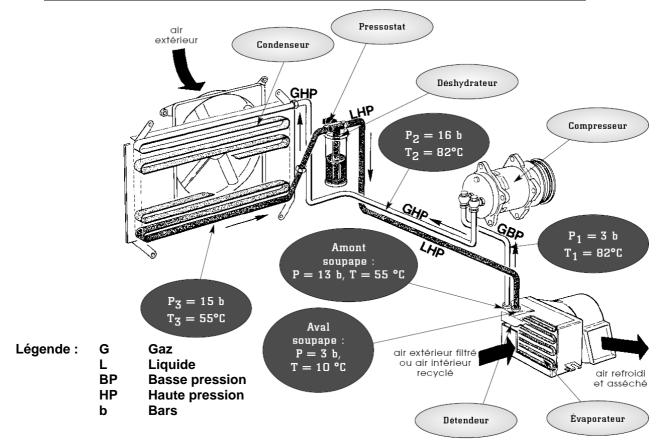
BACCALAURÉAT PROFESSIONNEL MAINTENANCE DES VÉHICULES AUTOMOBILES

Options : Voitures particulières - Véhicules industriels - Motocycles

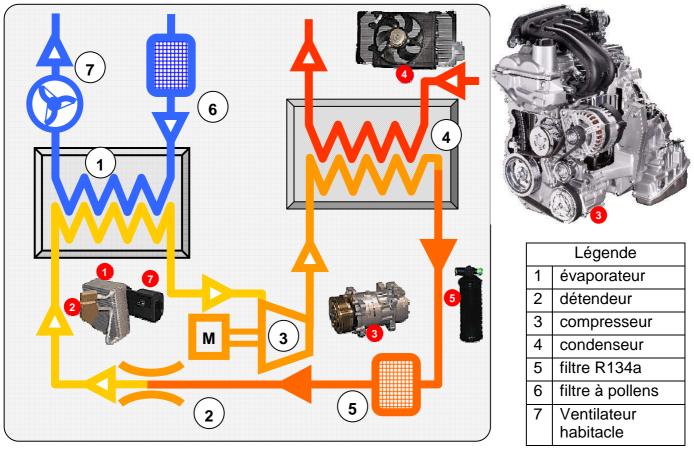
SESSION 2015

ÉPREUVE E11 ANALYSE D'UN SYSTÈME TECHNIQUE

Durée : 3 heures Coefficient : 2


DOSSIER RESSOURCES

Le dossier ressources comporte 13 pages numérotées de 1/13 à 13/13.


Assurez-vous que le dossier qui vous est remis est complet.

Baccalauréat professionnel MA	at professionnel MAINTENANCE DES VEHICULES AUTOMOBILES		Options : VP - VI - Moto		
E11 - Anal	nalyse d'un système technique		DR Session		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coeffic	ient : 2		Page 1 sur 13

1. Principe de fonctionnement d'une climatisation d'automobile

Le fonctionnement de cette machine frigorifique est basé sur les transformations d'état d'un fluide frigorigène à basse température d'ébullition (R134A).

Baccalauréat professionnel MA	réat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES		Options : VP - VI - Moto		
E11 - Anal	11 - Analyse d'un système technique		DR Session 20		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coeffic	ient : 2		Page 2 sur 13

Phase 1:

En 1, ce fluide passe dans un échangeur de température, *l'évaporateur*, où il prélève à l'air de l'habitacle qui le traverse l'énergie calorifique nécessaire à son ébullition. (L'énergie nécessaire à un fluide pour passer de l'état liquide à l'état gazeux, est une transformation isotherme, à une température qui dépend de la pression du fluide, mais qui nécessite un échange de chaleur important, nommé chaleur latente de vaporisation).

L'air de l'habitacle doit alors céder une partie de son énergie *(chaleur)* au fluide frigorigène « créant » ainsi le froid.

Cet air pulsé par le ventilateur de l'habitacle **7**, passe d'abord par un filtre **6**, où il est débarrassé des poussières et autres pollens.

Par ailleurs, son refroidissement contraint la vapeur d'eau qu'il contient à se condenser sur les lamelles de l'échangeur, puis l'eau s'écoule à l'extérieur du véhicule créant ainsi une déshumidification apportant confort et accélérant le désembuage du pare-brise en hiver.

Phase 2:

Le gaz est ensuite comprimé par le compresseur 3, afin qu'il puisse se condenser à une pression favorable dans le condenseur 4, il cède alors de l'énergie *(chaleur)* à la source chaude constituée par l'air extérieur qui circule dans les radiateurs du véhicule.

Phase 3:

Le fluide passe ensuite à travers un filtre **5**, où il se débarrasse d'une éventuelle humidité résiduelle, qui serait néfaste au fonctionnement de l'installation. Cet équipement constitue également un réservoir de fluide, pour s'adapter à la demande.

Phase 4:

Enfin, le fluide subit une détente (baisse de pression), accompagnée d'un refroidissement, assurée par le détendeur **2**.

Cette opération s'accomplit sans travail utile extérieur et est assurée par un détendeur *(robinet, orifice calibré, capillaire, etc.)* et porte généralement le nom de détente par laminage. Elle permet de placer le fluide à basse pression et basse température, adaptées à son évaporation.

Phase 5:

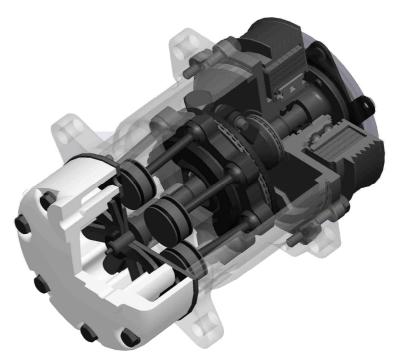
Du point de vue énergétique, l'ensemble de ces opérations nécessite une "dépense énergétique pour entraîner le compresseur qui peut représenter de 0,5 à 1 l/100 km pour être "évacuée" vers l'atmosphère sous forme de chaleur.

Afin de limiter cette perte, le compresseur est doté d'un embrayage permettant de n'entraîner le compresseur qu'en cas de besoin.

Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES		Op	tions : VF	P - VI - Moto	
E11 - Anal	E11 - Analyse d'un système technique		DR Session		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coeffic	ient : 2		Page 3 sur 13

2. Le compresseur

Fonction globale:


Assurer la circulation d'un débit de fluide suffisant dans le circuit et comprimer le fluide lorsqu'il est en phase gazeuse.

Organisation structurelle

Le moteur du véhicule assure l'entraînement par poulie et courroie.

Le compresseur est composé de sept pistons identiques, de diamètre ø26,1 mm, disposés axialement.

Un système de clapets (3)

(5) en tôle mince complété par une « glace » (4) permet de respecter les phases d'admission et de refoulement du cycle. La déformation des clapets est limitée par un limiteur et un évidement dans le cylindre. La culasse permet de séparer les deux zones de pression.

Le guidage du plateau oscillant (plat'came) (50) est réalisé par un guide (56) sur un palier lisse pouvant glisser sur l'arbre d'une part et d'autres parts un axe (32) le liant avec l'arbre moteur tout en lui laissant la mobilité nécessaire à son oscillation. C'est l'inclinaison du plateau qui permet la transformation de mouvement d'une rotation en translation.

Le plat'planet (46) lié au monorail conserve l'alignement des bielles dans l'axe des cylindre. Il est guidé par une douille à aiguilles complétée par une butée à aiguilles reprenant les efforts de poussée de la compression du gaz.

Un embrayage électromagnétique permet de désaccoupler l'arbre du compresseur. La poulie débrayable est montée sur un roulement à deux rangées de billes pour assurer son guiage en rotation.

Principe de fonctionnement :

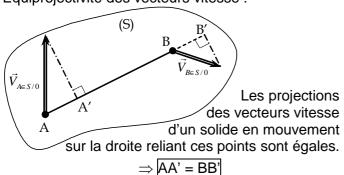
Lorsque la bobine de l'embrayage électromagnétique (13) est alimentée, le champ magnétique fait adhérer la rondelle (37) sur la poulie (34) qui est alors en liaison encastrement avec l'arbre moteur (32).

Le plat'came (50) est entraîné par l'arbre moteur (32). Durant cette rotation, les bielles fixées sur le plat'planet (46) au moyen de rotules serties, transmettent aux pistons (48) la translation engendrée par l'inclinaison du plat'came (50). Un mouvement axial alternatif de chaque piston est ainsi obtenu.

Un ensemble de clapets à lames (3 et 5), situé de part et d'autre de la glace (4), assure le déroulement du cycle aspiration/refoulement du fluide frigorigène dans chacun des cylindres.

Le mécanisme du compresseur est lubrifié par une huile spéciale, d'un volume prescrit par le constructeur, introduit avant la mise service du système.

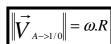
Baccalauréat professionnel MA	réat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES		Options : VP - VI - Moto		
E11 - Anal	alyse d'un système technique		DR Ses		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coeffic	ient : 2		Page 4 sur 13


3. Formulaire

Unités des grandeurs mécaniques courantes

Grandeur	Unité légale	Autres unités et conversion
Distance	m (mètre)	
Vitesse	m/s (mètre par seconde)	3,6 km/h = 1 m/s
Accélération	m/s ² (mètre par seconde ²)	
Fréquence de rotation	rd/s (radian par seconde)	1 tr/min = π /30 rd/s
Accélération angulaire	rd/s² (radian par seconde²)	
Temps	s (seconde)	
Force	N (Newton)	
Moment (ou couple)	N.m (Newton mètre)	
Masse	kg (kilogramme)	
Pression	Pa (Pascal)	1 bar = 10 ⁵ Pa
Puissance	W (Watt)	
Travail	N.m (Newton mètre)	
Energie	J (Joules)	

Cinématique


Composition des vecteurs vitesse :

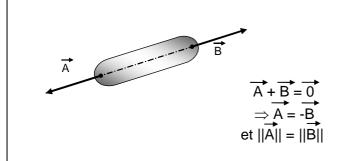
$$\overrightarrow{V}_{M \, 3/1} = \overrightarrow{V}_{M \, 3/2} + \overrightarrow{V}_{M \, 2/1}$$

Point en rotation autour d'un axe :

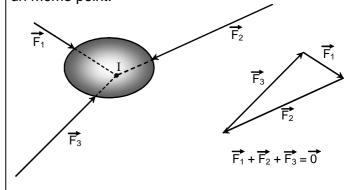
Vitesse angulaire et Vitesse linéaire

$$\omega = \frac{2.\pi . N}{60} = \frac{\pi . N}{30}$$

Unités: m/s rad/s . m


Statique

Principe Fondamental de la statique (P.F.S.) : solide en équilibre.


Théorème de la résultante en statique (T.R.S.) :

 $\Sigma \overrightarrow{F_{\text{ext}}} = \overrightarrow{0}$ $\Sigma \overrightarrow{M_{\text{A}}} (\overrightarrow{F_{\text{ext}}}) = \overrightarrow{0}$ Théorème des moments en statique (T.M.S.):

Solide soumis à deux forces : les efforts sont égaux (en norme), opposés, portés par la même droite support. Cette droite support passe par les points d'application des 2 forces.

Solide soumis à trois efforts concourants : les droites supports des trois efforts se croisent en un même point.

Baccalauréat professionnel MA	INTENANCE DES VEHICULES AU	Opt	tions : VF	P - VI - Moto	
E11 - Anal	alyse d'un système technique		DR Session 2015		Session 2015
Code : AP 1506-MV ST 11 Durée : 3 heures Coeffic		ient : 2		Page 5 sur 13	

Résistance des Matériaux

Formule de la contrainte de cisaillement :

$$\tau = \frac{\left\| \vec{F} \right\|}{n \times S}$$

au : contrainte de glissement en N/mm²

|| F || : force en N

S: surfaces de la section cisaillée en mm²

N: nombre de sections cisaillées

Condition de résistance au cisaillement :

$$Rpg = \frac{Rg}{s}$$

Re : Limite élastique à la traction du matériau

 $Rg = \frac{\text{Re}}{2}$

Rg : contrainte élastique de glissement, avec :

S: coefficient de sécurité

Calculs de Pression

$$P = \frac{F}{S}$$

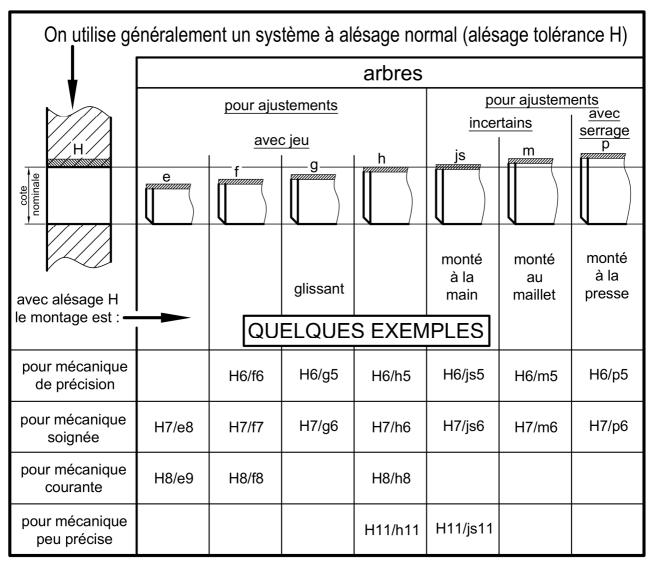
P pression

F la force S la surface soumise à la pression

Rappel:

Surface d'un cercle :
$$S = \frac{\pi \times D^2}{4}$$

Baccalauréat professionnel MA	MAINTENANCE DES VEHICULES AUTOMOBILES		Opt	ions : VF	P - VI - Moto
E11 - Anal	alyse d'un système technique		DR	DR Session 2015	
Code : AP 1506-MV ST 11	Durée : 3 heures	Coeffic	cient : 2		Page 6 sur 13

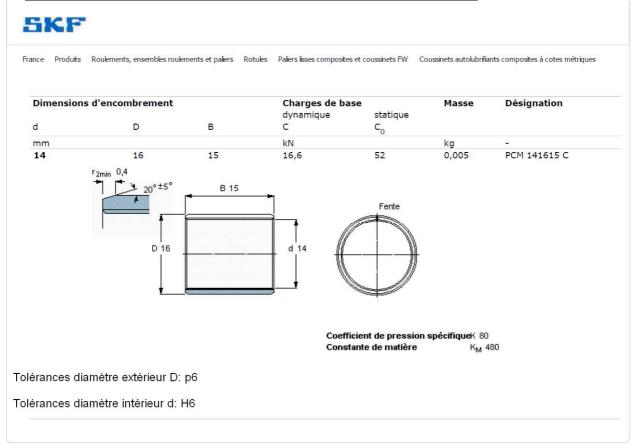

4. Les liaisons mécaniques élémentaires (ISO 3952)

	Dográs		Symbole		
Nom de la liaison	Degrés de liberté (d.d.l)	Mouvements relatifs	Représentation plane	Perspective	Exemples
Encastrement	0	0 Translation	1	\langle	
ou Fixe	_	0 Rotation			Pièces assemblées par vis
Pivot	1	0 Translation	ou _	L	
		1 Rotation	γ 	D	(Principe)
Glissière	1	1 Translation		13	
		0 Rotation			(Principe)
Hélicoïdale	1	1 Translation 1 Rotation			
nelicoldale	•	Translation et rotation conjuguées	ou VVV	ATTO	(vis + Ecrou)
Pivot glissant	2	1 Translation	X -4	1	
Fivot glissant	_	1 Rotation	• — • • • • • • • • • • • • • • • • • •	D	(Principe)
Sphérique à	2	0 Translation		K	
doigt		2 Rotation	5		1 Pro
Appui plan	3	2 Translation	-		
		1 Rotation	<u> </u>	\times	
Rotule	3	0 Translation	-	C	- A
ou sphérique		3 Rotation			76.
Linéaire annulaire ou	4	1 Translation	<u>,</u>	AS.	
sphère- cylindre	•	3 Rotation			
Linéaire	4	2 Translation	4 4		
rectiligne	•	2 Rotation			
Ponctuelle ou	5	2 Translation	ou 📗 🔘	\$ ~ C	
Sphère-plan		3 Rotation		$\checkmark \varnothing$	

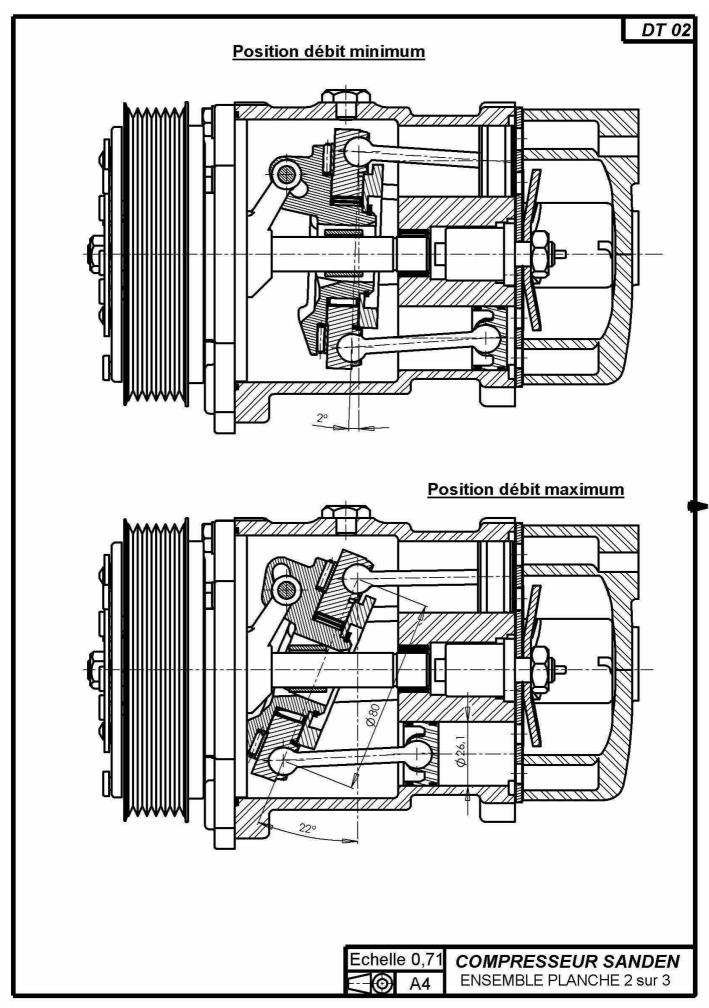
Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES		Op:	tions : VF	P - VI - Moto	
E11 - Anal	E11 - Analyse d'un système technique		DR		Session 2015
Code : AP 1506-MV ST 11 Durée : 3 heures Coeff		ient : 2		Page 7 sur 13	

5. Choix d'un ajustement

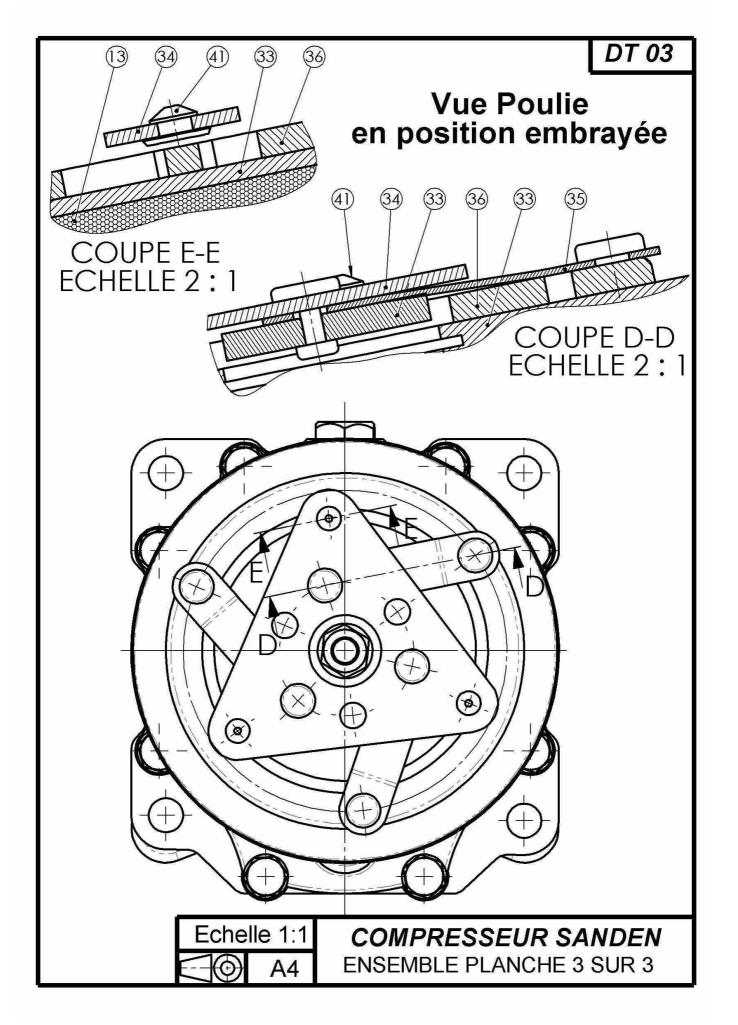
СОТ	ES	3 à	6 à	10 à	18 ã	30 à	50 à	80 à
NOMI	NALES	6 inclus	10 inclus	18 inclus	30 _{inclus}	50 inclus	80 inclus	120 inclus
ES	Н6	+ 8 0	+ 9 0	+ 11	+ 13	+ 16	+ 19	+ 22
ALÉSAGES	H7	+ 12	+ 15 0	+ 18 0	+ 2 1 0	+ 25	+ 30	+ 35
ALÉ	Н8	+ 18 0	+ 22	+ 27	+ 33	+ 39	+46	+ 54
	e8	- 20 - 38	- 25 - 47	- 32 - 59	-40 -73	- 50 - 89	- 60 - 106	- 72 -126
	f7	- 10 - 22	- 13 - 28	— 16 — 34	— 20 — 41	- 25 - 50	- 30 - 60	- 36 - 71
S	g6	- 4 - 12	- 5 - 14	— 6 — 17	- 7 -20	- 9 - 25	- 10 - 29	- 12 - 34
ARBRES	h6	- 8 - 8	_ 0 _ 9	O — 11	0 — 13	0 — 16	0 19	0 - 22
4	j₅5	+2,5 -2,5	+ 3 - 3	+ 4	+4.5 -4.5	+ 5,5 - 5,5	+ 6,5 - 6,5	+ 7,5 - 7,5
	m6	+ 12 + 4	+ 15 + 6	+ 18 + 7	+ 21 + 8	+ 25 + 9	+ 30 + 11	+ 35 + 13
	рб	+ 20 + 12	+ 24 + 15	+ 29 + 18	+ 35 + 22	+ 42 + 26	+ 51 + 32	+ 59 + 37

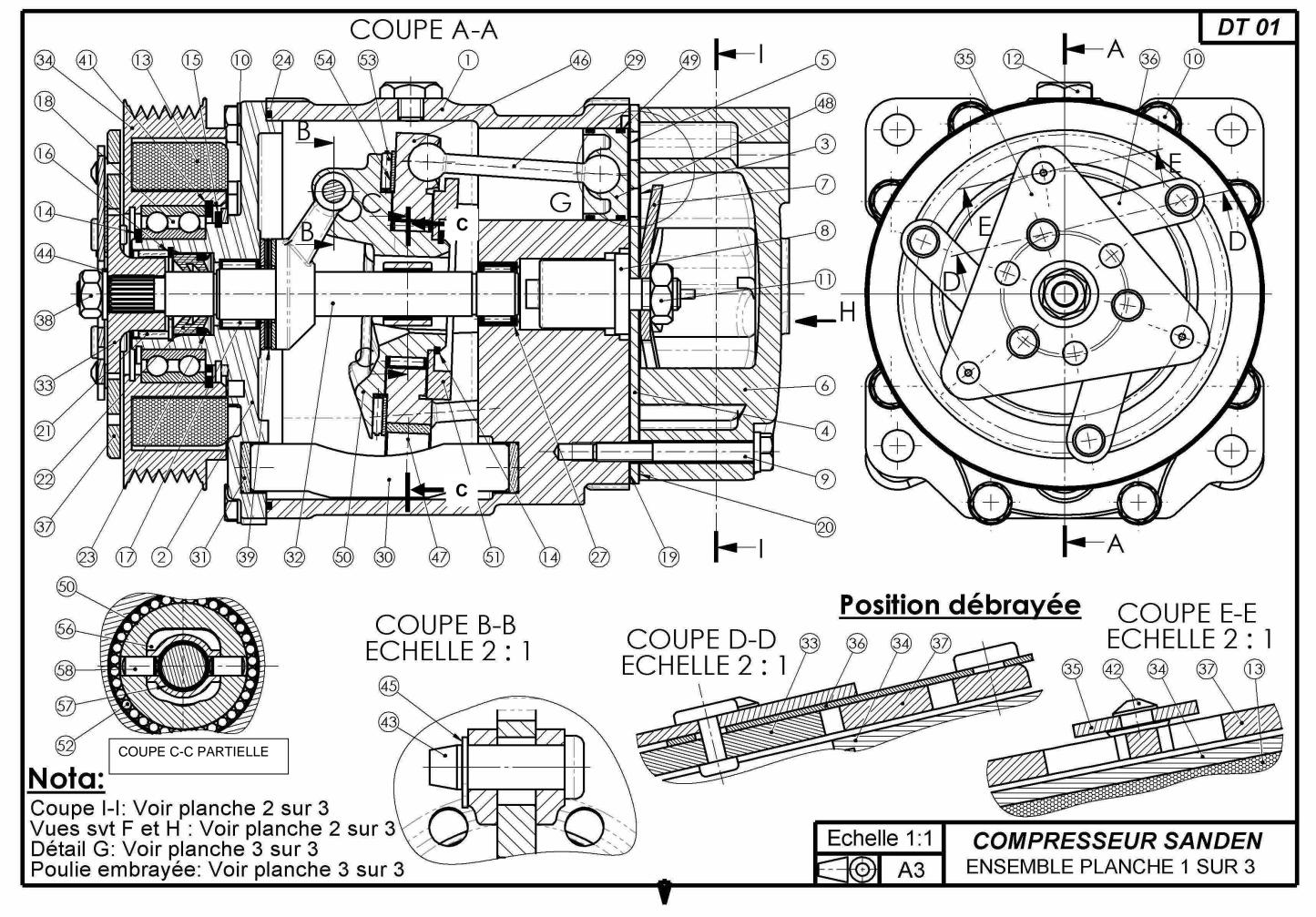


Baccalauréat professionnel MA	nnel MAINTENANCE DES VEHICULES AUTOMOBILES		Options : VP - VI - Moto		P - VI - Moto
E11 - Anal	E11 - Analyse d'un système technique		DR		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coeffic	ient : 2		Page 8 sur 13


6. Caractéristiques des aciers faiblement alliés

Aciers au	Désignation	Ancienne désignation	Rr (MPa)	Re (MPa)	Aptitude à la trempe
Chrome	38Cr2 46Cr2 34Cr4 41Cr4 100Cr6	38C2 46C2 34C4 41C4 100C6	600-950 650-1100 700-1100 800-1200 850-1250	350-550 400-650 460-700 560-800 550-850	* * ** ** **
Chrome molybdène	25CrMo4 34CrMo4 42CrMo4 50CrMo4	25CD4 34CD4 42CD4 50CD4	650-1100 700-1200 750-1300 800-1300	450-750 500-850 550-900 600-900	** ** ***
Chrome nickel molybdène	36CrNiMo4 34CrNiMo6 30CrNiMo8 36CrNiMo16	36NCD4 34NCD6 30NCD8 36NCD16	750-1300 800-1400 900-1450 1000-1450	550-900 600-1000 700-1050 800-1050	*** **** ****
Divers	51CrV4 20Mn6 56Si7 45SiCrMo6	50CV4 20M5 56S7 45SCD6	800-1300 650-900 700-1700 85-1850	600-900 350-550 500-1300 600-1400	*** *(c) ** ***


7. Extraits catalogue SKF des coussinets composites


Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES			Options: VP - VI - Moto		
E11 - Analyse d'un système technique			DR		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coefficient : 2			Page 9 sur 13

Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES			Options : VP - VI - Moto		
E11 - Analyse d'un système technique			DR		Session 2015
Code: AP 1506-MV ST 11	Durée : 3 heures	Coefficient : 2			Page 10 sur 13

Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES			Options : VP - VI - Moto		
E11 - Analyse d'un système technique			DR		Session 2015
Code : AP 1506-MV ST 11	Durée : 3 heures	Coeffic	ient : 2		Page 11 sur 13

Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES			Opt	tions : VF	P - VI - Moto	
E11 - Analyse d'un système technique			DR		2015	
Code : AP 1506-MV ST 11	Durée : 3 heures	Coefficient : 2			Page 12 sur 13	

59	1	Goupille élastique série E - 3x6		
58	2	Axe d'articulation B 6x12		ISO 2340
57	1	Coussinet cylindrique composite 14x16x15		SKF - PCM141615 C
56	1	guide plat'came	25 CrMo4	
54	1	plaque butee plat'came	42 CrMo4	
53	1	Butée à aiguilles		SKF - AXK 6590
52	1	Douille à aiguilles		SKF - HK4016
51	1	Anneau de butée plat'came	42 CrMo4	
50	1	PlatCame'	36 NiCrMo4	
49	14	joint piston	NBR	
48	7	piston	Al Zn5,5 MgCu	
47	1	Glisseur	Cu Zn19 Al16	
46	1	PlatPlanet	36 CrNiMo16	
45	1	Anneau élastique pour arbre 7x0,8		NF E 22-163
44	1	Rondelle M8 ISO 7089		
43	1	axe plat'axe-came	30CrNiMo8	
42	3	Tampon armature embrayage	NBR	
41	1	Anneau élastique pour alésage 56x2		NF E 22-165
39	1	Butée à aiguilles		SKF - AXK2035
38	1	Ecrou H,M8 ISO4032	CI 8	
37	1	Armature Mobile d'embrayage	EN GJS 800-2	
36	3	lame ressort d'embrayge	45 Si 7	
35	1	armature d'embrayage	C 50	
34	1	Poulie d'embrayage	GE 360	
33	1	Moyeu d'embrayage	25 CrMo4	
32	1	Axe compresseur	36 NiCrMo16	moulé
31	2	Axe monorail	Cu Zn19Al6	
30	1	Monorail	25 CrMo4	
29	7	Biellette	C45	
Rep.	QTE	Désignation	Matière	Observations

			T	
27	1	Douille à aiguilles		SKF - HK1412
24	1	joint carter-couvercle ∅1,8x360	NBR	
23	1	joint complement joint corps exter.	NBR	
22	1	Joint corps exterieur	Acier + NBR	
21	1	feutre huileur		
20	1	Joint Culasse	FPM	
19	1	joint corps-glace	FPM	
18	1	roulement de poulie ∅35x56x20		SKF - fabrication spéciale
17	1	Douille à aiguilles		SKF - HK 1612
16	1	anneau elast. pour alésage 28x1,2		NF E 22-165
15	1	anneau élastique pour arbre 45x1.75		NF E 22-163
14	2	anneau élastique pour arbre 35x1.5		NF E 22-163
13	1	Electro-aimant d'embrayage		
12	1	bouchon remplissage huile	Acier	
11	1	Ecrou H,M10 ISO 4032	CI 10	
10	8	Vis H,M6x18 ISO 4018	CI 6.8	
9	7	Vis H,M6x50 ISO 4018	CI 6.8	
8	1	Valve de régulation		Voir plan DT07
7	1	Limit eur de Déformation	20 CrMo4	
6	1	Culasse	Al Si7 Mo0,6	
5	1	clapet Aspiration	56 Si7	
4	1	glace	46 Cr2	
3	1	Clapet Refoulement	56 Si7	
2	1	Couvercle Avant	Al Mg5	
1	1	Carter	Al Si5Cu3Mn	0202 0202
Rep.	QTE	Désignation	Matière	Observations

Echelle 1:1

A3

COMPRESSEUR SANDEN
NOMENCLATURE

Baccalauréat professionnel MAINTENANCE DES VEHICULES AUTOMOBILES		Options : VP - VI - Moto				
E11 - Analyse d'un système technique			DR		2015	
Code : AP 1506-MV ST 11	Durée : 3 heures	Coefficient : 2			Page 13 sur 13	
						_