BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

ÉPREUVE E5 : CONCEPTION DÉTAILLÉE

SOUS ÉPREUVE E51 : CONCEPTION DÉTAILLÉE PRÉ-INDUSTRIALISATION

SESSION 2025

GANT BIONIQUE

Durée : 4 heures

Coefficient: 2

DOSSIER TECHNIQUE

Ce dossier comporte 19 pages repérées de DT1/19 à DT19/19

A. Mise en situation et présentation du produit GANT BIONIQUE

La société BIOSERVO conçoit, fabrique et commercialise une large gamme d'exosquelettes industriels (Fig 1) pour assister les opérateurs dans :

- · la manutention de charges ;
- les travaux avec bras en hauteur ;
- · les postures pénibles et répétitives.

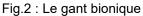


Fig.1: Un exosquelette

Le produit étudié est un élément d'exosquelette, **le gant bionique** 'BIOHAND' utilisable dans tous les travaux où la main est très sollicitée (Fig. 2 et 3). Il peut limiter les T.M.S.*

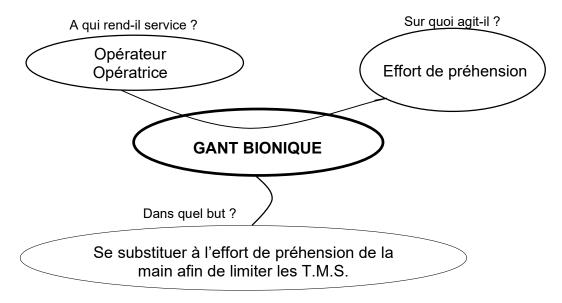


Fig.3 : Exemple d'utilisation

*T.M.S.: Troubles Musculo Squelettiques

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 1/19

B. Expression du besoin

C. Présentation générale du produit

Le produit est constitué de plusieurs composants (fig 4).

Fig.4 : Les composants du produit étudié

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 2/19

D. Principe de fonctionnement

La pression détectée par le capteur va entraîner, par l'intermédiaire d'un câble, le serrage (ou desserrage) au niveau du doigt correspondant (fig 5).

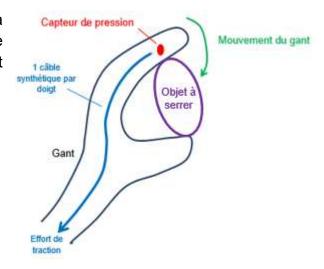


Fig.5 : Principe de fonctionnement

Les 5 câbles intégrés (1 par doigt) dans le tissu du gant peuvent développer une force de l'ordre de 75 N. Cet effort se substitue à la force qu'aurait dû fournir l'opérateur.

Le gant est équipé de 5 capteurs de pression au niveau des doigts.

E. Le bloc de commande et d'alimentation

Le bloc comprend l'alimentation du gant ainsi que la commande des câbles (fig 6).

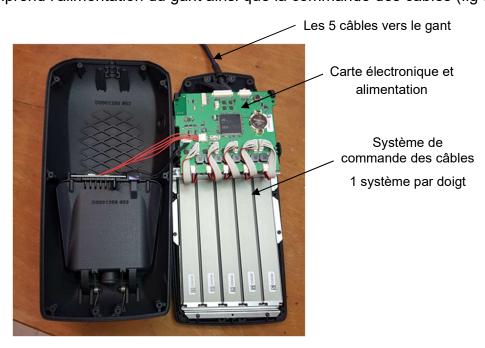


Fig.6: Le boitier ouvert

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 3/19

Explications de la commande des câbles :

Chaque câble est entrainé par une Tirette d'entrainement (fig 7) qui coulisse dans une Unité de translation. La Tirette est elle-même entrainée par un Crochet d'entrainement (fig 7). Le crochet est entrainé par un système vis / écrou (fig 8).

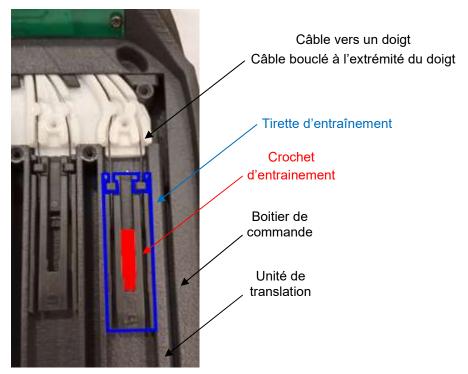
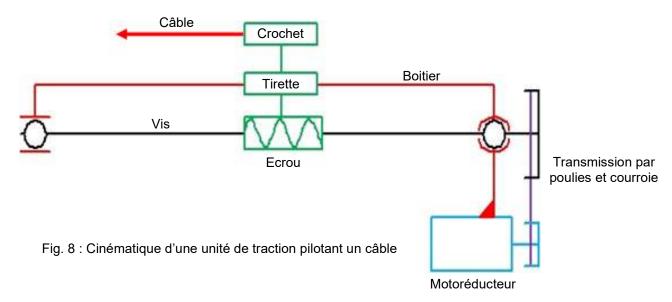
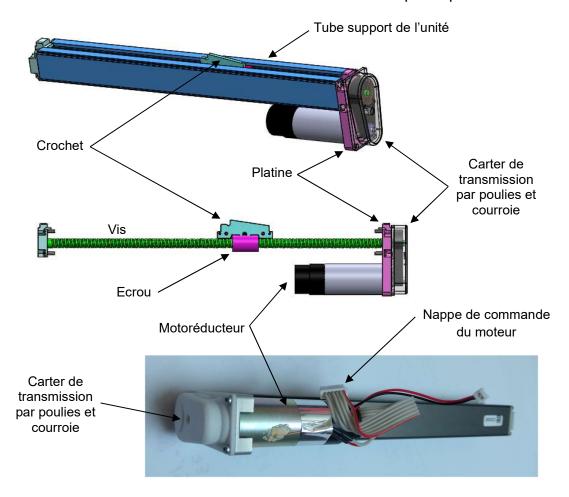
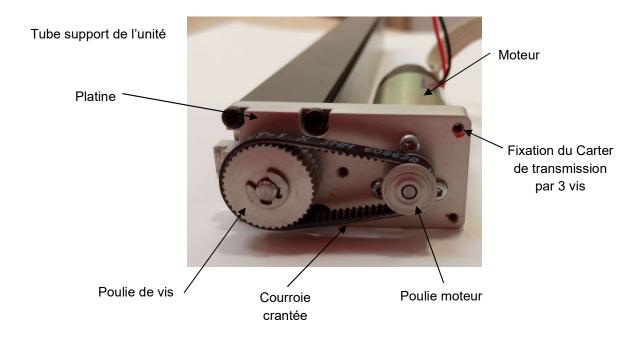



Fig. 7 : Entraînement des câbles


Schéma cinématique du système d'entrainement :

Chaque câble est actionné par une Unité de traction constituée d'un système visécrou actionné par un moteur électrique. Chaque unité fonctionne de manière indépendante (fig 8).



BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 4/19

Vues d'une unité de traction : La Tirette et le câble ne sont pas représentés.

Vue de la transmission carter démonté :

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 5/19

F. Le domaine de l'étude

- Le système à câbles qui relie le Boitier au Gant est hors du domaine de l'étude.

Le domaine de l'étude concernera le **Carter** (fig 9) et le **Crochet d'entrainement** (fig 10).

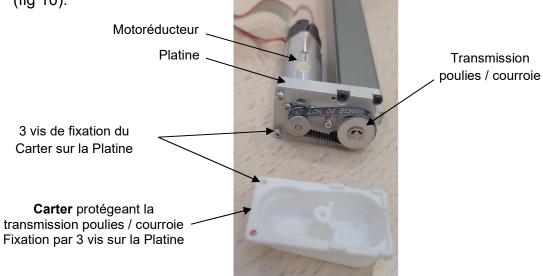
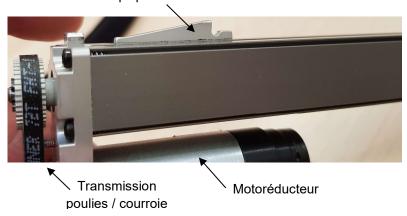


Fig. 9: Le Carter

Le Crochet d'entrainement qui permet de transmettre le mouvement au câble puis au doigt



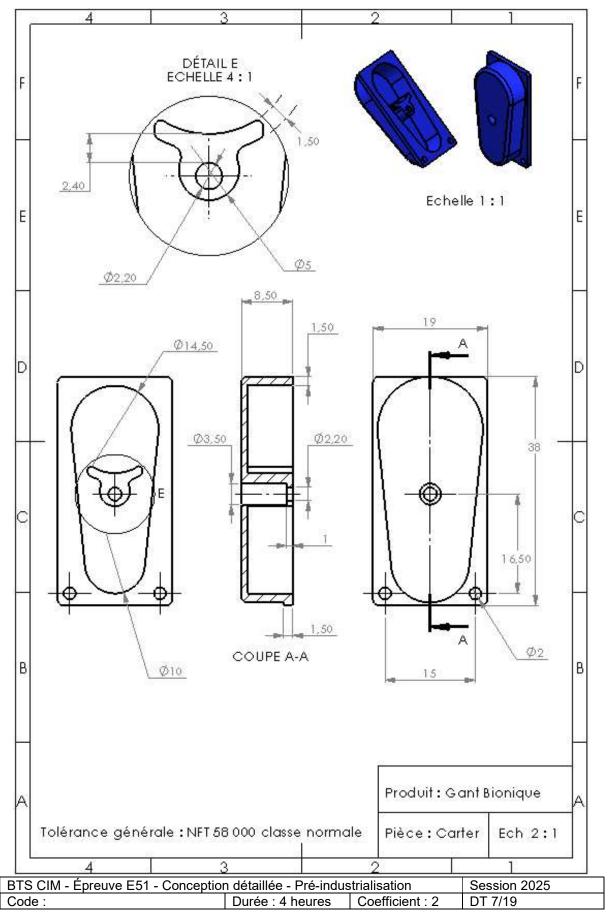
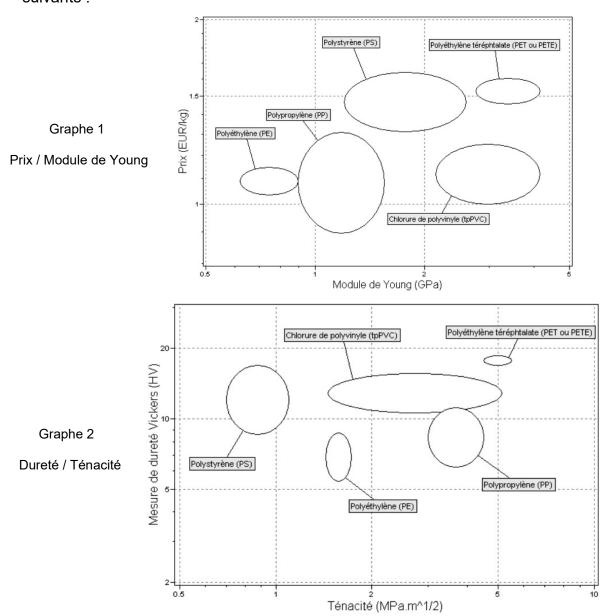


Fig.10: Le crochet d'entrainement

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 6/19

G. Le Carter


Mise en plan partielle du carter :

Les aspects technologiques du matériau de production :

- Procédé d'obtention actuel de la pièce : Frittage de poudre plastique.
- Procédé d'obtention envisagé : Moulage par injection plastique.
- Critères de choix du matériau du Carter pour l'injection plastique :
 - ✓ Prix : Inférieur à 2 €/kg✓ Dureté : Minimum 10 HV
 - ✓ Module d'élasticité : Module de Young entre 1 et 2 GPa
 - √ Résistance aux chocs : Liée à la ténacité, supérieure à 2 MPa.m¹/2

Une étude effectuée avec un logiciel dédié au choix de matériau fournit les graphes suivants :

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 8/19

Conception préliminaire de l'outillage :

- ✓ La pièce étant préalablement obtenue en fabrication additive, il faudra effectuer toute l'étude préliminaire de l'outillage.
- ✓ Pour obtenir cette pièce, un moule simple 2 plaques est retenu (fig 11). Il s'agit d'un standard de la marque Rabourdin possédant des plaques porteempreintes de 156*156mm.

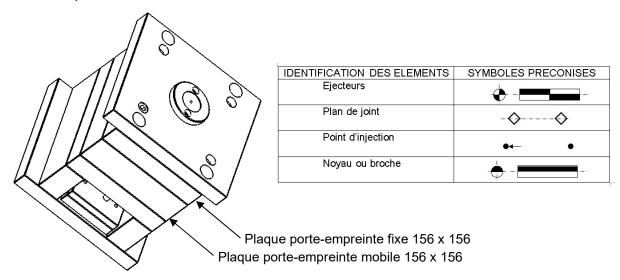
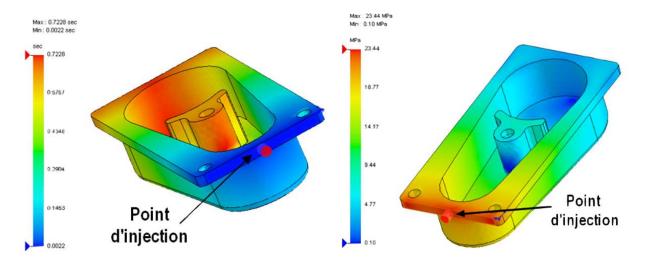
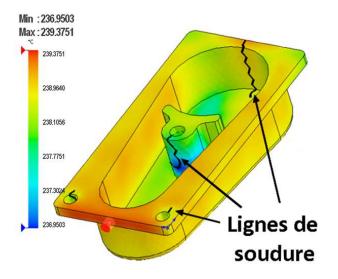
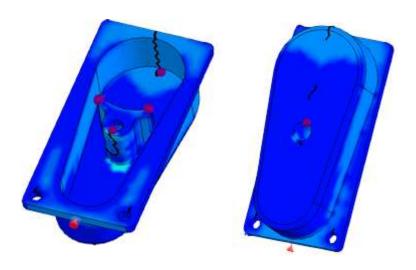



Fig.11 : La carcasse du moule et la symbolique de représentation

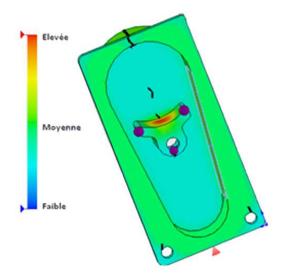
Étude de rhéologie pour le Carter :


Avant d'aller plus avant dans la conception du moule d'injection, une simulation numérique du remplissage de la matière plastique dans le moule à l'aide d'un logiciel de rhéologie est réalisée.

Temps de remplissage de l'empreinte


Pression en fin de remplissage

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 9/19



Pour information, la matière utilisée à une température de transformation comprise entre 215° et 245° C et la température d'injection est de 240°C

Température du front de matière et lignes de soudures

Inclusions d'air (points rouges) et lignes de soudure (traits noirs)

Zone de retassures

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 10/19

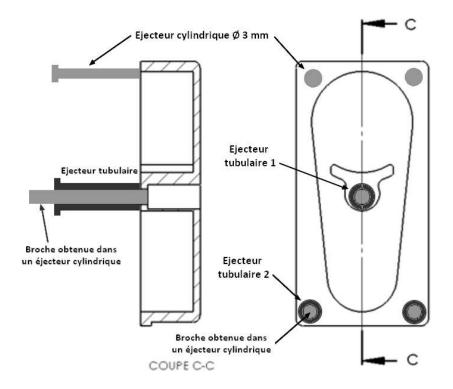
Aspect économique de la production du Carter :

- Production actuelle en fabrication additive :
 - * Coût horaire de la machine de fabrication additive utilisée et déjà présente dans l'entreprise : 10 € par heure matière comprise (quelle que soit la matière utilisée).
 - * 120 carters sont produits en une fois en 8 heures d'impression.
- Production envisagée par injection plastique :
 - * Le moule sera réalisé avec deux empreintes.
 - * Une étude de faisabilité sous traitée permet d'estimer les coûts de l'outillage et de la production de la pièce **Carter** :

Carcasse complète : 1 200 €

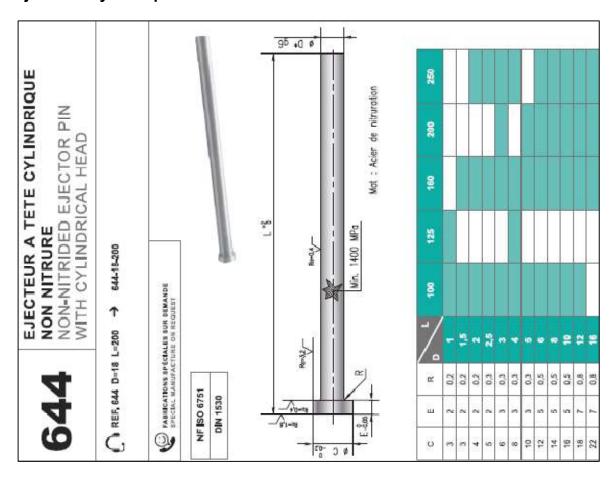
Nombre d'empreintes : 2

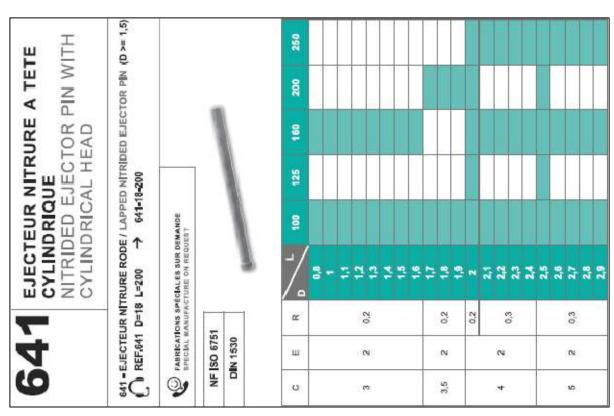
• Série annuelle : 5 000 carters


• Usinage d'une empreinte : **500** €

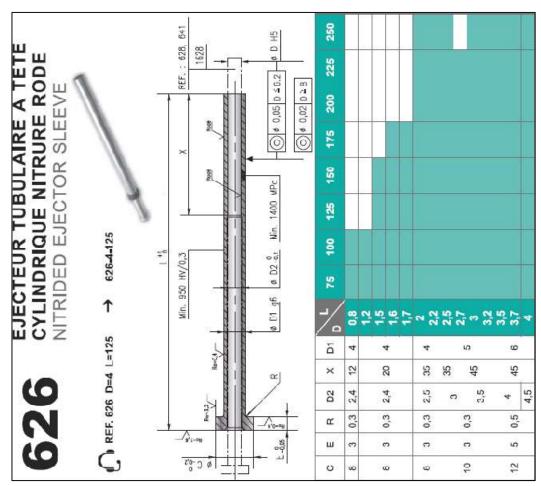
• Matière pour une moulée : 0.05 €

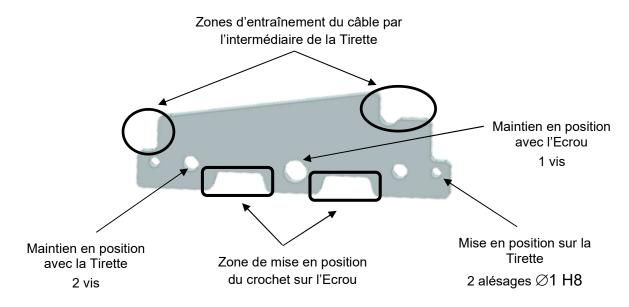
• Cadence de production : 200 cycles d'injection / heure


Coût horaire machine : 30 €/heure

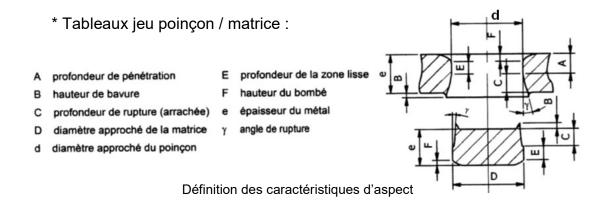

Solution d'éjection avec éjecteurs tubulaires :

BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 11/19


Éjecteurs cylindriques :


BTS CIM - Épreuve E51 - Conception détaillée - Pré-industrialisation			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT 12/19

Éjecteurs tubulaires :


H. Le Crochet d'entraînement

Fonctions du Crochet d'entraînement :

Mode d'obtention :

- La pièce sera obtenue par découpage sur un outil à suivre à dévêtisseur élastique.
- Extrait de la norme NF E 86-050 (découpage) :

Caractéristiques	cas 1	cas 2	cas 3	cas 4	cas 5
angle de fracture γ (°)	14 à 16	8 à 11	7 à 10	6 à 11	
rayon de découpe ou hauteur de bombé F (% de e)	10 à 20	8 à 10	6 à 8	4 à 7	2 à 5
partie lisse E (% de e)	10 à 20	15 à 25	25 à 40	35 à 55	50 à 70
partie arrachée ou profondeur de rupture C (% de e)	70 à 80	60 à 75	50 à 60	35 à 50	25 à 45
bavure B (% de e)	12 à 16	6 à 10	3 à 6	7 à 10	10 à 15

Valeur des caractéristiques d'aspect

BTS CIM - Épreuve E51 - Conception	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT 14/19

Métal travaillé	cas 1	cas 2	cas 3	cas 4	cas 5
Metal travalle	Cas I				
acier doux	21 max	11,5 à 12,5	8 à 10	5 à 7	1 à 2
acier dur	25 max	17 à 18	14 à 16	11 à 13	2,5 à 5
acier inoxydable	23 max	12,5 à 13,5	9 à 11	3 à 5	1 à 2
alliage aluminium (R < 230 Mpa)	17 max	8 à 10	6 à 8	2 à 4	0,5 à 1
alliage aluminium (R > 230 Mpa)	20 max	12,5 à 14	9 à 10	5 à 6	0,5 à 1
laiton recuit	21 max	8 à 10	6 à 8	2 à 3	0,5 à 1
laiton écroui demi-dur (état H11 et H12)	24 max	9 à 11	6 à 8	3 à 5	0,5 à 1,5
bronze phosphoreux	25 max	12,5 à 13,5	10 à 12	3,5 à 5	1,5 à 2,5
cuivre recuit	25 max	8 à 10	5à7	2 à 4	0,5 à 1
cuivre demi-dur dont CW101C (Cu Be2)	25 max	9 à 11	6 à 8	3 à 5	1à2
plomb	22 max	8 à 10	6,5 à 7,5	4 à 6	1,5 à 2,5
alliage magnésium	16 max	5à7	3,5 à 4,5	1,5 à 2,5	0,5 à 1

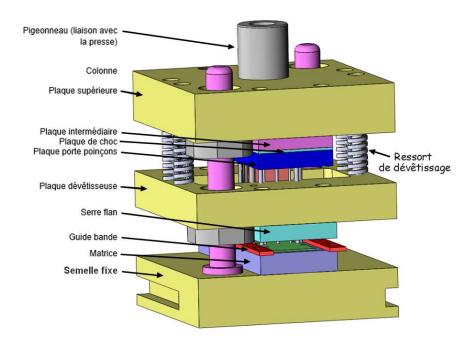

Jeu diamétrale poinçon / matrice en % de "e"

Tableau de résistance à la rupture au cisaillement de matériaux :

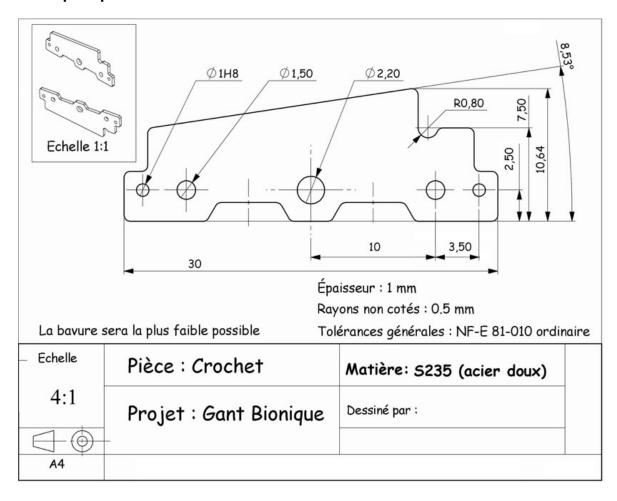
MATIERES	Rc : résistance au cisaillement en MPa
LAITON - CUIVRE - ALUMINIUM	300
ACIER DOUX	400
CUIVRE AU BERYLLIUM	620
ACIER MI-DUR	500
ACIER DUR	600

Pré-industrialisation de l'outillage de production :

L'outillage sera réalisé à partir d'un bloc de découpage Strack Norma 1616 :

BTS CIM - Épreuve E51 - Conception	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT 15/19

Presses de découpe disponibles :


Les presses disponibles pour la mise en œuvre de l'outil de découpage sont les suivantes :

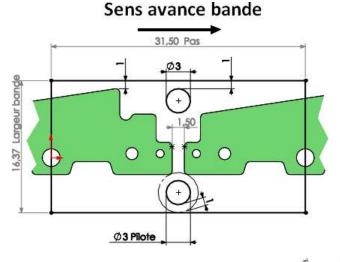
	Presse 1	Presse2	Presse 3	Presse 4	
Effort maxi	30kN	60kN	90kN	120kN	

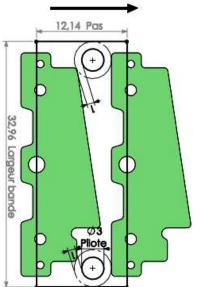
Presse de découpe

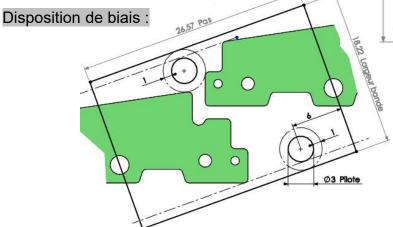
Mise en plan partielle du Crochet :

BTS CIM - Épreuve E51 - Conception	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT 16/19

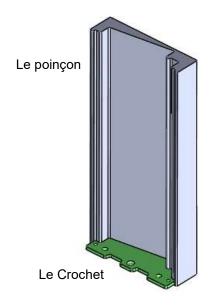
Définition d'un poste de découpage :

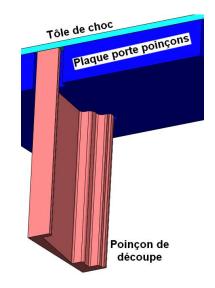

Disposition sur bande (sans notion de mise en bande) :


- Espacement entre 2 pièces = 1.5 * ep = 1.5 * 1 = 1.5 mm
- Distance pièce / bord de bande = ep = 1mm
- Distance pilote / pièce = ep = 1mm
- Surface arrondie utile pour un crochet = 228.5 mm²

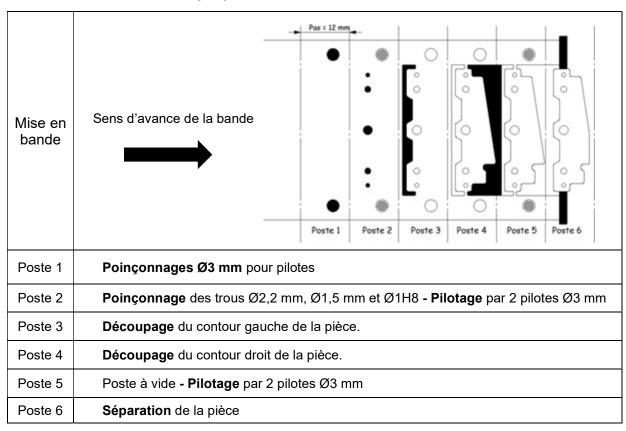

Disposition horizontale :

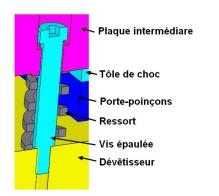
ns avance bande Sens avance bande




Disposition verticale:

BTS CIM - Épreuve E51 - Conception	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT 17/19


Poinçon du contour droit du Crochet :


Mise en situation du poinçon dans l'outil

Mise en bande définitive proposée :

BTS CIM - Épreuve E51 - Conception	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT 18/19

Ressort de dévêtissage :

= Longueur à vide

= Raideur du ressort (N/mm)

Lpc = Longueur de précontrainte

= Course de travail

= Longueur containte

Mise en situation d'un ressort

Définition des longueurs

RESSORT CHARGE MOYENNE **COULEUR BLEU** RECTANGULAR WIRE DIE SPRING BLUE COLOUR MEDIUM LOAD

K	A 2	25 %	B 3	7,5 %	C Appr	oximatif	D1	D	L	D L	REF. 356
N/mm	N	mm	N	mm	N	mm	mm	mm	mm	KEF. 350	
49,4	309	6,3	463	9,4	543	11			25		
37,1	297	8	445	12	557	15			32		
33,9	322	9,5	483	14,3	610	18			38		
30	330	11	495	16,5	660	22			44		
26,4	337	12,8	505	19,1	634	24		16	51		
20,5	328	16	492	24	656	32	- 8	10	64		
17,8	338	19	507	28,5	641	36			76		
15,2	338	22,3	507	33,4	654	43			89		
13,5	344	25,5	516	38,3	635	47			102		
4,8	366	76,3	549	114,4	667	139			305		

RESSORT CHARGE FORTE **COULEUR ROUGE** RECTANGULAR WIRE DIE SPRING RED COLOUR HEAVY LOAD ISO 10243 A 20 % C Approximatif D1 **REF. 357** N/mm mm mm mm mm mm 25 32 38 44 51 64 76 89 102 75,7 379 681 568 7.5 52,8 338 507 739 6.4 9.6 14 48,5 369 7,6 553 11,4 42,8 377 565 856 20 37,1 378 10,2 568 15,3 779 21 8 30,3 388 12.8 582 19.2 848 28 25,7 391 15,2 586 22,8 848 33 217 386 178 579 26.7 846 39 394 849 44 19.3 20.4 591 30.6 433 902 127 650 91,5

RESSORT CHARGE EXTRA FORTE COULEUR JAUNE RECTANGULAR WIRE DIE SPRING YELLOW COLOUR EXTRA LOAD

 LLOW OOL	O OTT EXTITION	20710		
B 25 %	C Approximatif	D1	D	

к		A ′ %		B 5 %	Appro	C ximatif	D1	D		REF. 358				
N/mm N	N	mm	N	mm	N	mm	mm	mm	mm					
118	502	4,3	738	6,3	1180	10			25					
89	484	5,4	712	8	1068	12			32					
72,1	466	6,5	685	9,5	1009	14						38		
60,9	456	7,5	670	11	1035	17								
52,3	453	8,7	667	12,8	994	19		40	51					
41,2	448	10,9	659	16	1030	25	8	16	64					
34,1	441	12,9	648	19	989	29			76					
29,5	446	15,1	656	22,3	1062	36			89					
25,6	444	17,3	653	25,5	973	38			102					
8,4	436	51,9	641	76,3	1008	120			305					

BTS CIM - Epreuve E51 - Conceptio	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT 19/19