM Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h Coef : 2		


<u>Q4.a</u>

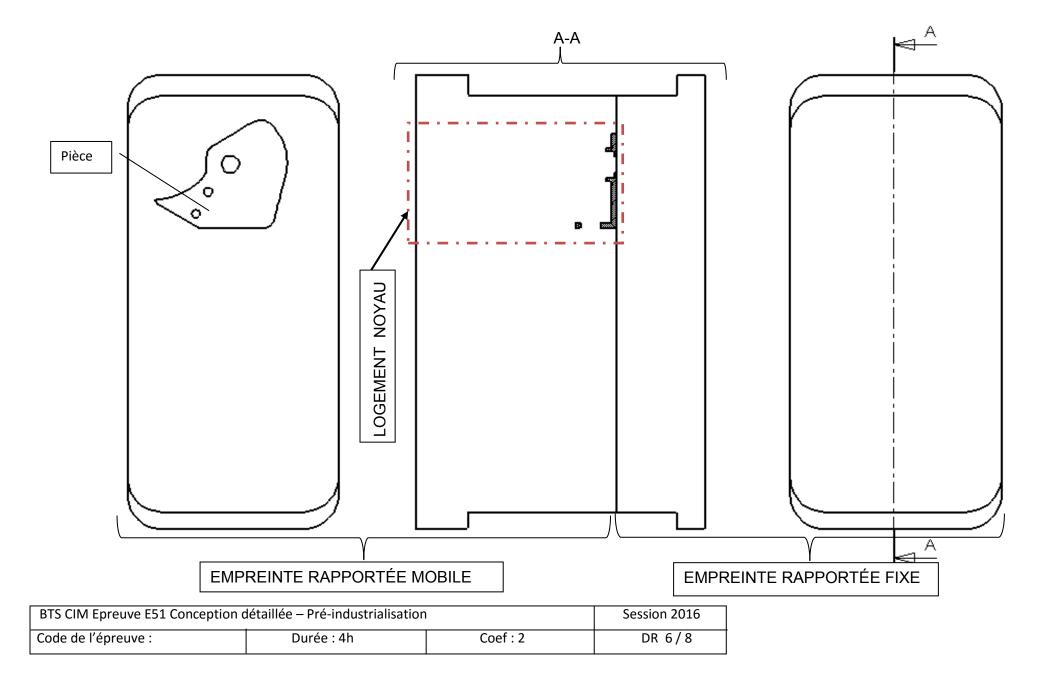
<u>Q4.b</u>

Course minimum du tiroir : _____

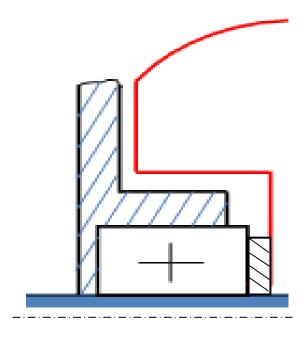

<u>Q4.c</u>



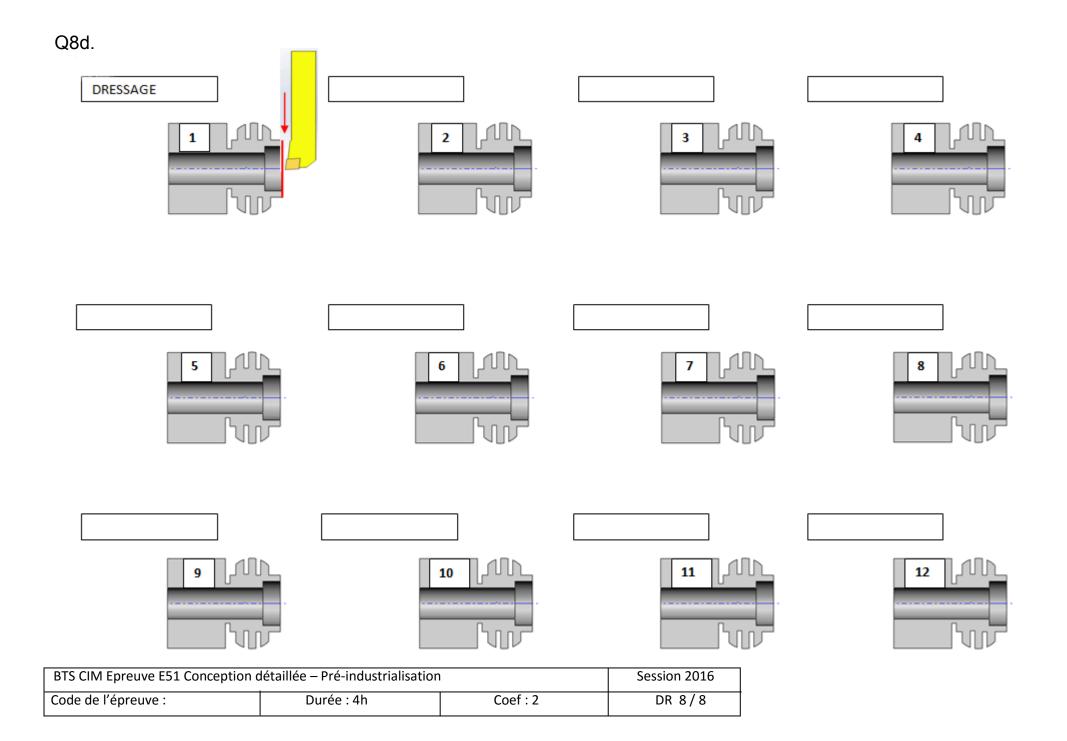
<u>Q4.d</u>


Élément standard Rabourdin : _____

BTS CIM Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	DR 4/8	



BTS CIM Epreuve E51 Conception détaillée – Pré-industrialisation			Session 2016
Code de l'épreuve :	Durée : 4h	Coef : 2	DR 5/8


Q7a. Chaine de cotes

Q7b. Calcul de la cote à fabriquer (A)

Détailler votre calcul			
		A	=

BTS CIM Epreuve E51 Conception of	Session 2016		
Code de l'épreuve :	Durée : 4h	Coef : 2	DR 7/8

