BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION DE PRODUITS INDUSTRIELS

SESSION 2015

ÉPREUVE E4 MOTORISATION DES SYSTÈMES

Durée: 3 heures

Aucun document n'est autorisé

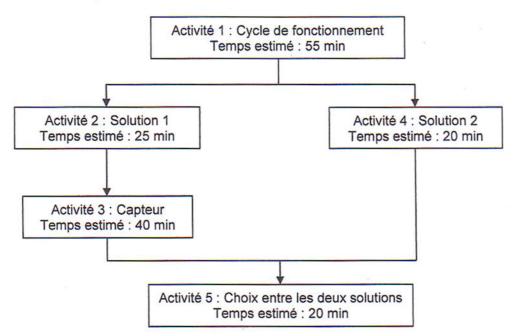
Calculatrice autorisée (conformément à la circulaire n°99-186 du 16 novembre 1999)

Le sujet comporte trois dossiers :

un dossier technique
un dossier travail
un dossier réponse

Le dossier réponse est à joindre aux feuilles de copie.

BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION DE PRODUITS INDUSTRIELS


SESSION 2015

ÉPREUVE E4 MOTORISATION DES SYSTÈMES

DOSSIER TRAVAIL

Lecture du sujet : 20 min

Déroulement du sujet :

AMÉLIORER L'EFFICACITÉ ÉNERGÉTIQUE D'UNE MOTORISATION

Ce dossier comporte 5 pages.

ACTIVITÉ 1 : COMPRENDRE LE CYCLE DE FONCTIONNEMENT DU BROYEUR ET SES ALÉAS

Objectif : une visite de maintenance préventive dans une entreprise cliente a mis en évidence un échauffement inapproprié du moteur dans le cas de broyage de catalogue en papiers. Cette élévation de température récurrente risque d'impacter la durée de vie du moteur. Vous devez remédier à ce dysfonctionnement en proposant des solutions techniques.

Après avoir lu la mise en situation :

Question 1:	Lister au moins un avantage du broyage des déchets industriels banals.
DT1 Feuille de copie	Lister au moins un avantage du broyage des décriets industriels barrais.

Après avoir lu la description du fonctionnement et décodé le schéma électrique :

Question 2:	Compléter	les	cadres	du	chronogramme	du	couple	par	les	numéros
DT1 DR1 / DR2	correspond débourrage		A CONTRACTOR OF THE PARTY OF TH	de f	onctionnement d	onnés	lors d'u	n cycl	e de	broyage -

Question 3:	Compléter le chronogramme des contacteurs KM1, KM2 et KM3 associés au
	broyage, au débourrage et au tapis d'évacuation des broyats par leur état
DR1 / DR2	électrique en fonction du temps.

Lors d'un bourrage, le moment du couple moteur atteint la valeur du moment du couple maximal C_{max} , le moteur absorbe alors son courant maximal I_{max} qui s'élève à 6 fois l'intensité nominale I_n .

Question 4:	Argumenter our les effets d'une curebarge prolongée sur le metaur
Feuille de copie	Argumenter sur les effets d'une surcharge prolongée sur le moteur.

Dans cette hypothèse :

Question 5:	Identifier le dispositif assurant le déclenchement en l'entourant distinctement.
DR1	Rappeler son nom complet puis préciser le nom du déclencheur qui assure la
Feuille de copie	détection de la surcharge.

À l'aide de la plaque signalétique du moteur :

Question 6:	Calculer la valeur nominale In de l'intensité du moteur puis calculer sa valeur
DR1 Feuille de copie	maximale I _{max} .

Le dispositif de protection est réglé à la valeur du courant nominal du moteur. À l'aide de la courbe de déclenchement du disjoncteur :

Question 7	Relever le temps de déclenchement consécutif au bourrage du broyeur pour un
D.770	fonctionnement à chaud.

Ce temps de déclenchement est jugé trop long.

Question 8	Citer au moins deux grandeurs physiques permettant la détection d'un bourrage,
Feuille de copie	puis pour chacune d'entre elles, proposer une solution technologique associée.

ACTIVITÉ 2 : METTRE EN CONFORMITÉ LE BROYEUR : SOLUTION 1

Le groupe ECP doit mettre en conformité ses broyeurs avec la norme européenne IEC 60034 relative aux moteurs asynchrones.

Cette norme impose de réduire la consommation d'énergie des moteurs asynchrones.

Objectif : choisir le matériel permettant cette mise en conformité.

Question 9:	Citer la classe de rendement du moteur actuel puis vérifier si son utilisation pou	r
DIVI, DIO	les broyeurs est conforme avec cette directive européenne. Argumenter la	a
Feuille de copie	réponse.	

Question 10:		
DT3 Feuille de copie	Citer les solutions permettant la mise en conformité de ces broyeurs.	

Connaissant la vitesse de rotation des couteaux et à l'aide du schéma cinématique :

Question 11:	Calaulan la fréquencia de catation du mateur
DT2, DT4 Feuille de copie	Calculer la fréquence de rotation du moteur.

À l'aide de la documentation sur les moteurs et des critères définis précédemment :

Question 12:	Choisir le	nouveau	moteur	assurant	la	mise	en	conformité	en	complétant	sa	1
DT4, DR2	référence											١

ACTIVITÉ 3 : SURVEILLER LES BOURRAGES PAR LA MISE EN PLACE D'UN CAPTEUR

Afin d'automatiser la procédure de débourrage, le bureau d'étude de l'entreprise ECP préconise l'installation d'un relais de surveillance de l'intensité, type DIB71 de chez Carlo Gavazzi.

Ce relais mesure la valeur efficace vraie du courant, soit par mesure via un shunt intégré soit par un transformateur de courant. Le relais sera alimenté par le circuit de commande du broyeur.

L'objectif de cette activité est : - de choisir le capteur de courant,

- de choisir le relais de surveillance adapté à l'application,
- d'établir le schéma de câblage relatif au relais.

Question 13:	Associer	le	schéma	de	principe	de	chaque	capteur	de	courant	à	la	bonne
DR3	définition	en	reportant	sor	n repère (1, 2	, 3 ou 4).						

Repère	Définitions des capteurs de courant		
1	Le transformateur de courant : deux bobines montées sur un circuit magnétique		
2	Le « shunt » : conducteur de faible résistance		
3	Le transformateur de courant à barre ou à câble : le primaire n'est pas bobiné		
Le capteur à effet Hall : il capte le champ magnétique B créé par le courant produit alors une tension de Hall V _H image de ce dernier.			

À la lecture de la documentation constructeur du relais de surveillance :

Question 14:	Identifier la valeur maximale du courant qui traversera le shunt associé au relais
DTC	de surveillance.

Question 15:	Proposer une solution permettant de mesurer l'intensité de 85 A du courant de
DT5, DT6 Feuille de copie	démarrage du moteur.

Question 16:	Choisir la référence du composant à associer au relais permettant la mesure du
DT6, DR3	courant maximal absorbé par le moteur du broyeur.

En vous assurant de la compatibilité du relais avec le schéma de commande :

sir le relais de surveillance en citant sa référence
sir le relais de surveillance en citant sa référence.

Question 18	Sélectionner la position des trois premiers « switch » (ON ou OFF) répondant à la
DT6, DR3	configuration souhaitée. Le relais devra être normalement désexcité.

En cas d'arrêt du moteur du broyeur, le tapis d'évacuation fonctionne encore pendant 3 secondes. En cas de bourrage, le voyant H2 informe l'opérateur de cet état. Le circuit est équilibré, on contrôlera une seule phase du moteur.

Question 19:	Dessiner le ou les contact(s) associé(s) du relais de surveillance dans le cadre 1
DT5, DR1	puis, dans le <u>cadre 2</u> , le capteur de courant, dont le symbole graphique est donné ci-dessous.

Question 20	Identifier la gamme de réglage de la temporisation d'alarme.
DT6 Feuille de copie	Rappeler le temps de déclenchement du dispositif de protection lors d'un bourrage, puis estimer une valeur cohérente de la temporisation sur le temps
	d'alarme.

Depuis le mois de janvier 2015, la directive européenne propose une solution alternative pour améliorer l'efficacité énergétique des équipements industriels.

La société ECP Group désire écouler son stock de moteurs IE2. Afin de se conformer à cette directive, le bureau d'étude décide d'équiper certains broyeurs d'un variateur de vitesse.

En vous aidant de la documentation :

Question 21:	
DT7 Feuille de copie	Choisir le modèle de variateur à installer.

Ce variateur n'étant pas parfait, il dégrade la qualité de l'énergie au niveau de l'installation électrique dont il dépend et il perturbe aussi les usagers de ce réseau. On souhaite vérifier la possibilité de le certifier conforme à la directive NF EN61000-3 concernant la qualité de l'énergie.

Les allures des courants en amont et en aval de cet équipement ont été relevées et sont reportées dans les documents réponses.

À l'aide des représentations temporelles et harmoniques des courants :

Question 22:	Identifier les allures des courants aval I_m et amont I_a en reportant clairement leur repère sur les représentations temporelles et harmoniques correspondantes.			
DR3				
Question 23:	Calculer la vitesse de synchronisme du moteur au moment du relevé.			
Feuille de copie	Calculat la vicasa de synonionismo da motedi ad monent da releve.			
Question 24 :	Calcular la valour office es du sourent ement l' du veristeur			
DT7, Feuille de copie	Calculer la valeur efficace du courant amont l _a du variateur.			
Question 25:	Calculer la valeur efficace du courant aval I _m du variateur.			
DT7,	Calculer la valeur emicace du courant avai I _m du variateur.			
Feuille de copie				

La norme NF EN 61000-3 préconise un taux maximum global de distorsion harmonique en courant de 10%, soit pour l'harmonique de rang 5 un taux de 5%.

Question 26:	Vérifier si le broyeur peut être certifié conforme à la norme NF EN 61000-3.
DR3 Feuille de copie	Estimer graphiquement le taux de distorsion harmonique de l'harmonique de rang 5. Argumenter la réponse.
Question 27	Classer les avantages et les inconvénients listés dans le document technique en
DT7 DR4	comparant la solution 1 à la solution 2.

ACTIVITÉ 5 : DÉVELOPPEMENT DURABLE : CHOISIR LA MEILLEURE SOLUTION

Le chef de projet responsable de la conception du nouveau broyeur demande de rédiger une note permettant le choix de la solution de mise en conformité.

Objectif : Dans le cadre de la réduction de la consommation d'énergie des moteurs, on demande une étude énergétique portant sur les dix années à venir.

Le temps de fonctionnement du moteur du broyeur est en moyenne de 1200 h par an.

Question 28:	Lister	les	trois	améliorations	d'ordre	mécanique	permettant	l'amélioration	du
				moteurs asynch					PE 2014-1410

Question 29:	Relever	le	rendement	du	moteur	de	la	solution	1	lors	d'un	fonctionnement
DT1, DT8 Feuille de copie	« à vide	».	0.350.000000000000000000000000000000000						1350	15000000	- Hammar Maries	

Question 30 :	
DR4, DT7 Feuille de copie	Calculer la consommation énergétique annuelle du moteur de la solution 1.

Question 31:	Argumenter sur la solution la plus durable en termes de consommation d'énergie.
DR4 Feuille de copie	Calculer la différence de consommation entre les deux solutions.

Question 32 :	Argumenter sur la solution la plus durable en prenant en compte l'achat des
DT8	équipements et la consommation d'énergie sur les dix années à venir.
Feuille de copie	Le cout du kW.h est fixé à 0,08 € HT.