
|                | Académie :                |                |              | Session:                                  |
|----------------|---------------------------|----------------|--------------|-------------------------------------------|
| 当              | Examen:                   |                |              | Série:                                    |
| CADRE          | Spécialité / Option : Rep |                | Repèr        | e de l'épreuve :                          |
| CA             | Epreuve / Sous-épreuve :  |                |              |                                           |
| CE             | NOM:                      | Préno          | ms:          |                                           |
| DANS C         | Né(e) le :                | N° du ca       | ındidat      |                                           |
| Ž              |                           | (le numéro est | celui qui fi | gure sur la convocation ou liste d'appel) |
| NE RIEN ECRIRE |                           |                |              |                                           |

## ENRUBANNEUSE KVERNELAND



#### NE RIEN ECRIRE DANS CETTE PARTIE

# E1 : ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

## <u>SOUS-ÉPREUVE E 11 :</u> <u>ÉTUDE D'UN SYSTÉME TECHNIQUE</u>

- Unité U 11 -

# **DOSSIER TRAVAIL**

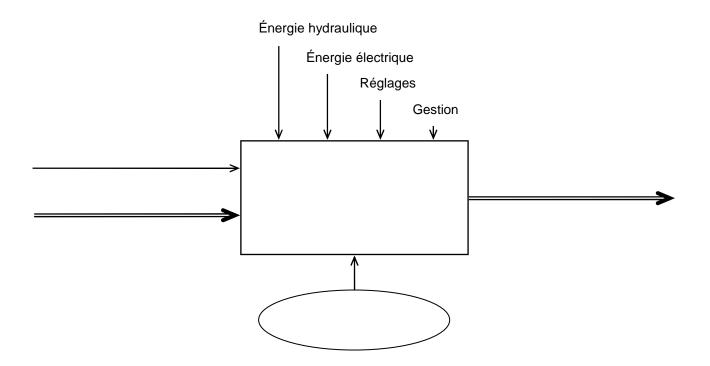
| Page DT 2/10  | /24   |
|---------------|-------|
| Page DT 4/10  | /23   |
| Page DT 5/10  | /41   |
| Page DT 6/10  | /24   |
| Page DT 7/10  | /16   |
| Page DT 8/10  | /18   |
| Page DT 9/10  | /16   |
| Page DT 10/10 | /38   |
| Total         | / 200 |
| Note          | /20   |

Calculatrice à fonctionnement autonome autorisée. L'utilisation de l'imprimante est interdite.

■ DOSSIER TRAVAIL : Identifié DT, numéroté DT 1/10 à DT 10/10

Le Dossier Travail est à rendre dans son intégralité en fin d'épreuve

| 1506-MMST11 | Baccalauréat Professionnel Session 2015                     |       |       |           | U 11       |
|-------------|-------------------------------------------------------------|-------|-------|-----------|------------|
|             | <b>MAINTENANCE DES MAT</b>                                  | ÉRIEL | _S    |           |            |
|             | Options : A – B - C                                         |       |       |           | DT<br>1/10 |
|             | ientifique et technique<br>E11 Etude d'un système technique | Durée | : 3 h | Coef. : 2 | 1 / 10     |


NE RIEN ECRIRE DANS CETTE PARTIE

Afin de répondre à la problématique (voir DR2/6), on doit tout d'abord étudier le fonctionnement et la cinématique de l'enrubanneuse (fonction globale).

### **ANALYSE FONCTIONNELLE**

1 - A partir du dossier ressource DR2/6, complétez l'actigramme A-0 de l'enrubanneuse.

/6



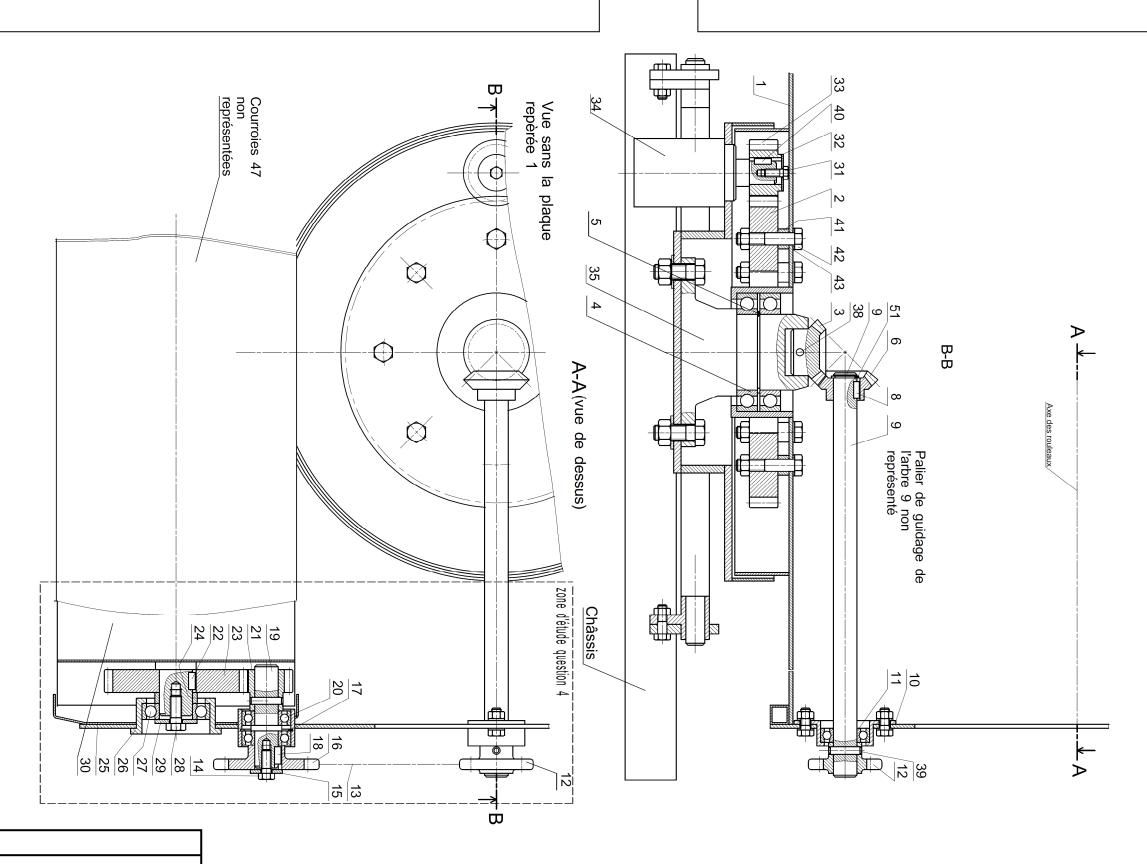
### MODELISATION DU SYSTEME « transmission »

#### A partir des DR 4/6 à DR 6/6

2 - En respectant les couleurs du tableau ci-dessous et en vous aidant des DR4/6 àDR6/6, Identifiez les différents groupes cinématiques en les coloriant sur les deux vues du dessin d'ensemble de la page suivante DT3/10.

/18

| Désignation               | Groupe                    | Pièce principale du groupe |
|---------------------------|---------------------------|----------------------------|
| Table                     | Groupe A en ROUGE         | pièce(s) repère 1          |
| Arbre intermédiaire long  | Groupe B en VERT          | pièce(s) repère 9          |
| Arbre intermédiaire court | Groupe C en ORANGE        | pièce(s) repère 19         |
| Châssis                   | Groupe D(ne pas colorier) | pièce(s) châssis           |
| Rouleau                   | Groupe E en MARRON        | pièce(s) repère 30         |
| Pignon moteur             | Groupe F en JAUNE         | pièce(s) repère 33         |
| Pivot                     | Groupe G en BLEU          | pièce(s) repère 35         |


Total page /24

Bac. Pro. Maintenance des matériels Options : A – B - C Session 2015 E1 Épreuve scientifique et technique Sous-Épreuve E11 Étude d'un système technique

U 11

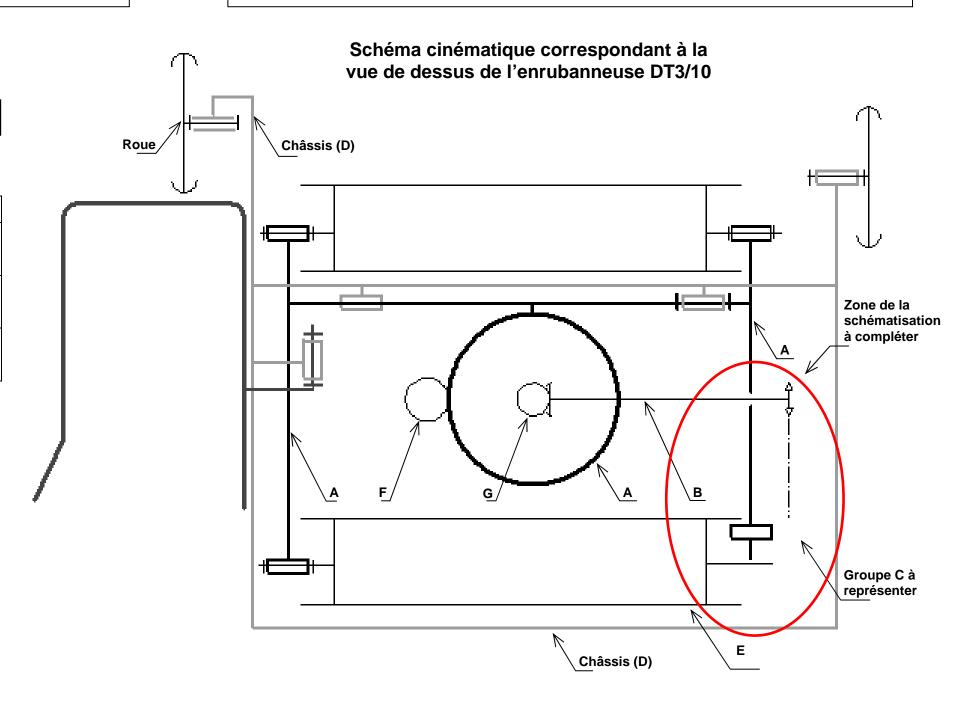
DT 2/10

#### NE RIEN ECRIRE DANS CETTE PARTIE



ENRUBANNEUSE TRANSMISSION

Bac. Pro. Maintenance des matériels Options : A – B - C Session 2015


#### NE RIEN ECRIRE DANS CETTE PARTIE

3 – A partir du DT 3/10 et du DR4/6, identifiez les liaisons entre les groupes cinématiques en complétant le tableau ci-dessous.

|     | Nom de la liaison | Schéma correspondant |
|-----|-------------------|----------------------|
|     |                   |                      |
| B/A |                   |                      |
|     |                   |                      |
| C/A |                   |                      |
|     |                   |                      |
| E/A |                   |                      |

4 - Complétez le schéma cinématique ci-contre (seulement dans la zone indiquée) correspondant à l'enrubanneuse en vue de dessus.

/14

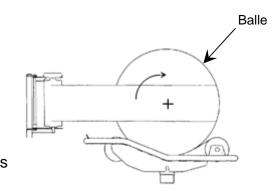


Total page /23

# NE RIEN ECRIRE DANS CETTE PARTIE **ETUDE TECHNOLOGIQUE** 15 16 /6 A partir des DR 4/6, 5/6 et 6/6 La roue 16 et l'arbre 19 sont en liaison fixe 19 (encastrement). 21 1 - **Donnez** le nom et le repère de la (ou des) pièce(s) permettant de réaliser l'arrêt : 23 22 24 en rotation :.... en translation :.... 2 – Quel est le type de montage réalisé par les deux roulements repérés 20 ? Entourez le type de montage réalisé : /4 Alésage tournant Arbre tournant 3 - Complétez le dessin ci-dessous en schématisant les butées des bagues fixes (en translation) et indiquer le repère de la pièce réalisant chaque butée (voir exemple). /9

#### NE RIEN ECRIRE DANS CETTE PARTIE

| billes à contact radial ? <b>Justifiez</b> votre réponse.                                                | /4 |
|----------------------------------------------------------------------------------------------------------|----|
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |
| 5 – En vous aidant du DR5/6 et DR6/6, c <b>ombien</b> y a-t-il de vis repérées 42?                       |    |
|                                                                                                          | /4 |
|                                                                                                          |    |
| 6 - Calculez le rapport de réduction (ou la raison) entre l'arbre du moteur hydraulique                  |    |
| repéré 34 et le rouleau repéré 30. (Z16 = 12 dents, arrondir le résultat à 3 chiffres après la virgule). |    |
|                                                                                                          | /9 |
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |
| 7 - A partir de la fréquence de rotation maxi du moteur hydraulique (voir DR5/6), calculez               |    |
| la fréquence de rotation maxi du rouleau 30.                                                             |    |
|                                                                                                          | )  |
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |
|                                                                                                          |    |


Bac. Pro. Maintenance des matériels Options : A – B - C Session 2015 E1 Épreuve scientifique et technique

Sous-Épreuve E11 Étude d'un système technique

## **ETUDE CINEMATIQUE**

#### A partir de la nomenclature DR 5/6

Rappelons que le client se plaint d'un chevauchement du film trop faible.



/6

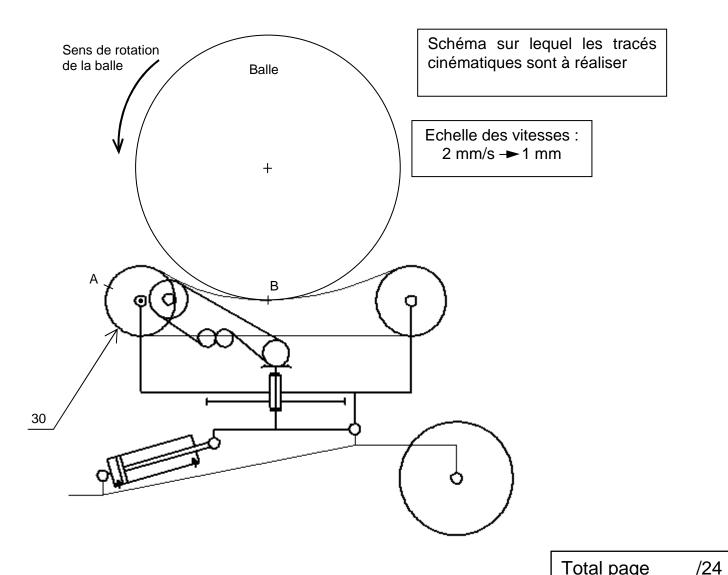
Pour répondre à l'une des problématiques du client, nous allons étudier le chevauchement du film lors de l'enrubannage.

Pour cela il est nécessaire de calculer la vitesse tangentielle du point B de la balle. (Voir figure ci-contre).

Quelque soit le résultat obtenu à la question précédente, nous prendrons une fréquence de rotation des rouleaux de 6 tr/min.

Formules nécessaires :  $\omega = (2.\pi.N)$  ( $\omega$  en rad/s et N en tr/min)

-  $V = R. \omega$  (V en m/s,  $\omega$  en rad/s et R en m)


| 1 - Calculez la vitesse angulaire des rouleaux $\omega_{30/1}$ en rad/s.                    | /      | 6        |
|---------------------------------------------------------------------------------------------|--------|----------|
|                                                                                             |        |          |
|                                                                                             |        |          |
|                                                                                             |        |          |
| 2 - Calculez la vitesse tangentielle du point A noté V <sub>A30/1</sub> (en mm/s) appartena | ant au |          |
| rouleau 30 sachant que son diamètre est de 300 mm. (Voir figure ci-contre).                 |        | <b>6</b> |
|                                                                                             |        |          |
|                                                                                             |        |          |
| 3 - Tracez sur ce même schéma la vitesse $V_{A30/1}$ en respectant l'échelle des vitess     | es.    |          |

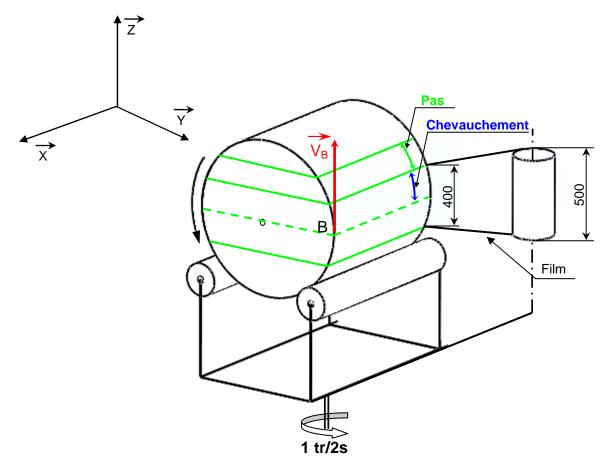
#### NE RIEN ECRIRE DANS CETTE PARTIE

4 - Sachant que la vitesse linéaire de la courroie est la même en tout point,

$$||V_{A30/1}|| = ||V_{B \text{ Balle/1}}||$$
, tracez la vitesse  $V_{B \text{ Balle/1}}$ .

/6



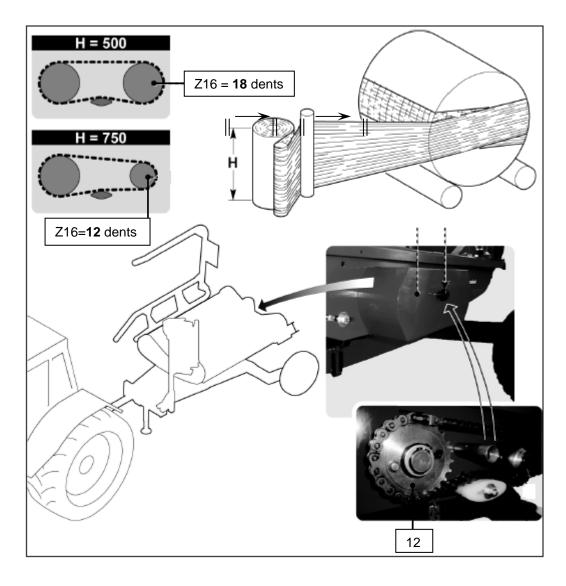

Total page

On sait que la fréquence de rotation de la table autour de l'axe (Oz) est de 30 tr/min, soit 0,5 tr/s.

Cela signifie que la balle réalise un tour en 2 secondes (voir sur le schéma ci-dessous). Quels que soient les résultats obtenus précédemment, on prendra  $||V_{B \text{ Balle/1}}|| = 143,85$ mm/s.

La balle a deux mouvements de rotation :

- Un autour de l'axe (Ox)
  Un autour de l'axe (Oz)




#### NE RIEN ECRIRE DANS CETTE PARTIE

| 5 – A l'aide des données ci-contre, <b>calculez</b> <u>le pas</u> en mm du film par tour de table. | /6   |
|----------------------------------------------------------------------------------------------------|------|
| Ce qui correspond à la distance parcourue par le point B.                                          |      |
|                                                                                                    |      |
|                                                                                                    |      |
|                                                                                                    |      |
|                                                                                                    | •••• |
|                                                                                                    |      |
|                                                                                                    |      |
|                                                                                                    |      |
| 6 – En <b>déduire</b> <u>le chevauchement</u> (en mm) du film par tour de table.                   | /6   |
|                                                                                                    |      |
|                                                                                                    | •••• |
|                                                                                                    | •••• |
|                                                                                                    |      |
|                                                                                                    | •••• |
|                                                                                                    |      |
| 7 - En supposant que le chevauchement est de 112 mm, exprimez cette valeur e                       | n %. |
| Comparez ce résultat avec les données du constructeur (DR3/6) et conclure.                         | /4   |
|                                                                                                    |      |
|                                                                                                    |      |
|                                                                                                    |      |
|                                                                                                    |      |
|                                                                                                    | •••• |

Total page /16

L'enrubanneuse *KVERNELAND 7730* a la possibilité d'être utilisée avec des bobines de film de hauteur 750 mm. Pour cela, il est nécessaire d'effectuer le changement du <u>pignon 16</u> afin de modifier la vitesse de la balle comme le présente le schéma suivant.



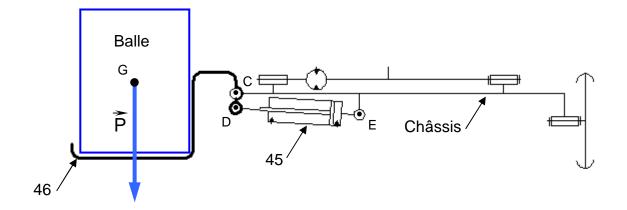
#### NE RIEN ECRIRE DANS CETTE PARTIE

Les calculs précédents ont été effectués avec le pignon Z16 = **12** dents.

| Nous allons reprendre ces calculs avec le pignon Z16 = <b>18</b> dents afin conséquences sur le chevauchement.                            | vermen lee     |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| La hauteur du film est toujours de 500mm.<br>La vitesse tangentielle de la balle devient $  V_{B \text{ Balle/1}}   = 95,4 \text{ mm/s}.$ |                |
| 24 Messe tangentiene de la sane devient    VBBalle/1                                                                                      | /=             |
|                                                                                                                                           | /5             |
| 8 – A l'aide de ces nouvelles données, <b>calculez</b> le nouveau pas (en mm) du fi                                                       | ilm par tour.  |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
| 9 – En <b>déduire</b> le nouveau chevauchement (en mm) du film par tour.                                                                  | /5             |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
| 10 – En supposant que ce nouveau chevauchement est de 209 mm, <b>exprime</b>                                                              | z cette valeur |
| en %. <b>Comparez</b> ce résultat avec les données du constructeur et <b>conclure</b> .                                                   | /4             |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
| 11 – Quel conseil allez-vous donner au client pour régler son problème de ch<br>du film trop faible ?                                     | evauchement    |
|                                                                                                                                           | /4             |
|                                                                                                                                           |                |
|                                                                                                                                           |                |
|                                                                                                                                           | Total page /19 |
|                                                                                                                                           | Total page /18 |

Bac. Pro. Maintenance des matériels Options : A – B - C Session 2015 E1 Épreuve scientifique et technique Sous-Épreuve E11 Étude d'un système technique

## **ETUDE STATIQUE**


Nous rappelons que le client veux déterminer la masse maxi des balles de foin pouvant être manipulées par le bras de relevage 46 lors du chargement maxi.

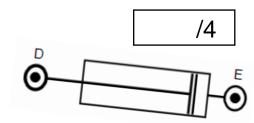
Pour répondre à cette deuxième problématique, nous allons vérifier les efforts exercés par le vérin.

Il actionne le bras de relevage repéré 46 afin de monter une balle sur la table.

#### Conditions d'étude :

- Le système est en équilibre
- On travaille dans le plan de symétrie du système
- Les points C, D et E sont les centres des liaisons pivots sans frottement (liaisons parfaites).
  - La masse maxi d'une balle est de 1000 kg.
  - Le poids des pièces est négligé
  - La pression d'alimentation des vérins est de 150 bars
  - $-g = 9.81 \text{ m/s}^2$




#### NE RIEN ECRIRE DANS CETTE PARTIE

|                             |                                             |                                | ection, sens et i  | ,                     |             | /4 |
|-----------------------------|---------------------------------------------|--------------------------------|--------------------|-----------------------|-------------|----|
| Action                      | Point d'application                         | Direction<br>(droite d'action) | Sens               | Intensite             | é (en N)    |    |
| <b>→</b> D <sub>46/45</sub> |                                             |                                |                    |                       |             |    |
| E châssis/45                |                                             | c .                            |                    |                       |             |    |
| tapport – r x               | S (F en daN, P en ba                        |                                |                    |                       |             |    |
|                             | quilibre du vérin de<br>théorème issu du Pr | _                              | •                  | que <u>du vérin 4</u> | <u>15</u> . | /5 |
| 3 - <b>Enoncez</b> le       | -                                           | rincipe Fondam                 | ental de la Statio |                       |             | /5 |

Bac. Pro. Maintenance des matériels Options : A – B - C Session 2015 E1 Épreuve scientifique et technique Sous-Épreuve E11 Étude d'un système technique

U 11 DT 9/10

4 - **Représentez** les actions mécaniques sur le vérin ci-contre sans soucis d'échelle.



Etude de l'équilibre du bras de relevage repéré 46, (schématisé cidessous).

/6

5 - Faire le bilan des actions mécaniques extérieures appliquées au bras de relevage en **complétant** le tableau suivant.

| Action | Point d'application | Direction<br>(droite d'action) |  | Sens |  | Intensit | é (en N) |
|--------|---------------------|--------------------------------|--|------|--|----------|----------|
| →<br>P |                     |                                |  |      |  |          |          |
|        |                     |                                |  |      |  |          |          |
|        |                     |                                |  |      |  |          |          |

/5

| 6 - <b>Enoncez</b> le théorème issu du Principe Fondamental de la Statique <u>du bras 46</u> . |
|------------------------------------------------------------------------------------------------|
|                                                                                                |
|                                                                                                |

#### NE RIEN ECRIRE DANS CETTE PARTIE

7 - Résoudre graphiquement le problème en traçant le dynamique des forces.

 $\frac{\text{Dynamique} : Echelle : 1 mm}{\text{G}} \rightarrow 1000 \text{ N}}$ 

|      | <b>□ →</b>                  | II |
|------|-----------------------------|----|
| ∥P∥= | <br>C <sub>châssis/46</sub> | =  |

8 – Calculez la masse maxi des balles de foin. /4

Total page /38