

Concours Général des Métiers 2014 Spécialité : ELEEC

DOSSIER DE MISE EN SERVICE

CONCOURS GÉNÉRAL DES MÉTIERS				
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants				
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS1/DMS1				

Mise en situation :

Le câblage terminé, la société Heat Concept a livré les fours à l'entreprise Bodycote. Un électricien, habilité BR, de la société Heat Concept, est chargé d'effectuer la première mise en service et les essais nécessaires afin de s'assurer du fonctionnement de l'équipement livré.

L'ouvrage a été consigné, par le chargé de consignation de l'entreprise Bodycote, au niveau de l'armoire de distribution alimentant l'ensemble des fours.

Les essais permettront de contrôler :

- La conformité de l'équipement par rapport à la norme NFC 15-100
- La conformité fonctionnelle de l'équipement

Durée : 2h30

Travail demandé :

- > **Contrôler** la conformité de l'équipement électrique
- > **Paramétrer** le régulateur selon le cahier des charges
- > **Contrôler** le fonctionnement global de l'installation

Documents ressources :

- > Le dossier de présentation du four de trempe (DP)
- Le dossier de réalisation (DR)
- > Le schéma de distribution électrique des fours
- > Tutoriels

Matériels mis à disposition :

- Les appareils de mesures avec leur notice
 - o Le contrôleur d'installation électrique Chauvin Arnoux CA 6116
 - o La pince multimètre TRMS Chauvin Arnoux F205
 - Le testeur de câble informatique Chauvin Arnoux CA 7028
- Une caisse à outils
- > Un ensemble d'équipements de sécurité électrique (EPI, ECS)
- > L'attestation de consignation de l'armoire de distribution

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS2/DMS12					

CHRONOLOGIE DES ETAPES DE LA MISE EN SERVICE

	ACTIVITES HORS TENSION :	Temps préconisé
1.	Contrôler les raccordements et la continuité du conducteur de protection électrique	15 mn
2.	Contrôler le niveau d'isolement de la ligne d'alimentation du four	15mn
3.	Choisir les cartouches fusibles pour chaque sectionneur porte fusibles et les insérer dans leurs emplacements respectifs	10 mn
4.	Contrôler le câble informatique	5 mn
	ACTIVITES EN PRESENCE TENSION :	
5.	Effectuer la mise sous tension progressive	15 mn
6.	Contrôler le dispositif différentiel à courant résiduel protégeant votre four	15 mn
7.	Configurer l'adresse IP du régulateur « NANODAC »	15 mn
8.	Configurer l'adresse IP de votre PC	15 mn
9.	Transférer le programme dans le régulateur « NANODAC »	5 mn
10.	Valider le fonctionnement de votre four	15 mn
11.	Relever la courbe de chauffe à l'aide de « OPC Scope »	15 mn

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS3/DMS12					

ACTIVITES HORS TENSION

Toutes les mesures effectuées à l'aide du contrôleur d'installation électrique devront être mémorisées dans l'appareil au fur et à mesure des tests et dans l'ordre que vous aurez établi.

Le capot de protection des résistances doit être ouvert.

1. Contrôle des raccordements et de la continuité du conducteur de protection électrique

Extrait de la norme NFC 15-105

D.6.2 Dans les schémas TN et IT, une simple vérification de la continuité des conducteurs de protection pourra être faite, si le respect des conditions de protection contre les contacts indirects a déjà pu être vérifié par l'une des méthodes suivantes :

- les notes de calcul de conception ont elles-mêmes été vérifiées,
- les calculs ont été faits avec un logiciel ayant reçu un avis technique de l'UTE,
- une vérification antérieure a été faite conformément au paragraphe D.6.1.

La continuité sera considérée comme satisfaisante si la résistance R mesurée entre toute masse et le point le plus proche de la liaison équipotentielle principale n'est pas supérieure à 2 ohms, pour une installation 230/400 V, quel que soit le dispositif de protection et quelle que soit la constitution du circuit.

D.6.3 Dans le schéma TT, quelle que soit la nature de la vérification, à la mise en service ou périodique, la vérification de la continuité des conducteurs de protection telle que définie au paragraphe précédent est suffisante.

Indiquer ci-dessous la valeur maximale de la résistance permettant de garantir la bonne continuité du conducteur de protection électrique

Valeur maximale :

CONCOURS GÉNÉRAL DES MÉTIERS						
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants						
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS4/DMS12						

Compléter le tableau ci-dessous en précisant les points de contrôles, les valeurs mesurées et en déduire la conformité ou non-conformité de la continuité du conducteur de PE

Va	Valeur	Conformité	
Points de controle	mesurée	oui	non
0 - Barrette de terre			
1 - Barrette de terre -			
2 - Barrette de terre			
3 - Barrette de terre			
4 - Barrette de terre			
5 - Barrette de terre			
6 - Barrette de terre			
7 - Barrette de terre			
8 - Barrette de terre			
9 - Barrette de terre			

2. Contrôle du niveau d'isolement de la ligne d'alimentation du four

La première étape de consignation au niveau de l'armoire de distribution a été effectuée.

Le câble d'alimentation du four doit être branché sur la prise murale Le relais statique n'est pas IP2X

- > Fermer Q0
- Fermer F1
- > Ouvrir F2 et F3

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS5/DMS12					

Faire constater par le jury l'état de l'armoire

Extrait de la norme NFC 15-100

612.3 Résistance d'isolement de l'installation électrique

La résistance d'isolement doit être mesurée entre chaque conducteur actif et la terre.

NOTES -

1 - Dans le schéma TN-C, le conducteur PEN est considéré comme une partie de la terre.

2 - Pendant cette mesure, les conducteurs de phase et le conducteur neutre peuvent être reliés ensemble.

Tableau 61A - Valeurs minimales de la résistance d'isolement

Tension nominale du circuit V	Tension d'essai en courant continu V	Résistance d'isolement ΜΩ	
TBTS et TBTP	250	≥ 0,25	
Inférieure ou égale à 500 V, à l'exception des cas ci-dessus	500	≥ 0,5	
Supérieure à 500 V	1 000	≥ 1,0	

Indiquer la valeur minimale de la résistance d'isolement :

Valeur minimale :

Compléter le tableau ci-dessous en identifiant les points de contrôles et en indiquant la conformité ou non-conformité du niveau d'isolement. Les mesures seront faites aux bornes de Q0

Points de contrôle	Conformité	
	oui	non

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS6/DMS12					

3. Choix des cartouches fusibles pour chaque sectionneur porte fusibles

> Justifier le type et le calibre des fusibles associés au sectionneur porte fusible F1

> Justifier le type de fusibles associés aux sectionneurs portes fusibles F2 et F3

> **Insérer** les cartouches fusibles

NOTA : Le constructeur de l'alimentation 24V continue (AL1) impose un calibre de 1A au primaire et au secondaire de celle-ci.

4. Contrôle du câble informatique

- Effectuer les contrôles du câble Ethernet reliant le régulateur à la prise en façade de l'armoire, à l'aide du testeur Chauvin Arnoux C.A 7028. Ce test statique permet de contrôler les polarités, la continuité, les courts-circuits, les inversions et les éventuelles erreurs de câblage
- > Déduire des mesures la conformité ou non-conformité du câble

Conforme	Non-conforme

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS7/DMS12					

ACTIVITES EN PRESENCE TENSION

- > Le capot de protection de l'alimentation doit être fermé
- > Tous les appareils de protections et Q0 doivent être ouverts

Faire constater par le jury l'état de votre armoire avant les mesures

Demander la déconsignation du disjoncteur correspondant à votre four au niveau de l'armoire de distribution

Prévoir l'utilisation des protections adéquates afin d'assurer votre propre sécurité

5. Mise sous tension progressive

> Effectuer la mise sous tension progressive en complétant le tableau ci-dessous :

Ma	SURGE	Valeur	Valeur	Confo	ormité
	sures	attendue	mesurée	oui	non
	Q0, F1, F	2, F3 ouverts	•		
	Q0 01 – Q0 02				
Amont de QO	Q0 01 – Q0 03				
	Q0 02 – Q0 03				
Fermer Q0					
Amont de F1	F1 04 – F1 05				
	F1 04 – F1 06				
	F1 05– F1 06				
	Fei	rmer F1			
Amont de F2	F2 04 – F2 05				
	Fermer F2				
Amont de F3	F318 – F319				
Fermer F3					

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS8/DMS12					

6. Contrôle du fonctionnement du dispositif différentiel à courant résiduel

Extrait de la norme NFC 15-100

411.3.2.2 Selon la tension nominale entre phase et neutre U₀, le temps de coupure maximal du tableau 41A doit être appliqué à tous les circuits terminaux.

Tableau 41A - Temps de coupure maximal (en secondes) pour les circuits terminaux

	50 V < U	₀ ≤ 120 V	120 V < U	$J_0 \leq 230 \text{ V}$	230 V < U	$l_0 \leq 400 \text{ V}$	$U_0 > 4$	400 V
Temps de coupure (s)	alternatif	continu	alternatif	continu	alternatif	continu	Alternatif	continu
Schema TN ou IT	0,8	5	0,4	5	0,2	0,4	0,1	0,1
Schéma TT	0,3	5	0,2	0,4	0,07	0,2	0,04	0,1

Faire constater par le jury l'état de votre armoire avant les mesures

Contrôlo	Valours mosuróos	Conformité	
Controle	Valeurs mesurees	oui	non
Mesurer le courant de déclenchement			
Mesurer le temps de déclenchement			

> Valider le fonctionnement du DDR en justifiant votre réponse

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS9/DMS12					

- 7. Configuration de l'adresse IP du régulateur « NANODAC »afin de communiquer avec le PC
 - Configurer l'adresse IP à l'aide du guide « configuration régulateur» se trouvant sur le bureau de votre PC

Paramétrage nanodac		
Résea		
MAC	00 :0A :8D :01 :92 :29	Paramètres non
Identifiant Client	01000A8D019229	modifiables
Type IP	Fixe	
Adresse IP	192.168.111.01 à 12	Paramètres à
Masque de sous réseau	255.255.255.0	modifier
Passerelle	192.168.111.254	

Afin de valider l'adresse IP du régulateur couper l'alimentation en ouvrant l'interrupteur sectionneur Q0 puis réalimenter l'ensemble

8. Configuration de l'adresse IP de votre PC

Configurer l'adresse IP à l'aide du guide « configuration d'une adresse IP sous Windows7 » se trouvant sur le bureau de votre PC

Paramétrage IP du PC			
Adresse IP	192.168.111.101 à 112		
Masque sous Réseau	255.255.255.0		
Passerelle par défaut	192.168.111.254		
Serveur DNS préféré	192.168.111.254		
Serveur DNS auxiliaire	10.70.16.5		

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS10/DMS12					

9. Charger le programme dans le régulateur « NANODAC »

Transférer le programme « CGM 2014 paramétrage régulateur » à l'aide du guide « Chargement programme régulateur » se trouvant sur le bureau de votre PC

10. Contrôle du fonctionnement de votre four

Pour contrôler le fonctionnement du four selon la procédure ci-dessous, il est nécessaire que la porte soit ouverte et que l'interrupteur sectionneur Q0 soit ouvert.

PROCEDURE		Conformité		
TROCEDORE	oui	non		
Fermer l'interrupteur sectionneur Q0.				
Le voyant HO « sous tension » est allumé				
Le régulateur « Nanodac » est alimenté				
\succ KM1 = 0				
Sortie de travail = 0%				
Mettre le commutateur S1 sur la position « marche », la porte du four est ouverte.				
\succ KM1 = 0				
Sortie de travail = 0%				
Laisser le commutateur S1 sur la position « marche » et fermer la porte du four.				
\succ KM1 = 1				
Le voyant vert H1 de la balise lumineuse est allumé				
Sortie de travail = 100%				
Mettre le commutateur S1 sur la position « arrêt » après que la température du four ait atteint 70°C minimum.				
Refroidissement forcé du four				
Le voyant vert H1 de la balise lumineuse est éteint				
\succ KM1 = 0				
Sortie de travail = 0%				
Ouvrir la porte lorsque la température du four est encore supérieure 70°C :				
Le buzzer retentit 2 fois et la balise « rouge » clignote				

CONCOURS GÉNÉRAL DES MÉTIERS						
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants						
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS11/DMS12						

11. Relevé de la courbe de chauffe

Le relevé de la courbe de la température en fonction du temps s'effectuera à l'aide d'« OPC Scope » du logiciel « iTools Engineering Studio »

- Ouvrir le guide « Chargement programme régulateur » se trouvant sur le bureau de votre PC puis réaliser les cinq premières étapes
- Lancer « OPC Scope » lorsque la synchronisation du régulateur est terminée
- > Lancer un cycle de chauffe
- Enregistrer la courbe sous sur le bureau sous le nom « courbe four n°.... » sur le bureau du PC lorsque la température est stabilisée à 200°C
- > Imprimer la courbe

CONCOURS GÉNÉRAL DES MÉTIERS					
Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants					
Dossier MISE EN SERVICE Session 2014 Durée: 2h30 DMS12/DMS12					