
1. Décoder le plan d'outillage : colorier le système d'éjection en jaune, le système d'ouverture des tiroirs en bleu, les empreintes en rouge,

Extrait du plan d'outillage réf. OUT 13-1

Note : le plan de l'outillage a été simplifié. Les hachures n'ont pas été représentées et certains éléments sont en transparence.

- 2. Sur le plan de pièce, matérialiser par un trait de couleur bleu la surface du joint de moulage
- 3. Les doigts inclinés sur le plan (ref OUT 13-1) ont pour rôle l'ouverture d'un tiroir qui est rendu indispensable par un élément de la géométrie de la pièce. Quelle est cette géométrie ? Repérez-la sur le plan ref : CG 13 par une flèche rouge

4. Compte-tenu de l'alliage utilisé, quel procédé est présenté sur la photo

Procédé présenté sur la photo	Oui/non
Coulée sous pression, machine à chambre froide	
Coulée sous pression, machine à chambre chaude	
Coulée en basse pression	

5. mettre les opérations dans l'ordre

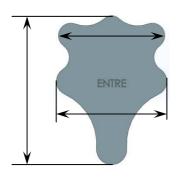
<u>N°</u>	<u>OPERATION</u>
	Coulée (injection)
	Alimentation : introduction du métal
	à la louche dans le conteneur
	Ouverture
	Relance cycle
	Poteyage (eau + huile minérale)
	Ejection
	Refroidissement
	Fermeture

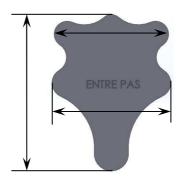
6.

Affectez à chaque pupitre de commande le paramètre de réglage figurant dans la fiche de réglage (doc ...)

Réglages	Commande du module périphérique de poteyage	Commande de l'unité d'injection	Commande du robot
Temps de pulvérisation : 3			
secondes			
Pression de compactage :			
350 bars			
Puisage de 0.4 kg			

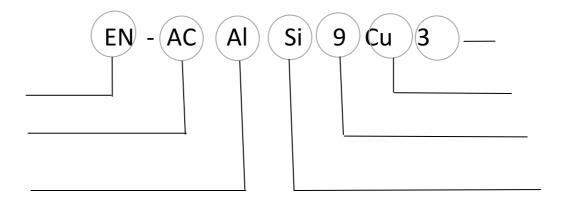
7.

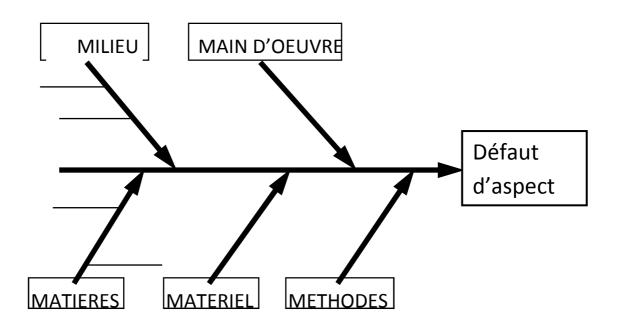

Pour fabriquer 5000 pièces, combien faut-il de journées de production ? Nombre de minutes de production par journée (85% du temps) Nombre de cycles par jour : Nombre de pièces par un cycle : Nombre pièces par jour : Nombre de jours de production :


Mesurage et contrôle (lire le document ressource « autocontrôle »

8. On vous demande donc de définir les différentes cotes utiles pour réaliser un tampon de contrôle

Cotes nominales	Tolérances	Cotes Maxi	Cotes mini
50.3	±0.5		
52.2	±0.5		
69.6	±0.5		


9. Placer les cotes utiles sur les dessins.


10. Quels sont les avantages de ce type de contrôle ?

11. Décryptez cette nuance : EN-AC Al Si 9 Cu3

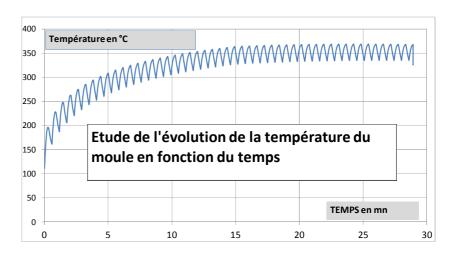
12. Cet alliage peut-il être qualifié d'hyper-eutectique ou d'hypo-eutectique ? (Expliquez à partir du diagramme binaire AL Si)

13. Classez ces causes dans le diagramme cause-effet

14. Si on ne rép qui sont pe		ne, on risque : (cochez toutes les réponses
	De refroidir l'alliage	
	De provoquer une usure de la métal liquide	louche et un enrichissement en fer du
	De produire des collages (étan la louche, d'où pièces incompl	nages) qui vont diminuer la contenance de ètes
	De créer une situation danger	euse pour l'hygiène et la sécurité
Questionnement :		
15.	quel est le facteur principal qu	i justifie le choix du procédé ?
Pour facilite	er votre réponse, renseigner le t	tableau suivant (+ ou -)
	Sous pression	Coquille gravitaire
Productivité		
Résistance du matériau		
Coût d'investissement o	utillage	
Dimension des pièces		
REPONSE : Le choix	du procédé coquille se justifie p	arce que :

16. Méthode d'application du poteyage (lire le document ressource)

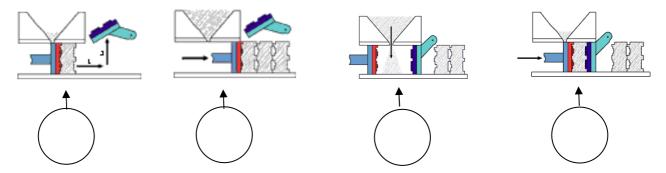
Décoder le document ci-contre : quel mode d'application


préconisez-vous pour recouvrir les masselottes et le système de remplissage ?

Prendrez-vous de préférence un produit « noir » ou un produit « blanc » ?

17. Etude du cycle thermique de la coquille. Une simulation numérique a été effectuée pour vérifier la stabilité du procédé.

Au bout de combien de cycles atteint-on l'équilibre thermique ? Combien de pièces doit-on fabriquer avant d'arriver à ce point d'équilibre. (Évaluation à 5 pièces près)


......

18. Questionnement sur la métallurgie du bain d'aluminium

19. Quels sont les traitements de bain à réaliser pour que cet alliage ait une structure la plus fine possible (parmi les traitements de bain suivants : désoxydation, modification, dégazage et affinage) ? - prendre appui sur le document ressource -	

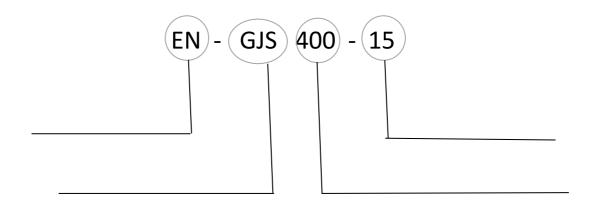
Étude du cycle machine. Diagnostiquer un incident de production.

- 20. Ordonner les schémas pour les placer dans l'ordre chronologique de la fabrication.
- 21. Légender les schémas et accompagner chacune des opérations d'un petit commentaire descriptif.

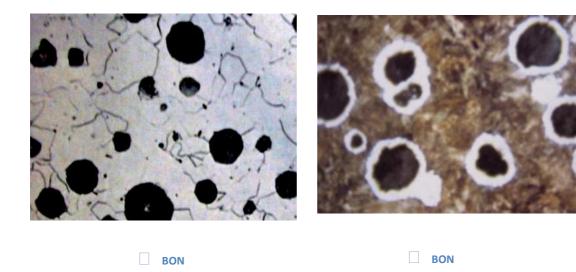
Etape	Commentaire explicatif
1	
2	
3	
4	

22. (1101511	i hypothese que vous souhaitez developper :
	cohésion du sable insuffisante,
	surface de contact trop réduite,
	résistance mécanique
Proposition d'action co	orrective :

23. Analyse des conséquences (une croix dans les bonnes cases)


	Le client est concerné car cela fait partie de la qualité totale	Le client n'est pas concerné car cela ne fait pas partie de la qualité totale
La qualité du produit,		
le coût du produit,		
la santé financière de l'entreprise,		
la sécurité du personnel,		
l'environnement,		
les délais de fabrication,		

Choisir une des conséquences ci-dessus et argumenter pour expliquer que l'incident auque
vous avez assisté, s'il n'est pas corrigé, est préjudiciable à la confiance que le client attend de
son fournisseur.


Surveillance de la qualité de l'alliage.

24. **Décoder la désignation** normalisée de cette fonte : désignation EN-GJS 400-15

MAUVAIS

25. Cette fonte doit posséder une matrice ferritique : cocher la représentation qui correspond à cette structure

MAUVAIS

26. La fonte est inoculée dans le jet de coulée (inoculation tardive). Cochez dans le tableau ci-dessous les avantages attendus de l'inoculation

(une mauvaise réponse : pas de point)		
L'inoculation sert à	oui	non
Augmenter la résistance et la dureté		
Eviter les points durs (carbures)		

27. En action préventive, l'augmentation de la fréquence des contrôles de surveillance est envisagée. **Cocher dans le tableau** ci-dessous, les contrôles qui sont susceptibles d'éviter le retour de cet incident (penser à la chronologie des événements pour faire votre sélection).

(une seule mauvaise réponse autorisée)		
Contrôle pertinent pour surveiller l'inoculation	oui	non
Analyse spectrométrique		
Eprouvette de trempe (cf doc)		
Test de détection des points durs à la lime		
Contrôle de la structure (micrographie)		

28. Pourquoi a-t-on besoin d'ajouter de la silice neuve dans la sablerie? (pour compenser quelle dégradation subie par la silice ?)
29. Pourquoi a-t-on besoin d'ajouter de la bentonite ? (pour compenser quelle dégradation subie par l'argile) – la bentonite est la principale argile des sables à vert synthétiques-
30. Quel est le rôle du noir minéral ? (quel défaut est-il censé éviter ?)

31.	. Quelles sont les conséquences possibles d'un excès d'eau ?
32.	La perméabilité ne doit pas être trop basse. Quel défaut pourrait-on constater sinon sur les pièces ?
33.	. Quels sont les paramètres mesurés (voir les données ci-dessus) qui sont susceptibles de produire un incident de moulage de type « écrasement de motte »
Question 34 :	
	Le sujet qui vous a été proposé vous a questionné sur une famille de pièces intitulée « pied de poteau »

La géométrie de ces pièces est construite pour satisfaire une <u>fonction mécanique</u> : soutenir un poteau de panneau grillagé et une <u>fonction esthétique</u> : décorer et se

Les critères de <u>coût de production</u> et <u>d'impact</u> <u>écologique</u> sont également intégrés

démarquer du produit concurrent.

au raisonnement du designer.

On vous demande, au choix:

Rédiger un petit texte pour montrer que la fonderie est une technique de choix pour résoudre l'équation des 4 locutions soulignées ci-dessus.

Ou,

Dessiner en perspective, une maquette d'un pied de poteau que vous avez envie de proposer à un bureau d'étude. Le cahier des charges étant : poteau de section carrée 60 x 60, platine s'inscrivant dans une surface au sol de 120x120. (cote donnée indicatives, mais le dessin n'a pas d'échelle ni de cotation demandée)

Pour la « fonction esthétique » ne pas oublier de dessiner des nervures, bossages de personnalisation, rayons et congés ...)