Brevet de Technicien Supérieur

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE

Session 2025

U51 – Analyse physico-chimique d'un procédé et de son environnement

Élément de correction

Tout raisonnement cohérent avec la réponse attendue doit être valorisé

Durée : 3 heures Coefficient : 4

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élén	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement	Code : 25CA51PHC	Page 1/7

	Éléments de correction			
	PARTIE A			
Q1	Pt : platine.			
	100 : valeur en ohms prise par la résistance à la température du 0°C.			
Q2	Un calcul de coefficient directeur est mené avec les coordonnées de points			
	appartenant à la droite.			
	L'équation de la droite est : $R_T = 0.38 \times T + 100$.			
	En la mettant sous la forme $R_T = R_0 \times (1 + \alpha T)$ on obtient :			
	$R_T = 100(1 + \frac{0.38}{100}T)$ soit $R_0 = 100\Omega$ et $\alpha = 3.8.10^{-3}$ °C ⁻¹			
Q3	Par calcul ou par détermination graphique, nous obtenons :			
	$R_{80} = 130.4 \Omega$ et $R_{120} = 145.6 \Omega$			
Q4	Il y a présence d'une boucle de contre-réaction entre la sortie et l'entrée non			
	inverseuse des amplificateurs opérationnels.			
Q5	Loi d'ohm aux bornes de R_T : $V_T = R_T \times I = R_0 \times (1 + \alpha T) \times I$			
Q6	$V_{T80} = R_{80} \times I = 1,304 \text{ V et } V_{T120} = R_{120} \times I = 1,456 \text{ V}$			
Q7	L'AOP 1 est un montage suiveur (recopie la tension Vr) avec impédance			
	d'entrée infinie. (1 des 2 arguments est attendu)			
Q8	AOP 1 étant un suiveur : $V_T = V_{S1}$.			
	$V_{S1-80^{\circ}C} = 1,304 V \text{ et } V_{S1-120^{\circ}C} = 1,456 V$			
Q9	Voir grille de compétences.			
	PARTIE B			
Q10	$q = \frac{V_{REF}}{2^n} = \frac{5,0V}{2^8} = 0,0195 V$ ou $q = \frac{V_{REF}}{2^n - 1} = \frac{5,0V}{2^8 - 1} = 0,0196 V$ (deux réponses			
	acceptées)			
Q11	Voir grille de compétences.			
	PARTIE C			
Q12	$\Delta_r H^{\circ} = \Delta H^{\circ}_f(CO) + 3 \times \Delta H^{\circ}_f(H_2) - \Delta H^{\circ}_f(CH_4) - \Delta H^{\circ}_f(H_2O)$			
	$\Delta H^{\circ} = -110 + 3 \times 0 - (-75) - (-242) = 207 kJ \cdot mol^{-1}$			
Q13	Cette réaction est endothermique puisque la variation d'enthalpie standard de			
	la réaction est positive.			
Q14				
W 17	La réaction étant endothermique, une augmentation de température déplacera			
	l'équilibre dans le sens de la formation de dihydrogène (sens direct).			
Q15	Un catalyseur sert à augmenter la vitesse de la réaction sans modifier l'état			
	final de la réaction donc il ne modifie pas le rendement.			
	Les réactifs étant gazeux et le catalyseur solide, il s'agit donc d'une catalyse			
	hétérogène.			
Q16				
Q 10	L'ajout d'un excès d'eau déplace l'équilibre de la réaction dans le sens de sa			
	consommation donc dans le sens de la fabrication du dihydrogène (sens			
	direct).			

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élém	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement	Code : 25CA51PHC	Page 2/7

PARTIE D		
L'échangeur est à contre-courant car les fluides circulent en sens inverse.		
Fluide froid Te = 100°C et Ts = 450°C		
Fluide chaud Te = 937°C et Ts = 375 °C		
Voir grille de compétences.		
PARTIE E		
Le couplage présenté sur le schéma est un couplage étoile.		
Les enroulements de ce moteur nécessitent 400 V.		
Pour obtenir cette tension à partir du réseau 400 V / 690 V, il faut récupérer la		
tension simple, il faut donc un couplage en étoile		
Le moteur est donc correctement couplé.		
$n_S = \frac{f}{p} = \frac{50}{3} = 16.7 \ tr. s^{-1} = 1000 \ tr. min^{-1}$		
2		
$n = n_S(1-g) = 1000 \times (1 - \frac{2}{100}) = 980 \text{ tr. min}^{-1}$		
100		
Bloc 1 : redresseur		
Bloc 2 : filtre (condensateur de filtrage) - lissage Bloc 3 : onduleur		
Tension 1 : B Tension 2 : D Tension 3 : C Tension 4 : A		
Le variateur permet de modifier la fréquence de la tension d'alimentation du		
moteur modifiant ainsi la vitesse de synchronisme et donc le débit de fluide chaud.		
PARTIE F Les émissions de dioxyde de carbone dans l'atmosphère contribuent à l'effet de		
Les émissions de dioxyde de carbone dans l'atmosphère contribuent à l'effet de serre. Afin de de pas accentuer le réchauffement climatique il est nécessaire de		
contrôler les émissions de dioxyde de carbone dans l'atmosphère.		
De gauche vers la droite : solide, liquide, vapeur, super critique.		
A : point triple.		
B : point critique.		
Le dioxyde de carbone est à l'état super critique.		
Position du point E sur l'annexe 1.		
Diagramme de prédominance :		
nH		
6,4 10,3		
$H_2O_{(aq)}$, $CO_{2(aq)}$ $HCO_{3(aq)}^ CO_{3(aq)}^{2-}$		
1120(aq), $002(aq)$ $11003(aq)$ $1003(aq)$		
L'espèce prédominante au p $H=7.8$ est l'ion hydrogénocarbonate : HCO $_{3(aq)}^{-}$.		
Deux méthodes acceptées (au choix) :		
- la zone de virage de l'indicateur coloré est utilisée : la gamme de réponses		
acceptables est comprise entre 10,4 mL et 11,8 mL		
- la méthode des tangentes qui donne environ $V_e = 11,2 \text{ mL}$		
Le TAC de cette eau est donc d'environ 11,2 °f		
Depuis 2021, les valeurs du <i>TAC</i> sont comprises dans l'intervalle des années		
précédentes, le stockage du CO ₂ n'a donc pas d'impact particulier sur le <i>TAC</i> de		

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élém	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement	Code : 25CA51PHC	Page 3/7

Coef.	Compétences	Critères de réussite
2	APP S'approprier énoncer une problématique, mobiliser ses connaissances	L'étudiant indique que la gamme de température étudiée va entrainer des valeurs différentes de la tension $V_{\rm S1-80}=1,304~V$ et $V_{\it S1-120}=1,456~V$
3	ANA Analyser proposer et énoncer des lois qui semblent pertinentes pour la résolution	L'étudiant met en œuvre la formule : $V = \frac{R_2}{S^2} \times (V - V) \text{ dans les deux conditions de températures, avec les tensions V}_{S1} \text{ adéquates.}$ Il obtient donc un système de deux équations. A 80 °C $0 = \frac{R_2}{S1} \times (1,304 - V) \text{ OFF}$ A 120 °C $5 = \frac{R_{12}}{R_{1}} \times (1,456 - V) \text{ OFF}$
2	REA Réaliser effectuer des calculs utiliser un modèle	Résolution des équations : $V_{OFF} = 1,304 V$ $\frac{R_2}{R_1} = 32,89$
1	com Communiquer écrire des expressions littérales ; présenter les résultats de manière adaptée (unités, chiffres significatifs)	Les calculs menés, la démarche mise en œuvre et la conclusion sont exprimés de manière claire et adaptée.

Niveau de maitrise de la compétence	Niveau associé Expert : l'élève fait complètement ce qui est attendu	
A		
В	<u>Avancé :</u> l'élève fait partiellement ce qui est attendu. La démarche est bien engagée	
С	Élémentaire : l'élève démarre la démarche. Des éléments de ce qui est attendu sont identifiés mais la démarche n'est pas assez concrétisée	
D	<u>Très insuffisant :</u> Des éléments sont identifiés mais la démarche n'est pas engagée.	

Coefficients	Compétences	Α	В	С	D
2	S'approprier				
3	Analyser				
2	Réaliser				
1	Communiquer				

Note issue du tableau sur 20 ou sur 10 selon l'outil tableur utilisé, puis penser à ramener la note sur le nombre de points de la question.

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élém	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement	Code : 25CA51PHC	Page 4/7

Coef.	Compétences	Critères de réussite
		Solution 1 : l'étudiant utilise le document pour déterminer
	APP S'approprier	la valeur de la température <i>T</i> avec la valeur de
2	énoncer une	$V_{S2} = 2,207 \mathrm{V}.$
2	problématique, mobiliser	Solution 2: le candidat associe les plages de la valeur
	ses connaissances	décimale du codage 8 bits (de 0 à 28-1 ou 28) avec la plage
		de tension 0 à 5 V et la plage de température 80°C à 120°C.
		Solution 1 : l'étudiant exprime que la valeur numérique N
		est liée à la tension V_{S2} .
		$V_{S2} = q \times N$
		Solution 2 : le candidat remarque que la température et la mesure de la tension sont linéaires et en déduit la linéarité
	ANA Analyser	entre la température et la valeur en base 10 du codage 8
	proposer et énoncer des	bits du CAN. La relation entre <i>N</i> et <i>T</i> est donc de la forme
3	lois qui semblent	$T = a + b \times N$.
	pertinentes pour la	Les coefficients <i>a</i> et <i>b</i> sont obtenus avec les conditions
	résolution	$T(0) = 80^{\circ}\text{C}$ et $T(2^{8}-1) = 120^{\circ}\text{C}$.
		Il peut également définir un quantum « en température » q_T
		qui correspond au coefficient b. Dans ce cas, forcément la
		valeur du coefficient a est la valeur de la température pour
		N = 0 ie 80 °C
		Solution 1 : le calcul de V_{S2} est mené :
		$V_{S2} = N \times q = 113 \times 0.0195 = 2,204 V \text{ ou}$
		$V_{S2} = N \times q = 113 \times 0.0196 = 2.215 V$ L'exploitation graphique indique que pour une tension de
	REA Réaliser	
2	effectuer des calculs utiliser un modèle	$V_{S2} = 2.2 V$ la température est de $T = 97.5 ^{\circ}C$. Solution 2 :
		$a = 80^{\circ}\text{C}$ et $b = q_T = \frac{120 - 80}{120 - 80}$. On accepte $b = q_T = \frac{120 - 80}{120 - 80}$
		a = 80°C et $b = q_T = \frac{120 - 80}{2^8 - 1}$. On accepte $b = q_T = \frac{120 - 80}{2^8}$ On obtient : $T = a + b \times N_{base\ 10} = 80 + \frac{120 - 80}{2^8 - 1} \times 113$
		$base 10 \qquad -80 + \frac{1}{2^8 - 1} \times 115$
		On trouve : <i>T</i> = 97,7 °C
4	VAL Valider	Solution 1 et 2 :
1	confirmer ou infirmer une	la température trouvée est donc conforme à la valeur
	hypothèse, , COM Communiquer	attendue puisque $95^{\circ}C < T < 105^{\circ}C$
	écrire des expressions	
	littérales ; présenter les	Solution 1 et 2 :
1	résultats de manière	les calculs menés, la démarche mise en œuvre et la
	adaptée (unités, chiffres	conclusion sont exprimés de manière claire et adaptée.
	significatifs)	

Niveau de maitrise de la compétence	Niveau associé
Α	Expert : l'élève fait complètement ce qui est attendu
В	Avancé : l'élève fait partiellement ce qui est attendu. La démarche est bien engagée

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élém	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement	Code : 25CA51PHC	Page 5/7

С	<u>Élémentaire</u> : l'élève démarre la démarche. Des éléments de ce qui est attendu sont identifiés mais la démarche n'est pas assez concrétisée
D	<u>Très insuffisant</u> : Des éléments sont identifiés mais la démarche n'est pas engagée.

Coefficients	Compétences	Α	В	С	D
2	S'approprier				
3	Analyser				
2	Réaliser				
1	Valider				
1	Communiquer				

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élém	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement	Code : 25CA51PHC	Page 6/7

Coef.	Compétences	Critères de réussite	
2	APP S'approprier énoncer une problématique, mobiliser ses connaissances	Dans son raisonnement ou son calcul, l'étudiant affecte les températures aux différentes entrées et sorties de façon correcte dans la formule	
2	ANA Analyser proposer et énoncer des lois qui semblent pertinentes pour la résolution	L'étudiant utilise la formule $P=Q_mC_P\Delta T$ du côté fluide chaud, c'est-à-dire des vapeurs issues de la SMR. L'étudiant utilise ensuite la formule de l'échangeur à contrecourant. $\Delta T_m = \frac{(T_E-t_S)-(T_S-t_E)}{\ln(T_{E-t_S})}$	
4	REA Réaliser effectuer des calculs utiliser un modèle	Puissance échangée côté fluide chaud : $P = Q_m C_P \Delta T = 1,24.10^7 W$ On considèrera la puissance échangée soit 1,24.10 7 W $T_E = 937 ^{\circ}\text{C} - T_S = 375 ^{\circ}\text{C}$ et $t_E = 100 ^{\circ}\text{C} - t_S = 450 ^{\circ}\text{C}$ Le calcul ΔT_m : $\Delta T_m = \frac{(T_E - t_S) - (T_S - t_E)}{\ln(\frac{T_E - t_S}{T_S - t_E})} = 371 ^{\circ}\text{C}$ $S = \frac{P}{K\Delta T_m} \text{ ou } S = \frac{Q_m C_P \Delta T}{K\Delta T_m} \text{ donne } S = 833 m^2$	
1	com Communiquer écrire des expressions littérales ; présenter les résultats de manière adaptée (unités, chiffres significatifs)	Les calculs menés, la démarche mise en œuvre et la conclusion sont exprimés de manière claire et adaptée.	

Niveau de maitrise de la compétence	Niveau associé		
Α	Expert : l'élève fait complètement ce qui est attendu		
В	Avancé : l'élève fait partiellement ce qui est attendu. La démarche est bien engagée		
С	Élémentaire : l'élève démarre la démarche. Des éléments de ce qui est attendu sont identifiés mais la démarche n'est pas assez concrétisée		
D	<u>Très insuffisant :</u> Des éléments sont identifiés mais la démarche n'est pas engagée.		

Coefficients	Compétences	Α	В	С	D
2	S'approprier				
2	Analyser				
4	Réaliser				
1	Communiquer				

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE - Élém	Session 2025	
Analyse physico-chimique d'un procédé et de son environnement Code : 25CA51PHC		Page 7/7