BTS ÉLECTROTECHNIQUE

U41 – PRÉ-ÉTUDE ET MODÉLISATION

SESSION 2014

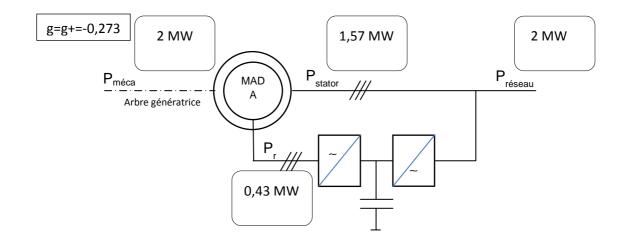
IMPLANTATION ET EXPLOITATION D'UN PARC EOLIEN

PARTIE A: PUISSANCE MAXIMALE RECUPERABLE

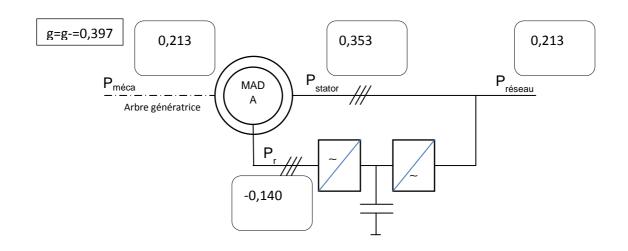
A.1	$E_{amont} = p_{atm} + \rho_{air} \times 9.81 \times h + \frac{1}{2}\rho_{air}v_{amont}^{2}$	1
A.2	$E_{aval} = p_{atm} + \rho_{air} \times 9,81 \times h + \frac{1}{2}\rho_{air}v_{aval}^2$	0,5
A.3	$E_{\acute{e}olienne} = E_{amont} - E_{aval}$	1
	$E_{\acute{e}olienne} = \frac{1}{2} \rho_{air} (v_{amont}^2 - v_{aval}^2)$	1
A.4	$P_{\text{\'e}olienne} = E_{\text{\'e}olienne} \times Q_v$	1
7.4	$watts = \frac{J}{m^3} \times \frac{m^3}{s}$	1
	$v_{amont} + v_{aval}$	1
A.5	$Q_v = S \times v_{air}$	1
	$P_{\text{\'e}olienne} = \frac{1}{2} \rho_{air} (v_{amont}^2 - v_{aval}^2) \times S \times \frac{1}{2}$	1
A.6	On lit $\frac{v_{aval}}{v_{amont}} = \frac{1}{3}$	1
	$v_{amont} = 7$; $v_{aval} = \frac{1}{3}$	1
A.7	1 $(7)^2$ $(7+\frac{7}{3})$	
	$P_{Max} = \frac{1}{2} \times 1,225 \times \left(7^2 - \left(\frac{7}{3}\right)^2\right) \times 6362 \times \frac{\left(7 + \frac{7}{3}\right)}{2}$	2
	=792 kW	
A.8	$E_{Max} = P_{Max} \times 365,25 \times 24 = 6943 MWh$	1,5
		/14

PARTIE B: VITESSE FIXE OU VITESSE VARIABLE

B.1	$C_p = 0.44$	1,5
B.2	$\Omega = 1.12 rad/s$	1
D.2	N = 10.7 tr/min	0,5
D O	$P_{Gv7} = C_p \times P_{vent} = 0.44 \times \frac{1}{2} \times 1.225 \times 6362 \times 7^3$	
B.3	= 589.7kW	1,5
	$C_p = 0.37$	1
B.4	$P_{Gv9} = C_p \times P_{vent} = 0.368 \times \frac{1}{2} \times 1.225 \times 6362 \times 9^3$	
	= 1045kW	1,5
B.5	Non, car C _p n'est pas maximal	1
	$C_p = 0.44$	1
B.6	N = 13,76 tr/min	1
	$P'_{Gv9} = C_p \times P_{vent} = 0.44 \times \frac{1}{2} \times 1.225 \times 6362 \times 9^3 = 1250kW$	1,5


B.7	$\frac{P'_{Gv9}}{P_{Gv9}} = 1,2$ 20% de gain en puissance en fonctionnant à vitesse variable dans l'exemple choisi.	1,5
B.8	Variable : « 9 – 19 tr.min ⁻¹ »	0,5
B.9	Réduction des contraintes (à-coups de couples)	0,5
		/14

PARTIE C : GENERATRICE de type « MADA »


C1 Bilan de puissance

C2 Puissance rotorique

C.1.1	$P_{m\acute{e}ca} = P_{Stator} \times (1 - g)$	1
C.1.2	$P_{Jr} = -g \times P_{Stator}$	1
C.1.3	$P_{Jr} = -g \times \frac{P_{m\acute{e}ca}}{(1-g)}$	1
C.2.1	Multiplicateur : 100,5 9 ×100,5 = 904,5 tr/min	1 1
	19 ×100,5 = 1909,5 tr/min	1
C.2.2	$N_s = 1500 \text{ tr/min}$	1
U.Z.Z	p = 2	1
C.2.3	$g_{+} = \frac{1500 - 1909,5}{1500} = -0,273$ $1500 - 904,5$	1
	$g_{-} = \frac{1500 - 904,5}{1500} = +0,397$	1
C.2.4		2

C.2.5	$\lambda = \frac{45 \times \frac{1}{100,5} \times \frac{2\pi \times 1909,5}{60}}{12} = 7,4613$	1
C.2.6	$v_{vent} = \frac{45 \times \frac{1}{100,5} \times \frac{2\pi \times 904,5}{60}}{7,4613} = 5,7 \text{ m/s}$	1
C.2.7	$P_{m\acute{e}ca} = 2 \times \frac{5.7^3}{12^3} = 0.213 MW$	1,5
C.2.8		2

2.2.9	430 kW	0,5
		/18

PARTIE D: COMMANDE ET REGULATION

convertisseur côté réseau (onduleur MLI)

	- 7 F m /s	4
	$v_{vent} = 7.5 \text{m/s}$	1
D.1	P = 703,2 kW	1
	Q = 52,9 kVAR	1
D.2	$DPF = \cos\left(\tan^{-1}\frac{Q}{R}\right) = 0,997$	1,5
	\ P)	,
D.3	Identique	1
D.4	Dans ce cas $FP = DPF = 0.997$	1
	La régulation ne fonctionne que pour v _{vent} > ~6 m/s	
	A priori oui car les données constructeur ($ FP > 0.95$) sont	
D.5	fournies pour des vitesses comprises entre 9 et 19 tr/min	
	(plage de régulation). Pour λ =7,46 et 9 tr/min, on obtient	2
	une vitesse de vent de 5,7m/s (début de régulation)	
		4
D 0	$E = (2916 + \dots + 1508) = 132892 kWh$	1
D.6	$Factour chargo = \frac{132892}{1200000000000000000000000000000000000$	
	Facteur charge = $\frac{132892}{2000 \times 24 \times 10} = 0,277$	2
	Facteur charge = $\frac{1258000}{709 \times 365,25 \times 24} = 0,202$	2
D.7	Facteur charge = $\frac{709 \times 365.25 \times 24}{709 \times 365.25 \times 24} = 0,202$	
	Même ordre de grandeur mais site de Rampont meilleur	0,5
		/14

PARTIE A: 14 points

PARTIE B : 14 points

PARTIE C : 18 points

PARTIE D : 14 points

Soit un total de 60 points