CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE

U52 – Analyse d'une installation d'instrumentation, contrôle et régulation

Tout raisonnement cohérent avec la réponse attendue doit être valorisé

Élément de correction

SESSION 2025

Durée : 3 heures Coefficient : 5

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 1/18

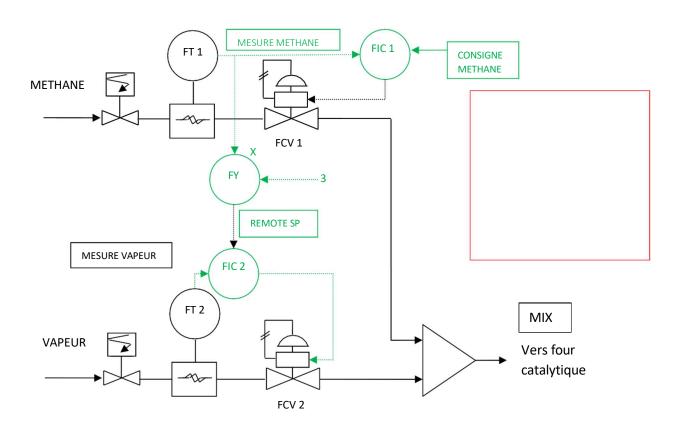
- 1-Mesure des débits de méthane et de vapeur
- Q1- Présenter en quelques lignes le principe de fonctionnement de la mesure de débit massique par effet Coriolis. Quel est l'intérêt d'utiliser un débitmètre massique ?

Le débitmètre Coriolis fonctionne en mettant en vibration un tube à travers lequel le fluide à mesurer s'écoule. Les forces de Coriolis induites par le fluide en mouvement provoquent une déformation du tube proportionnelle à la masse du fluide.

Débit massique afin d'éliminer les variations de masse volumique.

Q2-Sachant de le débit maximum de méthane est de 2 Kg.s⁻¹, déterminer le modèle du débitmètre. Au niveau de la sécurité des installations, quelle est la spécification importante de ce capteur ?

Code de référence : 2 possibilités : Proline Promass F 300 ou FCB430

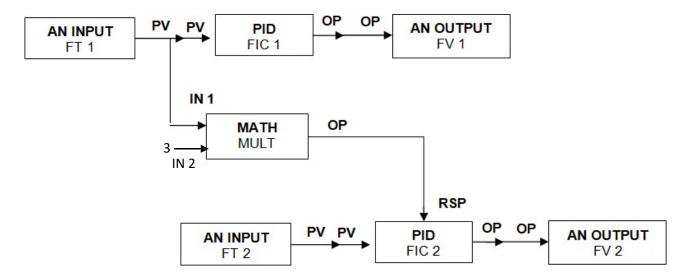

- à privilégier vis-à-vis de la précision : FCB430

Appareil ATEX: mesure d'un gaz explosif CH4

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025	
Analyse d	une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 2/18

2- Régulation de proportion du débit méthane-vapeur

Q3- Proposez, sur le document réponse 1, le schéma TI de la régulation de proportion méthanevapeur. Le débit de méthane étant le débit menant.



FIC 1 NON OBLIGATOIRE
PLUSIEURS SOLUTIONS PEUVENT ÊTRE PROPOSEES.ON VALIDERA LES SOLUTIONS
QUI REALISENT QVAP=3 Q METHANE

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 3/18

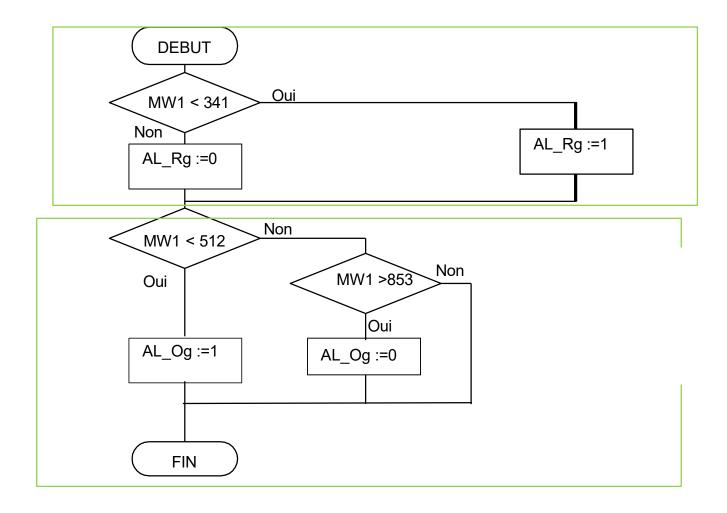
Q4- Réaliser, sur l'annexe 2, le schéma bloc de programmation du SNCC de la régulation de proportion méthane-vapeur.

Vous indiquerez toutes les liaisons nécessaires et les grandeurs utilisées.

PLUSIEURS SOLUTIONS PEUVENT ÊTRE PROPOSEES.

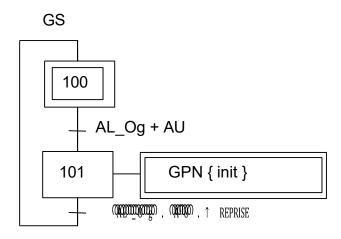
BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 4/18

3- Sécurité de fonctionnement.


Q5 - Quelle est la fonction du bloc B2 ?

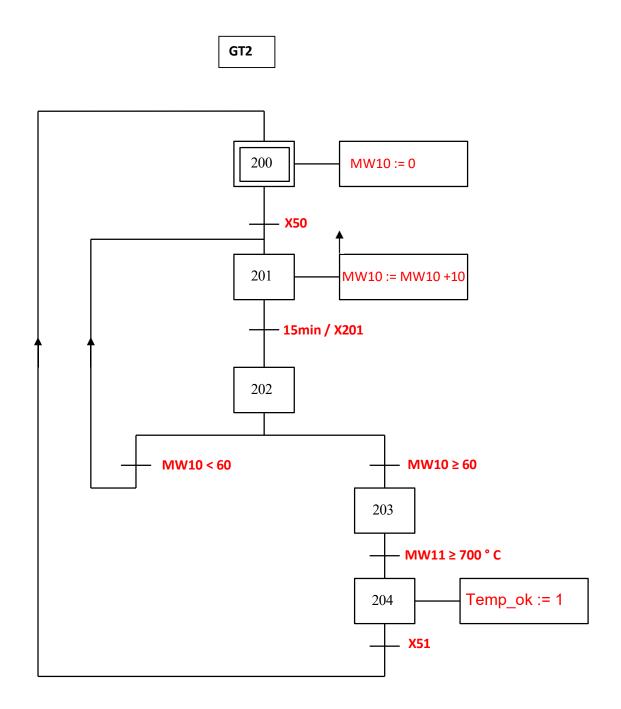
Convertir une grandeur analogique en un nombre entier

Q6 - La résolution de l'entrée analogique est égale à 10, compléter le document réponse annexe 9.


FT vapeur	I (mA)	MW1 décimal	MW1 héxadécimal
0	4	0	000
4	14,7	682	2AA
6	20	1023	3FF

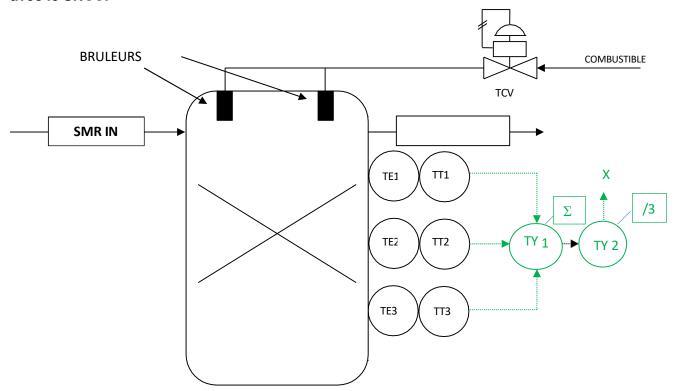
Q7 – Réaliser l'organigramme

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 5/18


Q8 – Dessiner le grafcet GS

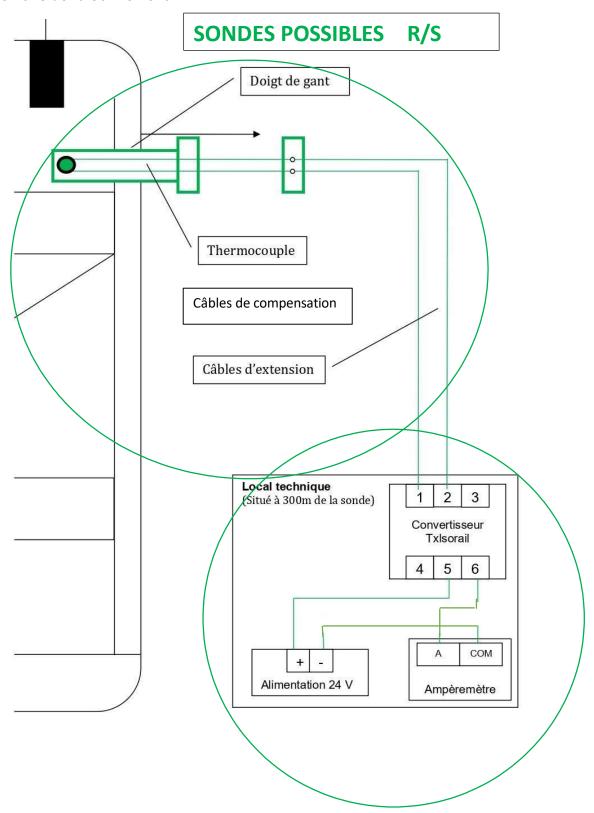
BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 6/18

4 - SEQUENCE DE DEMARRAGE DU PROCEDE DE REFORMAGE (SMR)


Q9 – Compléter le grafcet GT2 de l'annexe 9

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 7/18

- 5-Etude de la boucle de régulation de température du réacteur (SMR)
- 5-1 Mesure de température du mélange méthane-vapeur.


Q10- Proposer une solution technique pour convertir les trois signaux transmetteurs en une mesure de température moyenne. Vous disposerez des différents modules de calculs utilisables avec le SNCC.

Nota : un programme SNCC peut être proposé en fonction de l'interprétation du candidat

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 8/18

Q11- Réaliser l'implantation d'une des sondes et du transmetteur ANNEXE 4, vous indiquerez le type de sonde à choisir, le schéma de l'implantation de la sonde, le type des câbles utilisés, les précautions à prendre, le schéma électrique du raccordement de la sonde vers le transmetteur et le câblage du transmetteur étalonné pour une échelle de 200 °C à 1400 °C, vous indiquerez vos diverses réflexions de raisonnement.

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de	correction	Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 9/18

Q11

Coef.	Compétences exemples	Critères de réussite
2	APP S'approprier énoncer une problématique, mobiliser ses connaissances	CHOISIR UN Thermocoupe
2	ANA Analyser proposer et énoncer des lois qui semblent pertinentes pour la résolution	ANALYSER LES CONTRAINTES DE L'INSTALLATION (DOIGT DE GANT ET CABLES SPECIFIQUES)
4	REA Réaliser effectuer des calculs utiliser un modèle	REALISER LES CABLAGES

Niveau de maitrise de la compétence	Niveau associé
A	Expert : l'élève fait complètement ce qui est attendu
В	Avancé : l'élève fait partiellement ce qui est attendu. La démarche est bien engagée
С	Élémentaire : l'élève démarre la démarche. Des éléments de ce qui est attendu sont identifiés mais la démarche n'est pas assez concrétisée
D	<u>Très insuffisant :</u> Des éléments sont identifiés mais la démarche n'est pas engagée.

Coefficients	Compétences	Α	В	С	D
2	S'approprier				
2	Analyser				
4	Réaliser				
1	Valider				
1	Communiquer				

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 10/18

Lors des phases de démarrage, les techniciens sont amenés à vérifier la concordance des signaux entre les valeurs procédés et les valeurs affichées au niveau du SNCC.

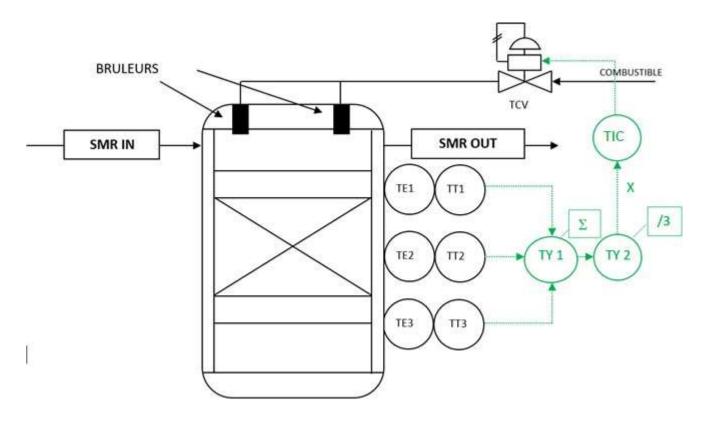
Q12- Calculer la valeur théorique du signal que transmetteur doit délivrer pour cette température.

Q13- Le technicien souhaite vérifier le bon fonctionnement du transmetteur. Indiquer la procédure utilisée pour réaliser ce type d'opération. Pour information le transmetteur dispose d'un dispositif de compensation de soudure froid.

Il faut utiliser un calibrateur de terrain configuré en générateur de tension et générer la valeur que le CTE aurait généré sauf que la CSF transmetteur est active, il faut donc générer

ou alors enlever la CSF du TT et dans ce cas générer

$$Eg = E_{sc 550 °C}$$


OU

On accepte aussi l'utilisation d'un calibrateur de terrain directement configuré en température avec csf activée (csf activée à la température du transmetteur)

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 11/18

6- Régulation de température du mélange méthane-vapeur.

Q14- Réaliser le schéma TI de la boucle de régulation de température du réacteur.

Q15-Indiquer les différentes grandeurs fonctionnelles mises en présence.

Grandeur réglée : température dans le réacteur

Grandeur réglante : débit de combustible

Grandeurs perturbatrices : débit vers le réacteur, température du mélange entrant

Q16-Le choix d'une vanne FMA est-il justifié pour cette installation ? Justifier votre réponse. Indiquer en justifiant votre réponse le sens d'action du régulateur.

Oui car en cas de problème technique, on coupe l'arrivée de combustible. C'est donc un bon choix pour la sécurité.

Si on génère 100 % vers la TCV, la vanne s'ouvre, le débit de combustible augmente donc la température augmente. Le procédé est donc DIRECT, le régulateur sera configuré en inverse.

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 12/18

Q17-Donner une explication au terme « asservissement », quel est l'intérêt de cette démarche au niveau des réglages.

Cette méthode permet d'analyser la réponse en boucle fermée (automatique) et vérifier ainsi si les réglages des actions PID sont corrects.

Analyse des performances de la boucle de régulation de température.

Q18-Déterminer les critères de performances pour ces réglages, quelles sont vos conclusions ?

Eléments de correction

Valeur finale de la mesure = 836 °C

Ecart statique = - 25 °C NON CONFORME

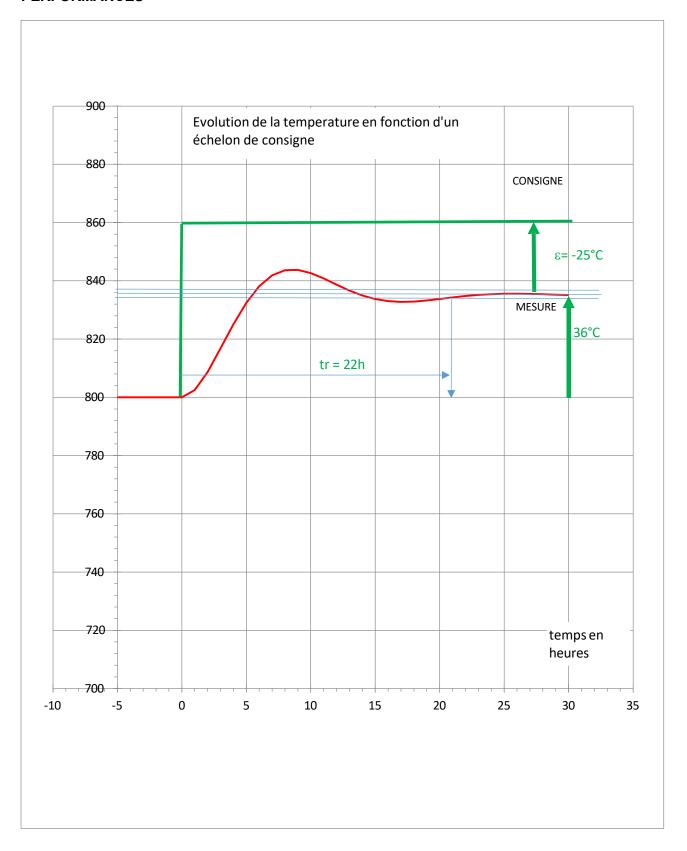
Temps de réponse à plus ou moins 5% = 22 heures NON CONF O

Il manque, en premier lieu, de l'action intégrale.

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 13/18

<u> </u>		
Coef.	Compétences exemples	Critères de réussite
2	APP S'approprier énoncer une problématique, mobiliser ses connaissances	IDENTIFIER LE PROTOCOLE A REALISER
2	ANA Analyser proposer et énoncer des lois qui semblent pertinentes pour la résolution	MAITRISE DES FORMULES
4	REA Réaliser effectuer des calculs utiliser un modèle	REALISER LA CONSTRUCTION ET EFFECTUER LES CALCULS
1	VAL Valider confirmer ou infirmer une hypothèse, ,	PROPOSER UNE SOLUTION PERTINENTE
1	COM Communiquer écrire des expressions littérales ; présenter les résultats de manière adaptée (unités, chiffres significatifs)	PRESENTATION DES RESULTATS

Niveau de maitrise de la compétence	Niveau associé
Α	Expert : l'élève fait complètement ce qui est attendu
В	Avancé : l'élève fait partiellement ce qui est attendu. La démarche est bien engagée
С	Élémentaire : l'élève démarre la démarche. Des éléments de ce qui est attendu sont identifiés mais la démarche n'est pas assez concrétisée
D	<u>Très insuffisant :</u> Des éléments sont identifiés mais la démarche n'est pas engagée.


Coefficients	Compétences	Α	В	С	D
2	S'approprier				
2	Analyser				
4	Réaliser				
1	Valider				
1	Communiquer				

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 14/18

ANNEXE 5

DOCUMENT REPONSE 4 de la question Q18 Document à rendre avec la copie

PERFORMANCES

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 15/18

Q19- Expliquer la procédure à suivre pour réaliser cette identification et déterminer le type et les actions des réglages du régulateur de température associé à cette vanne. Si c'est un PID le choix se portera sur un régulateur PID mixte.

Identification du procédé:

- Le régulateur étant en MANUEL (régulation en boucle ouverte),
- on stabilise la mesure à un point de fonctionnement,
- on réalise un échelon sur le signal de sortie du régulateur Yr,
- on analyse la réponse du procédé en regardant l'évolution de la mesure X,

En fonction du résultat, on réalise les calculs pour déterminer les paramètres du procédé.

```
\DeltaX = 494 °C

t_1= 12 heures

t_2= 15 heures

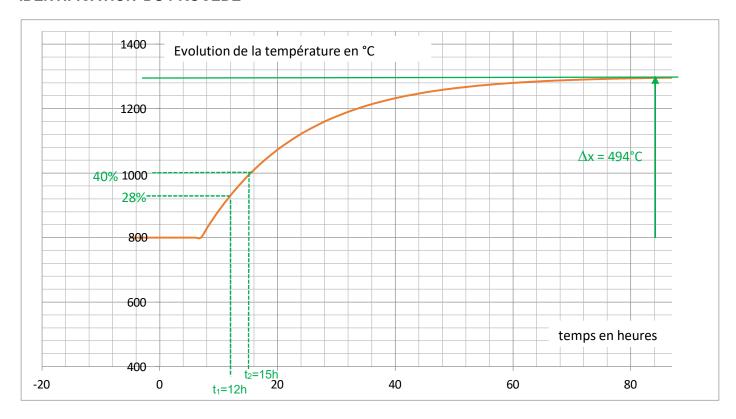
G_s= 494 °C / 10 % soit 41 / 10 = 4.1

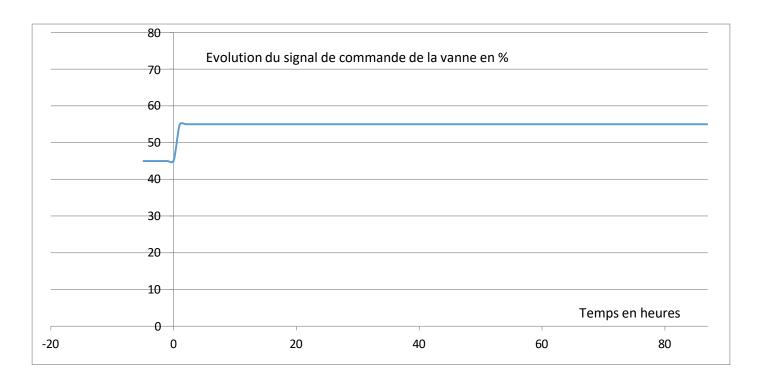
Constante de temps \theta = 16,2 h

Temps mort \tau = 4,8 h

\theta / \tau = 3,4 \rightarrow CHOIX PID

Kp = 0.76 BP = 131 %


Ti = 17,9 h


Td = 1,7 h
```

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 16/18

DOCUMENT REPONSE 6 de la question Q19 Document à rendre avec la copie

IDENTIFICATION DU PROCEDE

NB. Au regard de l'allure de la réponse (ordre 1 avec retard), on validera les solutions qui propose une identification d'ordre 1 (à 63~%).

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de correction		Session 2025
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 17/18

Q19

<u>ي م</u>	<u> </u>							
Coef.	Compétences exemples	Critères de réussite						
2	APP S'approprier énoncer une problématique, mobiliser ses connaissances	IDENTIFIER LE PROTOCOLE A REALISER						
2	ANA Analyser proposer et énoncer des lois qui semblent pertinentes pour la résolution	MAITRISE DES FORMULES						
4	REA Réaliser effectuer des calculs utiliser un modèle	REALISER LA CONSTRUCTION ET EFFECTUER LES CALCULS						
1	VAL Valider confirmer ou infirmer une hypothèse, ,	PROPOSER UNE SOLUTION PERTINENTE						
1	com communiquer écrire des expressions littérales ; présenter les résultats de manière adaptée (unités, chiffres significatifs)	PRESENTATION DES RESULTATS						

Niveau de maitrise de la compétence	Niveau associé	
Α	Expert : l'élève fait complètement ce qui est attendu	
В	Avancé: l'élève fait partiellement ce qui est attendu. La démarche est bien engagée	
С	Élémentaire : l'élève démarre la démarche. Des éléments de ce qui est attendu sont identifiés mais la démarche n'est pas assez concrétisée	
D	<u>Très insuffisant :</u> Des éléments sont identifiés mais la démarche n'est pas engagée.	

Coefficients	Compétences	Α	В	С	D
2	S'approprier				
2	Analyser				
4	Réaliser				
1	Valider				
1	Communiquer				

Note issue du tableau sur 20 ou sur 10 selon l'outil tableur utilisé, puis penser à ramener la note sur le nombre de points de la question.

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élément de	Session 2025	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : 24CA52AII	Page 18/18