BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

ÉPREUVE E4 : CONCEPTION PRÉLIMINAIRE D'UN SYSTÈME MICROTECHNIQUE

SESSION 2025

Durée : 4 heures Coefficient : 2

L'usage des calculatrices est autorisé dans les conditions suivantes :

- l'usage de calculatrice avec mode examen actif est autorisé ;
- l'usage de calculatrice sans mémoire, « type collège » est autorisé.

Information aux candidats: les candidats qui disposent d'une calculatrice avec mode examen devront l'activer le jour des épreuves et les calculatrices dépourvues de mémoire seront autorisées. Ainsi tous les candidats composeront sans aucun accès à des données personnelles pendant les épreuves.

Le sujet comporte 3 dossiers de couleurs différentes :

- Dossier Technique (DT1/16 à DT16/16) jaune,
- Dossier Travail demandé (TD1/7 à TD8/8) vert,
- Dossier Documents Réponses (DR1/5 à DR5/5) blanc.

Dès que le sujet vous est remis, assurez-vous qu'il est complet.

Les candidates ou les candidats rédigeront les réponses aux questions posées sur les « documents réponses » prévus à cet effet ou sur la feuille de copie.

Tous les documents réponses, même vierges, sont à remettre en fin d'épreuve et doivent être agrafés avec la feuille de copie.

BTS CIM - Épreuve E4 - Conception pré	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	Page de garde

ÉPREUVE E4 : CONCEPTION PRÉLIMINAIRE D'UN SYSTÈME MICROTECHNIQUE

SESSION 2025

Durée : 4 heures Coefficient : 2

DOSSIER TECHNIQUE

Ce dossier comporte 16 pages repérées de DT 1/16 à DT 16/16.

 Mise en situation et présentation du produit 	DT 1/16 à DT 2/16
Cahier des charges du gant bionique	DT 3/16 à DT 5/16
 Constitution du gant et architecture du gant bionique 	DT 6/16
Algorigramme de fonctionnement général	DT 7/16
Documentations techniques	DT 8/16 à DT 16/16

BTS CIM - Épreuve E4 - Conception pré	BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique		
Code:	Durée : 4 heures	Coefficient : 2	Page de garde

Mise en situation et présentation du produit

1- Les Troubles Musculo-Squelettiques de la main (T.M.S.)

Les mouvements répétitifs, les positions non naturelles de la main, ou encore la préhension serrée et prolongée peuvent générer des maladies professionnelles. Les opérateurs et opératrices exposés à ces gestes sont sujets à différents symptômes :

- · picotements dans les doigts,
- douleurs nocturnes,
- · douleur diverse et engourdissement,
- perte de dextérité et de force dans la main,
- difficulté à pincer ou à saisir des objets,
- · assèchement de la peau.

Ces symptômes peuvent être les signes avant-coureurs d'un T.M.S.

2- Les exosquelettes

Les exosquelettes d'assistance physique répondent à des besoins militaires, médicaux ou industriels. Ils visent à apporter une assistance physique à ceux qui les emploient. Cela peut concerner des personnes souffrant d'un handicap physique, des salariés soumis à des tâches fortement répétitives ou encore des militaires en opération.

Une société conçoit, fabrique et commercialise une large gamme d'exosquelettes industriels pour assister les opérateurs dans :

- la manutention de charge.
- les travaux avec bras en hauteur,
- les postures pénibles et répétitives.

Elle dispose déjà d'exosquelettes pour la main qui assistent les opérateurs et les opératrices sur des postes fixes comme sur la figure ci-dessus.

3- Le gant bionique

L'exosquelette actuel nécessite un raccordement filaire à une source d'énergie électrique.

Afin d'élargir sa gamme de produits, la société souhaite maintenant développer un modèle nomade, autonome en énergie.

Pour répondre au besoin, la création du nouveau produit devra intégrer les exigences ci-dessous :

- un encombrement minimal des composants ;
- une autonomie en énergie compatible avec un temps de travail journalier;
- une réactivité adaptée.

BTS CIM - Épreuve E4 - Conception prélim	inaire d'un système n	nicrotechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT1 / 16

4- Les constituants du gant bionique

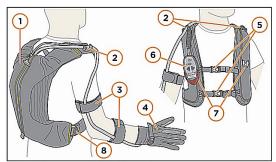


Schéma 3 : les composants du système Ironhand

Élément	Nom	Fonction
1	Harnais avec bloc d'alimentation	Protège le bloc d'alimentation
2	Collier du cordon	Maintient les cordons en place
3	Brassards	Maintiennent le cordon attaché à votre bras
4	Gant	Assure la force de prise
5	Sangles de fermeture ventrales	Relie les bretelles
6	Télécommande	Réglages par l'utilisateur
7	Support de la télécommande	Maintient la télécommande en place
8	Sangle latérale	Sert à attacher le harnais de façon confortable

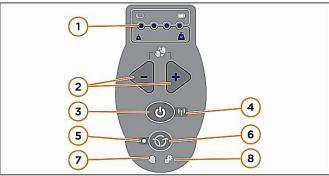


Schéma 7 : télécommande d'Ironhand.

Élément	Nom	Fonction
1	LED	Indique en blanc le niveau de la batterie ou en bleu le niveau de force.
2	Réglage de la force	Une simple pression permet de régler le niveau de force.
3	Bouton ON/OFF	Maintenez-le enfoncé pendant environ 1 seconde pour allumer ou éteindre le système. Double-cliquez pour activer/désactiver le WiFi.
4	Voyant WiFi	Clignotant = la fonctionnalité WiFi est activée. Fixe = connecté au WiFi.
5	Voyant de sélection du profil	Éteint = profil principal ; allumé = profil secondaire.
6	Bouton de sélection du profil	Une simple pression permet de sélectionner le profil.
7	Voyant d'état du gant	Indique les erreurs relatives au gant.
8	Voyant d'état du bloc d'alimentation	Indique les erreurs relatives au bloc d'alimentation.

Prototype du bloc de commande et d'alimentation avec sa télécommande

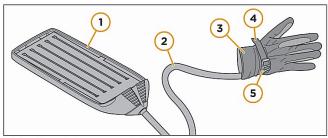


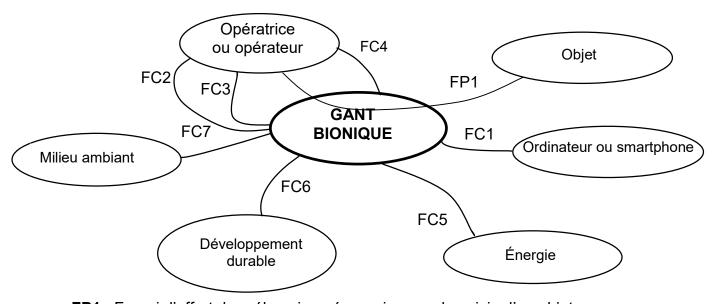
Schéma 5 : gant et connecteur de Ironhand.

Élément	Nom	Fonction
1	Connecteur	Connecte le gant au bloc d'alimentation
2	Cordon	Transmet les données sensorielles et la force
3	Gant	Assure la force de prise
4	Sangle	Attache le gant à la main
5	Boucle	Maintient et détend la sangle

Schéma 6 : capteurs d'Ironhand.

Nom	Fonction
Capteurs	Fournissent des données
sensoriels	au bloc d'alimentation

BTS CIM - Epreuve E4 - Conception préliminaire d'un système microtechnique		Session 2025	
Code:	Durée : 4 heures	Coefficient : 2	DT2 / 16


Cahier des charges du gant bionique

1- Expression du besoin :

- * : Gant bionique: gant + cordon + bloc d'alimentation + télécommande
- **: Troubles Musculo-Squelettiques

2- Recensement des fonctions de services et des contraintes

- FP1 : Fournir l'effort de préhension nécessaire pour la saisie d'un objet
- FC1 : Permettre la connexion de l'ordinateur ou smartphone au gant bionique
- FC2 : Dialoguer avec l'opératrice ou l'opérateur
- FC3: S'adapter à chaque opératrice ou opérateur
- FC4 : Être ergonomique
- FC5 : Être autonome en énergie
- FC6: Limiter l'impact environnemental
- FC7 : S'adapter au milieu ambiant

BTS CIM - Epreuve E4 - Conception prélir	ninaire d'un système r	nicrotechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT3 / 16

3- Caractérisation des fonctions de services et des contraintes

FP1 : Fournir l'effort de préhension nécessaire pour la saisie d'un objet			
Critères Niveaux		Flexibilité	
Force de serrage	75 Newtons par main (5 doigts) ±5%	F0	
Temps de serrage complet	F0		

FC1 : Permettre la connexion de l'ordinateur ou smartphone au gant bionique		
Critères	Niveaux	Flexibilité
WIFI	Protocole: 802.11 b/g/n/e/i (802.11n jusqu'à 150 Mb/s)	F0

FC2 : Dialoguer avec l'opératrice ou l'opérateur		
Critères	Niveaux	Flexibilité
Indication du niveau batterie et du niveau de force	Affichage avec 4 leds bicolores : – blanches (batterie) – bleues (force) Par led rouge pour erreur de la batterie	F1
Réglage du niveau de Force	2 Boutons-poussoirs + et -	F0
Marche/Arrêt	Bouton unique ON/OFF	F0
Visualisation de l'état de connexion du Wifi	Par led	F1
Profil utilisateur réglable* :	Deux profils Par bouton-poussoir Par led :	F1
Visualisation de l'état système du gant	Par led pour l'erreur du système	F1

^{*} Le gant peut être préréglé pour différents utilisateurs

FC3 : S'adapter à chaque opératrice ou opérateur		
Critères Niveaux Flexibilité		Flexibilité
Taille Préférence manuelle	4 tailles : S-M-L-XL Main droite ou main gauche	F0

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique		Session 2025	
Code ·	Durée · 4 heures	Coefficient : 2	DT4 / 16

FC4 : Être ergonomique		
Critères	Niveaux	Flexibilité
Masse du gant	20 g maximum	F1
Masse de l'unité motrice Masse du harnais	2 kg maximum 0,5 kg maximum	F1
Dimension maximale du bloc d'alimentation	L = 300, I =120, H = 75	F0

FC5 : Être autonome en énergie		
Critères	Niveaux	Flexibilité
Type de batterie	LI-ion 15 V maximum	F1
Autonomie	6 h à 8 h suivant utilisation	F0

FC6 : Limiter l'impact environnemental			
Critères	Niveaux	Flexibilité	
Durée de vie de l'unité motrice	2 ans ou 1 million de cycles d'utilisation	F1	
Durée de vie du gant	2 mois ou 100 000 cycles de serrage	F1	
Batterie	Recyclable	F0	
Matériaux	Nombre de familles de matériaux limités	F1	
Composants électroniques	Interchangeables	F0	

FC7 :S'adapter au milieu ambiant		
Critères	Niveaux	Flexibilité
Classe IP	IP4X	F0

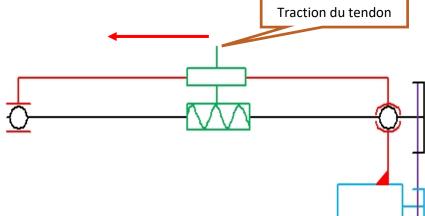
Signification des classes de flexibilité :

F0	Impératif
F1	Un peu négociable
F2	Moyennement négociable
F 3	Négociable

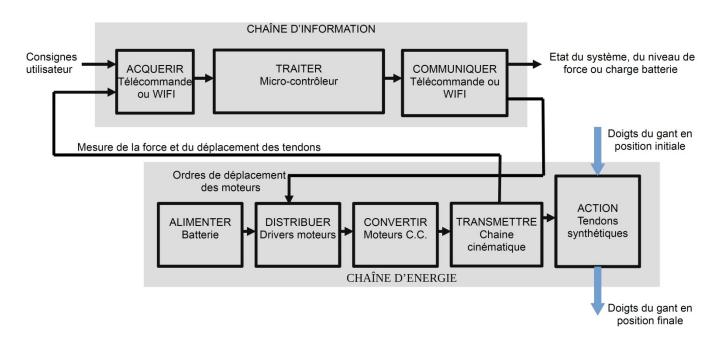
BTS CIM - Epreuve E4 - Conception préliminaire d'un système microtechnique		Session 2025	
Code:	Durée : 4 heures	Coefficient : 2	DT5 / 16

Constitution du gant et architecture du gant bionique

Le gant est équipé de cinq tendons synthétiques intégrés dans chaque doigt du tissu du gant.

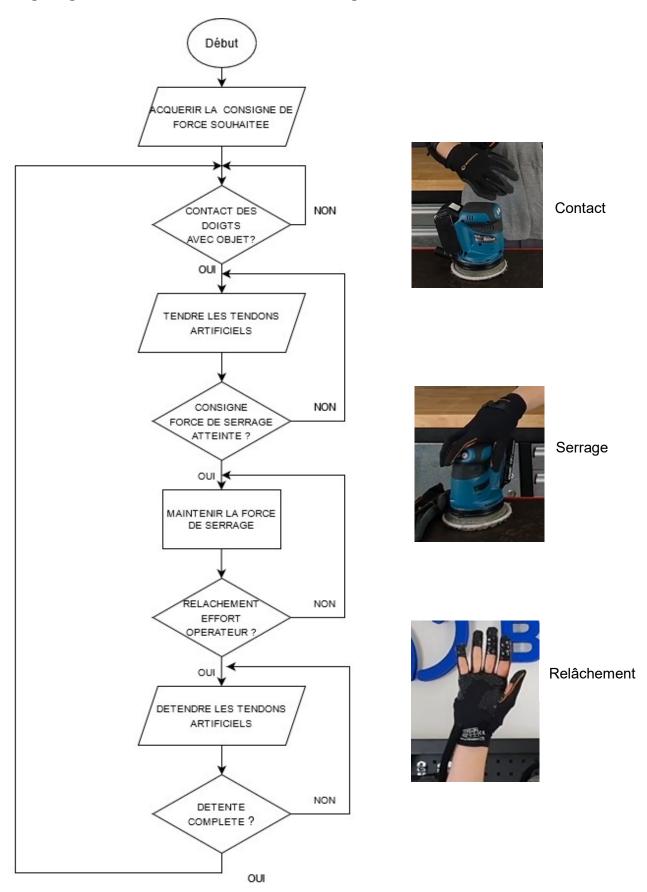

Ils peuvent développer une force de l'ordre de quinze Newtons chacun en se substituant à la force qu'aurait dû développer l'opérateur.

Le gant est équipé de cinq capteurs de pression au niveau des doigts, un par doigt.


Chaque tendon est actionné par une unité de traction.

Chaque unité de traction est constituée d'un moteur électrique, d'une transmission par poulies-courroie et d'un système vis-écrou.

Chaque unité de traction fonctionne de manière indépendante.



Architecture du gant bionique

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique		Session 2025	
Code:	Durée : 4 heures	Coefficient : 2	DT6 / 16

Algorigramme de fonctionnement général

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique		Session 2025	
Code:	Durée : 4 heures	Coefficient : 2	DT7 / 16

Propriétés mécaniques des matériaux

Matériaux	Resistance à la traction	Module d'Young E (Gpa)
polyamides	80 MPa	3
Polyéthylène Haut	3.6 GPa	116
Module (HMPE)		
Fibre de lin	1.1 GPa	80
Fibre de verre	2.5 GPa	70
polyester	66 MPa	3.4
Polypropylène	27 MPa	1.5
Kevlar	3.1 GPa	80

Formulaire de traction

loi de Hooke:

$$\begin{cases} \sigma = E.\varepsilon = E.\frac{\Delta l}{l} \\ \sigma = \frac{N}{S} \end{cases} \Rightarrow \Delta l = \frac{N.l}{E.S}$$

σ: Contrainte en MPa (N/mm²)

 \triangle L: allongement en mm

N: effort normal en Newton (N)

I : longueur soumise à la traction en mm

S: surface de la section en mm²

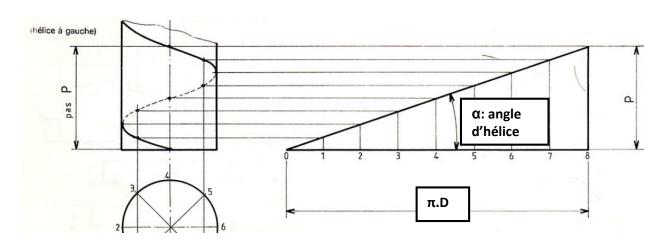
E: module de Young en MPa (N/mm²)

Solutions technologiques


	Avantages	Inconvénients
Tambour d'enroulement	Simplicité Prix	Encombrement Risque d'usure du fil par frottement
Pignon crémaillère	Simplicité Prix	Encombrement Risque d'usure
levier	Simplicité Prix	Encombrement important pour course longue
Vis écrou classique	Simplicité Prix – Rigidité Système compact	Mauvais rendement Risque d'usure
Vis écrou à bille	Simplicité Très bon rendement rigidité Système compact	Prix +
Moteur linéaire	Simplicité Pas d'usure rigidité	Prix +++ Encombrement Masse +
Pignon /courroie d'entraînement	Prix – Bon rendement	Complexité mécanique Risque d'usure Flexibilité

BTS CIM - Épreuve E4 - Conception préli	BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique						
Code:	Durée : 4 heures	Coefficient : 2	DT8 / 16				

Caractéristiques des vis à billes


Dimensions

Carry vis à billes

Dimension	Recirculation	Coûts	Filet	Dimensi	ons [mr	n]										Capacité	de	Dimension
nominale	de billes	relatifs	à droite /	Vis		Ecrou										charge [N	1]	nominale
d _o ×p [mm]	Туре		à gauche	d,	d ₂	D,	L,	L ₄	L ₈ h13	i	D _w	B +0.5/0	b P9	t	T	Cdyn	C _{stet}	d _o ×p [mm]
4×1	• •	€€€	RH/—	4.0	3.2	8 g6	10	-	_	3×1	0.80	_	ø2 +0.1/0	1.0	0.03	430	580	4×1
5×2	••	€€€	RH/—	5.0	4.0	10 g6	14	8	_	3×1	0.80	_	2	1.0	0.03	500	800	5×2
6×1	• •	€€€	RH/—	6.0	5.0	12 g6	14	8	-	3×1	0.80	-	2	1.2	0.03	600	1 000	6×1

Hélice et pas de vis

BTS CIM - Épreuve E4 - Conception prélim	inaire d'un système n	nicrotechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT9 / 16

Calcul des systèmes vis - écrou

60 - 33 VALEURS DE RENDEMENTS DE MÉCANISMES Rendement η des vis-écrou à billes (utilisation normale)* Pour les calculs de rendements de mécanismes : soit on calcule les valeurs à partir de relations faisant intervenir le Facteur de frottement facteur de frottement entre matériaux (voir chapitre 12 et chapitre 31). ou de frottement équivalent. soit on utilise les valeurs expérimentales du tableau ci-dessous. Rendement η Une place particulière est faite aux systèmes vis-écrou à billes, étant donné leur importance dans les parties opératives des machines à commandes d'axes numériques et des systèmes asservis. 0,9 0,8 Vis à billes 0,7 Rendement η Mécanismes particuliers μ = 0,1 0,6 Arbres sur paliers à roulements 0,98 0,5 Arbres sur paliers lisses bien lubrifiés $\mu = 0.2$ 0.95 0,4 Commandes par courroie 0.95 0.98 0,3 Engrenages droits rectifiés, bien lubrifiés Engrenages taillés, bien lubrifiés 0,95 à 0,97 0,2 Arbres sur paliers lisses à graissage discontinu 0.9 à 0.92 0,1 Engrenages taillés mal lubrifiés 0,9 à 0,92 Engrenages bruts de matriçage, selon montage et entretien 2 3 4 5 6 7 8 9 10 0,75 à 0,85 Angles d'hélice (degrés) : α

0.4 à 0.8

0,3 à 0,4

0,15 à 0,3

Rendement n (théorique)

Roue et vis sans fin :

- réversible bien lubrifié

– irréversible, lubrifié à la graisse

Vis et écrou d'assemblage (irréversible)

en fonction de la nature de la transmission de force

Cas 1: couple → déplacement linéaire

$$\eta = \frac{\tan \alpha}{\tan (\alpha + \mu)}$$
 [-]

Cas 2 : force axiale → mouvement rotatif

$$\eta' \approx \frac{\tan (\alpha - \mu)}{\tan \alpha}$$

... où l'on a respectivement:

$$\tan \alpha \sim \frac{\mathbf{p}}{\mathbf{d_0} \cdot \pi} \ [-]$$

η = rendement [%]

η' = rendement corrigé [%]

p = pas du filetage [mm]

do = diamètre nominal de la vis [mm]

 μ = angle de frottement [°] $\rightarrow \rho$ = 0.30...0.60°

Rendement np (en pratique)

Le rendement η se situe, pour une vis à billes Carry, à plus de 0.9

Couple d'entraînement/couple de sortie M en fonction du type de la transmission de force

Cas 1: couple → déplacement linéaire

$$M_a = \frac{F_a \cdot p}{2000 \cdot \pi \cdot \eta} [Nm]$$

Exemple : on donne : $\alpha=2^\circ\,$; $\mu=$ 0,01.

La courbe donne : $\eta = 0.78$.

Quel est le rendement η ?

Cas 2 : force axiale → mouvement rotatif

$$M_{e} = \frac{F_{a} \cdot p \cdot \eta'}{2000 \cdot \pi} [Nm]$$

M_o = couple d'entraînement [Nm], cas 1

M_a = couple de sortie [Nm], cas 2

F = force axiale [N]

p = pas du filetage [mm]

η = rendement [%]

η' = rendement corrigé [%]

Puissance d'entraînement P

$$P = \frac{M_a \cdot n}{9550} \text{ [kW]}$$

P = puissance d'entraînement [kW]


n = vitesse [min⁻¹]

BTS CIM - Épreuve E4 - Conception préli	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DT10 / 16

^{*} D'après Korta. Utilisation normale : tourner la vis pour obtenir une déplacement en translation de l'écrou.

Transmission par poulies et courroie

Courroies

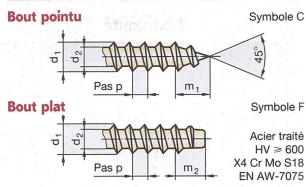
A 6R51M033060

pas de 1mm, 72 dents, largeur 3mm, denture simple face, neoprene renforcé fibre de verre

Poulies

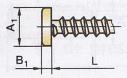
Numéro d'article	pas	Nombre de		de	Alésage (mm)	Configuration de la bride et du moyeu	Diamètre extérieur (mm)	Longueur totale (mm)	Diamètre du moyeu	Prix
		dents		(mm)			,,	,,	(mm)	
Un 6A18M021DF3003	1 mm	21	Alliage d'aluminium	3,00	3,00	2 brides/avec moyeu	6.5	11	9.00	11,93
Un 6A18M040DF3004	1 mm	40	Alliage d'aluminium	3,00	4.00	2 brides/avec moyeu	13	11	14.90	13,09
Un 6A18M040DF3003	1 mm	40	Alliage d'aluminium	3,00	3,00	2 brides/avec moyeu	13	11	14.90	13,09
Un 6A18M021DF3002	1 mm	21	Alliage d'aluminium	3,00	2,00	2 brides/avec moyeu	6.5	11	9.00	11,93

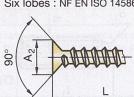
BTS CIM - Épreuve E4 - Conception p	BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique						
Code:	Durée : 4 heures	Coefficient : 2	DT11 / 16				

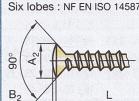

Visserie

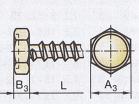
Vis autotaraudeuses

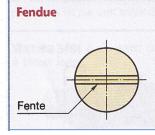
Il existe deux types d'extrémités pour les vis autotaraudeuses :

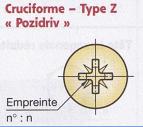

- Les vis à bout pointu, symbole C, utilisées pour les tôles minces (e < 1,5 mm).
- Les vis à bout plat, symbole F, utilisées pour les tôles plus épaisses, les métaux tendres et les matières plastiques.

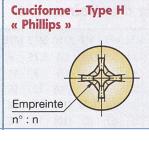

Ces vis se fabriquent suivant différents types de têtes et différentes formes d'empreintes.




d nominal	A ₁ max.	B ₁ max.	A ₂ max.	B ₂ max.	A ₃ max.	B ₃ max.	d ₁ max.	d ₂ max.	p ≈	m ₁ ≈	m ₂ ≈	L (entièrement filetée)	n
ST 2,2	4	1,3	4,4	0,5	3,2	1,6	2,24	1,63	0,8	2	1,6	4,5-6,5-9,5-13-16	0
ST 2,9	5,6	1,8	6,3	0,7	5	2,3	2,9	2,18	1	2,6	2,1	6,5-9,5-13-16-19	10
ST 3,5	7	2,1	8,2	0,8	5,5	2,6	3,53	2,64	1,3	3,2	2,5	6,5-9,5-13-16-19	15
ST 4,2	8	2,4	9,4	1	7	3	4,22	3,10	1,4	3,7	2,8	9,5-13-16-19-22-25	20
ST 4,8	9,5	3	10,4	1,2	8	3,8	4,8	3,58	1,6	4,3	3,2	9,5-13-16-19-22-25-32	25
ST 5,5	11	3,2	11,5	1,3	8	4,1	5,46	4,17	1,8	5	3,6	13-16-19-22-25-32	25
ST 6,3	12	3,6	12,6	1,4	10	4,7	6,25	4,88	1,8	6	3,6	13-16-19-22-25-32-38	30
						Fo	rmes	de tête					
ête cylin endue : Ni ruciforme ix lobes :	EN ISC : NF EN	1481 ISO 704	Fe 9 Cr	uciform	NF EN ne : NF	late ISO 148 EN ISO N ISO 14	7050	Fendu Crucifo	e : NF I	e bomi EN ISO NF EN IS F EN ISO	1483 SO 7051		


Formes d'empreinte





BTS CIM - Épreuve E4 - Conception préli	BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique						
Code:	Durée : 4 heures	Coefficient : 2	DT12 / 16				

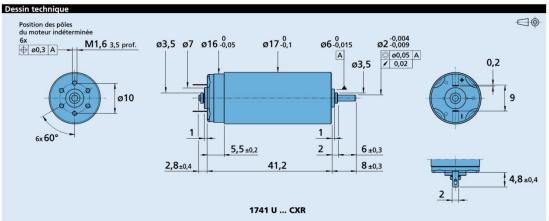
Moteurs

FAULHABER SR 1016 012 Ø 10 mm Longueur 16 mm Tension nominale 12 V Vitesse à vide N₀ = 14100 tr.min⁻¹ Couple de démarrage Cd = 2,32 mNm FAULHABER CXR 1741 Ø17 mm Longueur 41 mm Tension nominale 12 V Vitesse à vide N₀ = 7600 tr.min⁻¹ Couple de démarrage Cd = 27,9 mNm

Batteries

RRC2024	RRC2054-2	RRC2054
Caractéristiques	Caractéristiques	Caractéristiques
Batterie Lithium-ion	Batterie Lithium-ion	Batterie Lithium-ion
Tension nominale : 14,4 V	Tension nominale : 14,4 V	Tension nominale: 14,4 V
Capacité nominale : 6,60 A.h	Capacité nominale : 6,9 A.h	Capacité nominale : 3,45 A.h
Energie : 95,0 W.h	Energie : 99,4 W.h	Energie : 49,7 W.h
Longueur : 167 mm	Longueur : 150 mm	Longueur : 85 mm
Largeur : 107	Largeur : 77	Largeur : 77
Hauteur : 21 mm	Hauteur : 22 mm	Hauteur : 22 mm

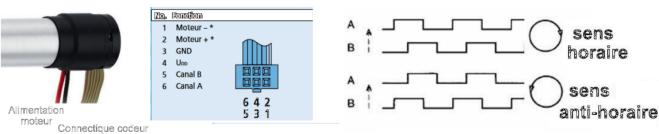
BTS CIM - Épreuve E4 - Conception p	BTS CIM - Epreuve E4 - Conception préliminaire d'un système microtechnique						
Code:	Durée : 4 heures	Coefficient : 2	DT13 / 16				


Moteur FAULHABERT 1741U012CXR avec codeur incrémental

Tension nominale : 12 V Résistance induit : 5,8 Ω Rendement max : 74 %

Vitesse à vide : $N_0 = 7600 \text{ tr.min}^{-1}$ Courant à vide : $I_0 = 0,028 \text{ A}$

Couple de démarrage : Cd = 27.9 mN.mConstante de fem : $K_e = 1,496 \text{ mV/ min}^{-1}$ Constante de couple : $K_c = 14,29 \text{ mN.m/A}$


Codeurs

FAULHABER

codeurs magnétiques, sorties digitales, 2 canaux, 64 - 1024 impulsions par tour

Combinaisons avec Micromoteurs C.C. Moteurs C.C. sans balais

Série IE2-1024 11392434 11524128 11504540 119251024 1122250 Nombre d'impulsions par tour N 64 128 256 512 1 024 Gamme de fréquence, jusqu'à1) 20 80 160 kHz 40 300 Nombre de signaux de sortie (forme carrée) Canaux 4,5 ... 5,5 typ. 9,5, max. 13 V Tension d'alimentation UDD Consommation moyenne²⁾ mA IDD Courant de sortie, max.3) lout mΑ Déphasage des signaux entre canal A et B 90 ± 45 (1) °e 0,1/0,1 Temps de transition du signal, max. (CLOAD = 50 pF) tr/tf μs gcm² Inertie du disque⁴⁾ 0.09 Température d'utilisation -25 ... +85

Le codeur incrémental disposé sur le moteur permet de connaître le sens de rotation grâce à deux signaux A et B disponibles en sortie. Le déphasage entre A et B dépend du sens de rotation.

Le codeur incrémental permet aussi de connaître la fréquence rotation du moteur. Le nombre d'impulsions sur A ou sur B par tour moteur dépend du choix du codeur : 64, 128, 256, 512 ou 1024 impulsions par tour sont possibles.

BTS CIM - Épreuve E4 - Conception pré	BTS CIM - Epreuve E4 - Conception préliminaire d'un système microtechnique						
Code :	Durée : 4 heures	Coefficient : 2	DT14 / 16				

Capteur FSR

Description : le capteur de force de type FSR (Force Sensing Resistor) permet de détecter une pression physique sur un support.

Caractéristique électrique des capteurs de la gamme :

L'abscisse correspond à la force appliquée sur une surface de 1cm² du capteur.

L'ordonnée est la résistance correspondante du capteur exprimée en kiloohms.

Sa courbe caractéristique montre que sa résistance décroît en fonction de la force appliquée sur le capteur. Les échelles sont de type logarithmiques

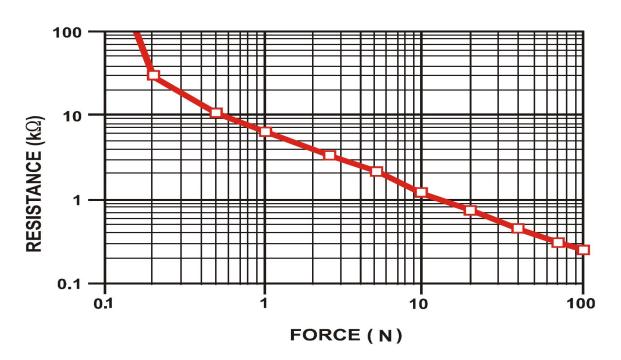
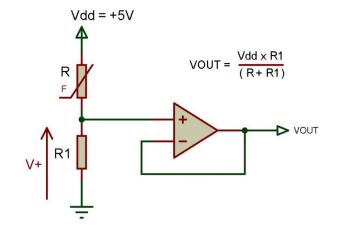
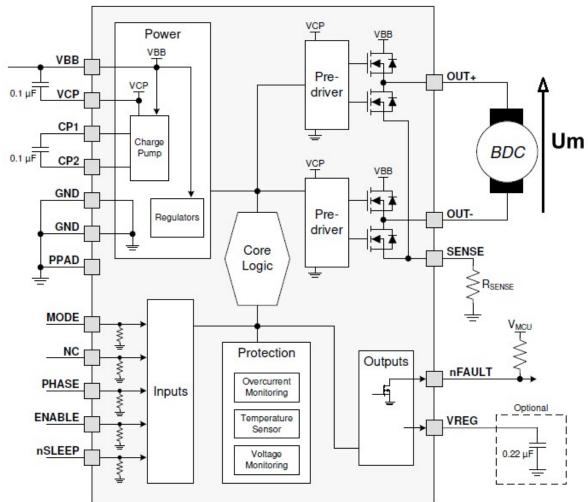



Schéma proposé par le constructeur du capteur pour l'interface vers l'unité de traitement

Série normalisée E12 :

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	DT15 / 16



Driver DRV8800

Tension d'alimentation maximale : 36 V Courant maximal en crête : 2,8 A

Le driver DRV8800 permet la commande d'un moteur à courant continu grâce à un pont en H intégré. Il peut être interfacé avec un microcontrôleur afin d'établir les modes de fonctionnement désirés. Une mesure de l'intensité du moteur à travers le résistor R_{SENSE} permet un contrôle du couple moteur.

Table de fonctionnement

Tubic u	c lonction				
PHASE	ENABLE	MODE	nSLEEP	Um	OPERATION
X	X	X	0	Z : haute impédance	Pont H bloqué
1	1	X	1	> 0 V	MOTEUR SENS ROTATION 1
0	1	Х	1	< 0 V	MOTEUR SENS ROTATION 2
X	0	1	1	0 V	Freinage "lent" ou arrêt
1	0	0	1	Inversion de tension	Freinage "rapide" pour le sens horaire
0	0	1	1	Inversion de tension	Freinage "rapide" pour le sens anti-horaire

légende:

X : état logique 1 ou 0 indifféremment Z : transistors bloqués

Freinage lent : mise en court-circuit du moteur

Freinage rapide : inversion de la polarité aux bornes du moteur

BTS CIM - Épreuve E4 - Conception	préliminaire d'un système r	nicrotechnique	Session 2025
Code ·	Durée : 4 heures	Coefficient · 2	DT16 / 16

BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES ÉPREUVE E4: CONCEPTION PRÉLIMINAIRE D'UN SYSTÈME MICROTECHNIQUE

SESSION 2025

Durée : 4 heures Coefficient : 2

DOSSIER TRAVAIL DEMANDÉ

Ce dossier comporte 5 problématiques réparties sur 8 pages repérées TD 1/8 à TD 8/8

Temps conseillés

Lecture du sujet : 20 min
Problématique 1 : 30 min
Problématique 2 : 100 min
Problématique 3 : 20 min
Problématique 4 : 30 min
Problématique 5 : 40 min

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	Page de garde

Problématique 1 : Associer un matériau aux tendons synthétiques et déterminer les grandeurs d'actionnement (force et course) des tendons au niveau des unités de traction

L'effort de préhension est généré par des tendons synthétiques intégrés au gant et actionnés par des unités de traction situées dans le harnais sur le dos de l'opératrice ou de l'opérateur.

La course d'actionnement nécessaire au niveau des unités de traction résulte de :

- · la longueur des tendons dans le gant entre la main ouverte (doigts dépliés) et la main fermée (doigts pliés),
- · L'allongement sous charge des tendons synthétiques.

Pour déterminer les grandeurs d'actionnement (force et course) des tendons au niveau des unités de traction, vous devez à partir de la force de serrage :

- · associer un matériau aux tendons synthétiques et déterminer la course d'actionnement,
- · déterminer la force d'actionnement et vérifier la résistance des tendons.

On donne:

- · diamètre des tendons : d = 0,5 mm
- · longueur des tendons (du gant aux unités de traction) : I = 1,4 m

Hypothèses:

- · l'étude se limite à une unité de traction et un tendon,
- on néglige les frottements entre le tendon et la gaine : l'effort de traction est intégralement transmis en effort de serrage.

Question 1	A partir des données fournies dans le cahier des charges (DT4/16), déterminer par le calcul l'effort de serrage pour un doigt.
Question 2	A partir du tableau des propriétés mécaniques de matériaux (DT8/16), choisir le matériau minimisant l'allongement sous charge du tendon.
Question 3	Déduire des deux questions précédentes et du formulaire de traction (voir DT8/16) l'allongement du tendon.
Question 4	A partir du document réponse DR1/5 , estimer pour un doigt (majeur de taille XL) les longueurs de tendons correspondant aux 2 positions extrêmes et le déplacement nécessaire du tendon au niveau du gant.
Question 5	Déduire des deux questions précédentes la course minimale d'actionnement de l'unité de traction en prenant un coefficient de majoration de 1,5.
Question 6	A partir de l'effort de serrage pour un doigt, donner la force d'actionnement de l'unité de traction et vérifier la résistance à limite élastique du tendon sollicité en traction.

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	TD1 / 8

Problématique 2 : Dimensionner les composants de la chaîne cinématique des unités de traction garantissant les grandeurs d'actionnement (force et course) des tendons

Les grandeurs d'actionnement (force et course) des tendons sont générées par des unités de traction situées dans le harnais sur le dos de l'opératrice ou de l'opérateur.

La structure cinématique des unités de traction est donnée sur le document technique **DT6/16**.

Pour garantir ces grandeurs d'actionnement, vous devez :

- valider le choix et dimensionner la transformation de mouvement par un système vis-écrou à billes.
- déterminer les grandeurs d'entrainement du moteur à partir de la transmission de puissance par poulies-courroie,
- · choisir la motorisation et sa commande,
- · représenter des solutions constructives d'une unité de traction.

2.1- Validation et dimensionnement de la transformation de mouvement par un système vis-écrou à billes

La structure cinématique des unités de traction est donnée sur le document technique **DT6/16**.

On donne:

- force d'actionnement : F = 15 N (quelle que soit la valeur trouvée précédemment),
- course d'actionnement retenue : c = 150 mm (quelle que soit la valeur trouvée précédemment),
- · diamètre retenu de la vis à billes : d_{vis} = 5 mm,
- facteur de frottement du système vis-écrou à billes : $\mu = 0,005$.

Question 7	A partir du tableau des solutions technologiques proposées (DT8/16), compléter sur le document réponse DR1/5 le tableau afin de valider la solution technologique de traction des tendons par un système vis-écrou à billes pour optimiser le rendement, la fiabilité, l'encombrement, la rigidité et l'encombrement.
Question 8	A partir des caractéristiques des vis à billes (DT9/16), donner le pas de la vis à billes et en déduire par le calcul l'angle d'hélice.
Question 9	A partir des éléments de calcul des systèmes vis-écrou (DT10/16), en déduire en utilisant l'abaque de rendement la valeur du rendement du système vis-écrou à billes.
Question 10	A partir des éléments de calcul des systèmes vis-écrou (DT10/16), en déduire en utilisant la formule adaptée le couple nécessaire sur la vis pour générer la force d'actionnement.
Question 11	A partir des données fournies dans le cahier des charges (DT4/16), déterminer par le calcul la vitesse de déplacement du cochet d'entrainement pour la course d'actionnement retenue. En déduire la fréquence de rotation de la vis

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	TD2 / 8

2.2- Détermination des grandeurs d'entrainement du moteur à partir de la transmission de puissance par poulies-courroie

La structure cinématique des unités de traction est donnée sur le document technique **DT6/16**. Pour transmettre le couple du moteur à la vis, une solution de transmission par poulie-courroie crantée est retenue.

On donne:

- fréquence de rotation nécessaire de la vis : N_{vis} = 3000 tr/min (quelle que soit la valeur trouvée précédemment),
- couple nécessaire sur la vis : $C_{vis} = 5$ mN.m (quelle que soit la valeur trouvée précédemment),
- · nombre de dents de la poulie liée au moteur : Z_m = 21,
- · nombre de dents de la poulie liée à la vis : Z_v = 40,
- rendement de la transmission de puissance par poulies-courroie : $\eta = 0.95$.

Question 12	Déterminer par le calcul le rapport de transmission de la transmission de
	puissance par poulies-courroie.
Question 13	En déduire la fréquence de rotation du moteur N _m nécessaire.
Question 14	En déduire aussi le couple moteur C _m nécessaire.

2.3- Choix de la motorisation et de sa commande

On impose les caractéristiques suivantes pour le choix du moteur et de sa commande.

- Moteurs de la marque Faulhaber ;
- Couple moteur nominal C_m= 3 mN.m;
- Fréquence de rotation minimale N = 6200 tr.min⁻¹ pour le couple C_m = 3 mN.m ;
- Tension moteur U_m ≤ 15 V;
- Encombrement minimum pour une intégration optimale dans le boîtier.

Critères de choix du moteur conseillés

Pour optimiser le fonctionnement du moteur et obtenir une durée de vie maximale, le fabricant Faulhaber propose les critères ci-dessous pour déterminer le point de fonctionnement à la tension nominale :

- la fréquence de rotation N doit être supérieure à la moitié de la vitesse à vide N_o: N > N₀/2;
- le couple C_m doit être inférieur à la moitié du couple de démarrage C_d : $C_m < C_d/2$;

Question 15	En utilisant le document technique DT13/16, compléter le
	document réponse DR2/5 avec tous les critères de choix pour N et
	C _m énoncés ci-dessus. Proposer ensuite, en justifiant votre
	réponse, le moteur répondant le mieux au besoin exprimé.

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique			Session 2025
Code:	Durée : 4 heures	Coefficient : 2	TD3 / 8

Le bureau d'étude valide le choix du moteur FAULHABER 1741U012CXR et le DRIVER de puissance DRV8800 (**DT16/16**).

Question 16	Pour le couple nominal C _m = 3 mN.m, repérer sur les courbes du document réponse DR2/5 le point de fonctionnement "couple/vitesse ".
Question 17	Déterminer ensuite graphiquement la fréquence de rotation N du moteur en tr.min ⁻¹ et noter cette valeur sur le document réponse DR2/5 .
Question 18	Vérifier qu'elle remplit les conditions de fréquence de rotation exigée.
Question 19	Relever à l'aide du graphe la valeur du courant de blocage l _{max} du moteur.
Question 20	Vérifier que le choix du driver de puissance DRV8800 en DT16/16 utilisé pour la commande du moteur est compatible en termes de tension/courant avec le choix de ce moteur.

2.4- Représentation des solutions constructives d'une unité de traction

On souhaite anticiper la conception d'une partie d'une unité de traction en proposant, à main levée, des solutions constructives en faisant apparaître les mises en position (MIP), les maintiens en position (MAP) ainsi que les jeux et ajustements nécessaires.

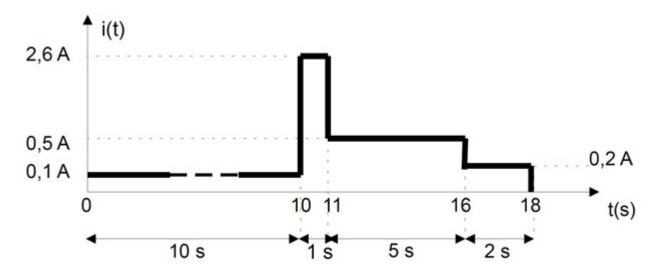
On donne:

- · nombre de dents de la poulie liée au moteur : Z_m = 21,
- · nombre de dents de la poulie liée à la vis : Z_v = 40,
- · largeur de la courroie : I = 3 mm

à partir des documents techniques DT 9/16, DT 11/16 et DT12/1		
 le guidage en rotation de la vis par roulements à bille montés sur des supports de roulement (les roulements billes sont déjà représentés), l'assemblage complet par des vis auto-taraudeuses de supports de roulement avant et arrière sur le corps (tub profilé), l'assemblage complet du moteur sur le support avant, le système de transmission de puissance par poulie courroie, 	Question 21	 l'assemblage complet par des vis auto-taraudeuses des supports de roulement avant et arrière sur le corps (tube profilé), l'assemblage complet du moteur sur le support avant, le système de transmission de puissance par poulies-courroie, l'écrou du système vis-écrou à billes et l'assemblage entre l'écrou/crochet d'entraînement.

BTS CIM - Épreuve E4 - Conception prélim	ninaire d'un système n	nicrotechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	TD4 / 8

Problématique 3 : Choisir la batterie en rapport avec l'autonomie indiquée dans le cahier des charges tout en minimisant l'encombrement


On vous donne ci-dessous le chronogramme modélisé d'une mesure du courant i(t) fourni par la batterie lors d'un cycle d'utilisation du gant dans une condition de test standard.

t = 0 s à t = 10 s : attente du serrage (unité de traitement seule) \rightarrow i(t) = 0,10 A

t = 10 s à t = 11 s: déplacement et phase de serrage $\rightarrow i(t) = 2,6 \text{ A}$

t = 11 s à t = 16 s: maintien du serrage $\rightarrow i(t) = 0,50 \text{ A}$

t = 16 s à t = 18 s: retour position origine $\rightarrow i(t) = 0.20 \text{ A}$

Les courants i(t) seront considérés constants pendant tous les intervalles.

Question 22	Déterminer par le calcul la valeur moyenne <l> du courant pour ce</l>
	cycle.

Après plusieurs cycles de test successifs pour les modes d'utilisation usuels du gant, les techniciens proposent d'adopter une valeur moyenne de courant <l> = 0,40 A.

Question 23	Rappeler le temps d'utilisation maximum prévu pour le gant dans
	le cahier des charges, puis déterminer par le calcul la quantité
	d'électricité Q nécessaire pour assurer l'autonomie souhaitée.

Question 24	En utilisant DT13/16 , proposer le modèle de batterie qui répond	
	le mieux au besoin. Justifier votre choix.	

BTS CIM - Épreuve E4 - Conception prélim	inaire d'un système n	nicrotechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	TD5 / 8

Problématique 4 : Valider le choix des composants de la chaîne d'information pour capter la position des tendons

Sur la description fonctionnelle (**DT6/16**), on constate que la mesure de la force de serrage n'est pas la seule information transmise à la chaîne d'information. Dans le cas d'opérations fréquentes sur le même objet ou quand la force de serrage n'est pas le critère principal (objet très léger ou déformable), le programme de l'unité de traitement utilise une mesure du déplacement des tendons pour accélérer le processus de préhension.

Le bureau d'étude propose de placer un codeur incrémental IE2-XXX (**DT14/16**) sur chacun des 5 moteurs.

4.1-Validation du choix du capteur de position

L'étirement des tendons est directement en relation avec le nombre de tours effectués par le moteur. Il faut donc connaître avec précision la relation entre l'étirement et le nombre d'impulsions lu en sortie du codeur.

Question 25	On souhaite une résolution angulaire minimale de 1 degré sur l'axe moteur. Déterminer le nombre d'impulsions par tour qui permet de valider la valeur de résolution imposée.
Question 26	Le codeur étant choisi, vous devez fournir à l'équipe en charge du programme informatique le nombre d'impulsions générées par A ou B pour la course complète de l'écrou. Pour ce faire, on vous rappelle que la course complète de l'écrou nécessite 75 tours de vis, soit 155 tours moteurs.

4.2- Prise d'origine du système

Lors de la mise sous tension, il faut vérifier que les tendons sont bien relâchés et que le système est en position initiale. Les moteurs, commandés par le circuit de commande DRV8800 (**DT16/16**), doivent permettre le retour du système de traction à sa position d'origine.

Le cycle de fonctionnement programmé à la mise sous tension est le suivant :

- 1. Alimentation du moteur jusqu'au retour à la position d'origine (butée mécanique)
- 2. Détection du blocage moteur par le microcontrôleur
- 3. Coupure de son alimentation avec le mode freinage "lent"

Question 27	En utilisant la documentation du codeur incrémental (DT14/16) et les chronogrammes de A et B du document réponse DR4/5 , préciser sur DR4/5 le sens de rotation du moteur pour les deux cas:		
	 cas 1(retour origine) : U_m< 0 V cas 3 (déplacement vers serrage) : U_m> 0 V 		
Question 28	Compléter ensuite sur le document réponse DR4/5 les états logiques sur les entrées du driver DRV8800 pour obtenir le fonctionnement décrit dans ces chronogrammes.		

BTS CIM - Épreuve E4 - Conception prélim	inaire d'un système n	nicrotechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	TD6 / 8

Question 29	Lorsque la position d'origine est atteinte, le moteur est dans la phase de blocage mécanique. Quelle caractéristique des signaux A et B peut être utilisée par le programme du microcontrôleur pour déterminer la mise en butée ?
Question 30	En vous aidant de la documentation du driver DRV8800 (DT16/16), proposer une autre solution technologique qui aurait permis de détecter le blocage du moteur à courant continu.

Problématique 5 : Proposer une Interface Homme-Machine (I.H.M.) pour visualiser le niveau de charge de la batterie et acquérir le niveau de force de serrage à atteindre conformément à FC2 (DT4/16)

5.1- Visualisation du niveau de batterie

Sur la télécommande, quatre diodes électroluminescentes blanches (**DT2/16 repère 1 schéma 7**) permettent d'afficher quatre niveaux de charge de la batterie. Lorsque le niveau de batterie devient critique (<20%), une diode électroluminescente rouge (**repère 8 schéma 7**) allume le pictogramme .Ces cinq diodes électroluminescentes sont commandées par le port B du microcontrôleur conformément au tableau ci-dessous :

Taux de charge T	leds Blanches	Led Rouge	Valeur sur PORTB
T < 20 %	0000	•	\$16
20 % < T < 40 %	000•	0	\$1
40 % < T < 60 %	00••	0	\$3
60 % < T < 80 %	0 • • •	0	\$7
T > 80 %	••••	0	\$15

Le niveau de batterie est mesuré à l'aide d'un convertisseur analogique-numérique (CAN) du microcontrôleur. La conversion fournit le nombre entier N_{CAN}

Taux de charge T	N _{CAN}
T = 100 %	859
T = 80 %	828
T = 60 %	796
T = 40 %	767
T =20 %	736

Question 31	Compléter	l'algorigramme	du	document	réponse	DR4/5	afin
	d'obtenir l'af						

BTS CIM - Épreuve E4 - Conception prélim	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	TD7 / 8

5.2- Acquisition de la force de serrage

Sur la description fonctionnelle **DT6/16** on voit que l'unité de traitement doit acquérir la force de serrage pour réaliser l'asservissement.

Le cahier des charges nous indique la force de serrage maximale sur la main.

Pour déterminer l'interface d'entrée, le constructeur souhaite prendre une marge de sécurité en adoptant une valeur maximale de force F rapportée sur un doigt égale à 20 N.

En utilisant le graphe du capteur de force (DT15/16),

Question 32	Relever à l'aide du graphe la valeur de la résistance R du capteur			
	pour une force F = 20 N.			

Dans sa documentation, pour mesurer la force de serrage, le constructeur du capteur propose comme interface le schéma structurel à amplificateur linéaire intégré donné sur DT15/16.

Question 33	Exprimer la tension V+ en fonction de Vdd, R, et R1. L'intensité du courant dans la borne + sera considéré nul.
Question 34	En utilisant la relation de VOUT fournie par le constructeur du capteur, déterminer par le calcul la valeur de la résistance R1 afin que la tension VOUT soit égale à 4 V pour la force de 20 N.
Question 35	Choisir la valeur de la résistance R1 dans la série E12 (DT15/16) pour que la tension VOUT = 4 V soit la valeur maximale à ne pas dépasser.

5.3- Acquisition de la force souhaitée par l'opérateur

La télécommande permet à l'utilisateur de sélectionner le niveau de force souhaitée par des appuis sur deux boutons poussoirs « + » et « - » (repère 2 schéma 7 du DT2/16). Les boutons poussoirs sont reliés au port A d'un microcontrôleur. Consignes de câblage à respecter :

- Le bouton poussoir « + » est relié à l'entrée PA0, le bouton poussoir « » est relié à PA1
- Sans action de l'utilisateur, les entrées associées du microcontrôleur doivent lire un état logique « 0 »
- Lors d'un appui sur le bouton poussoir, les entrées associées du microcontrôleur doivent lire un état logique « 1 »

ſ	Question 36	Sur le document réponse DR5/5						
		En utilisant les composants proposés, compléter le schéma						
		structurel afin de répondre aux consignes de câblage.						

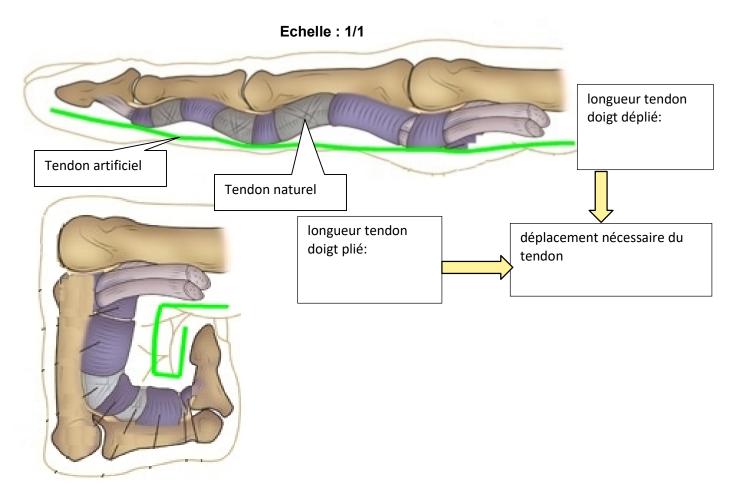
BTS CIM - Épreuve E4 - Conception	n préliminaire d'un système n	nicrotechnique	Session 2025
Code ·	Durée : 4 heures	Coefficient · 2	TD8 / 8

BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

ÉPREUVE E4 : CONCEPTION PRÉLIMINAIRE D'UN SYSTÈME MICROTECHNIQUE

SESSION 2025

Durée : 4 heures Coefficient : 2


DOSSIER DOCUMENTS RÉPONSES

Ce dossier comporte 5 pages repérées DR1/5 à DR5/5

BTS CIM - Épreuve E4 - Conception prélimi	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	Page de garde

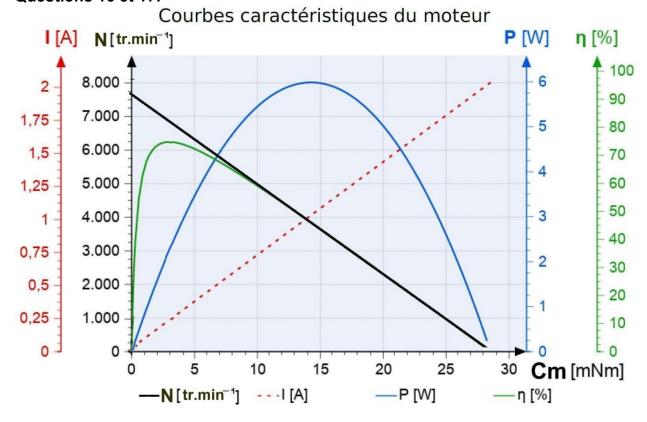
DR1

Question 4:

Question 7: Cocher les cases

	Simplicité	Rendement	Fiabilité	Rigidité (réactivité)	Faible encombrement
Tambour					
d'enroulement					
Pignon crémaillère					
levier					
Vis écrou classique		5		v.	
Vis écrou à bille				<i></i>	
Moteur linéaire					
Pignon /courroie d'entraînement					

BTS CIM - Épreuve E4 - Conception prélin	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DR1 / 5

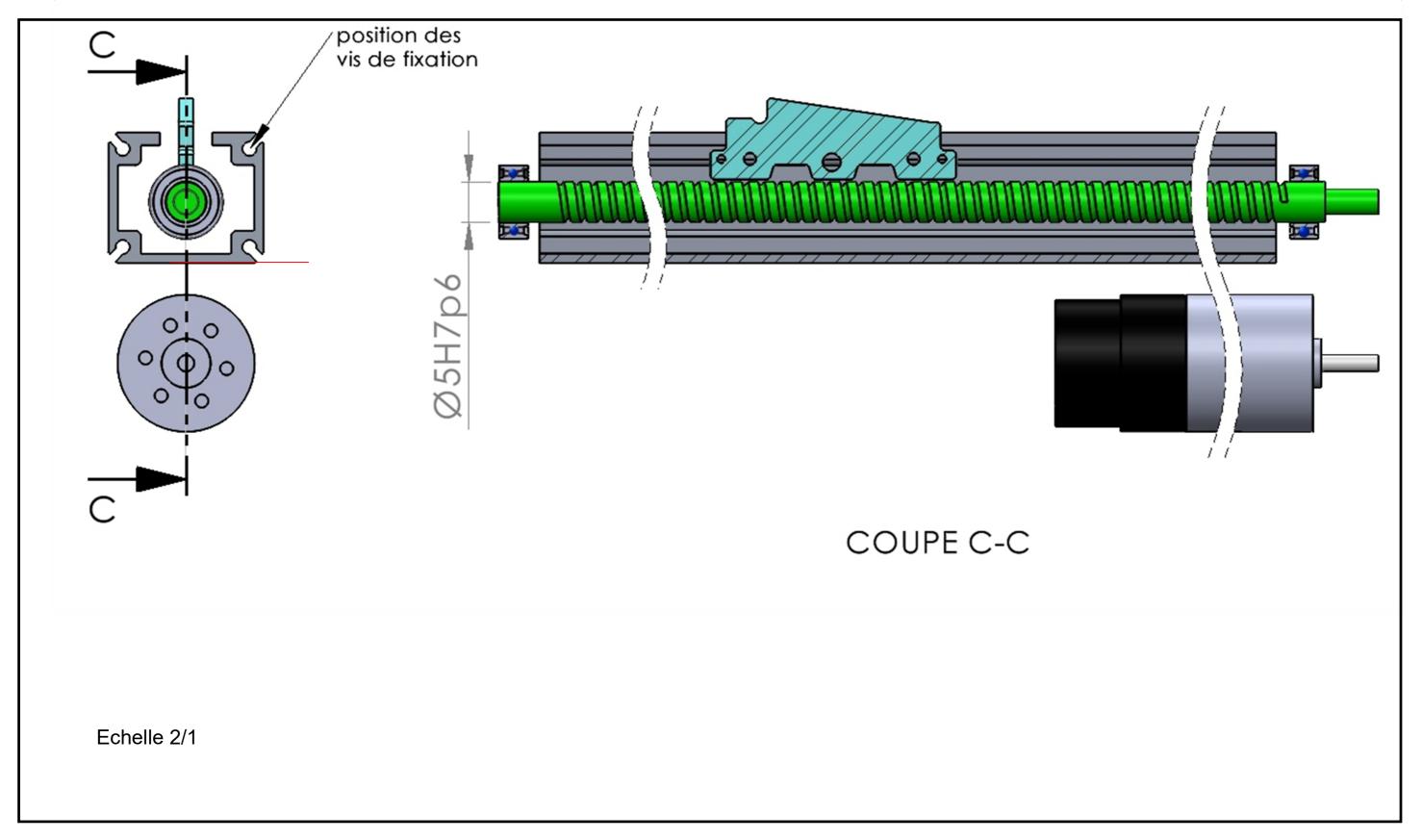

DR2

Question 15:

MODELE	Respect du critère sur la tension d'alimentation OUI-NON	Respect du critère sur le Couple C _d OUI-NON	Respect du critère sur la fréquence de rotation NOUI-NON
FAULHABER SR 1016 012			
FAULHABER CXR 1741			
FAULHABER CR2657012			
FAULHABER S/G 1624 012S			

CHOIX DEFINITIF DU MOTEUR : JUSTIFICATION :

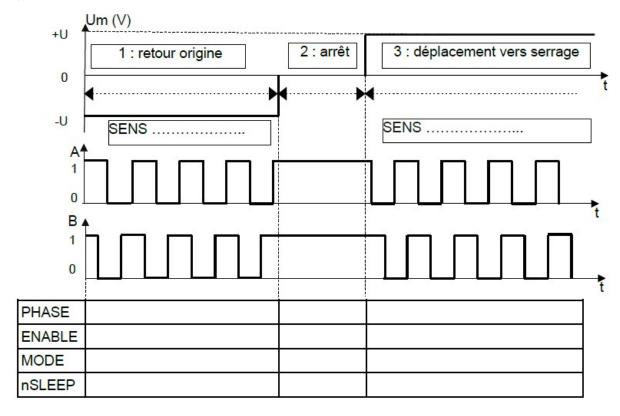
Questions 16 et 17:

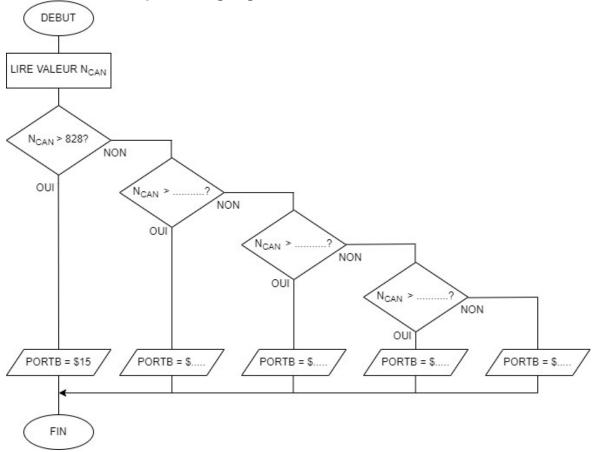


Fréquence de rotation au couple nominal : N =

BTS CIM - Épreuve E4 - Conception prélim	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DR2 / 5

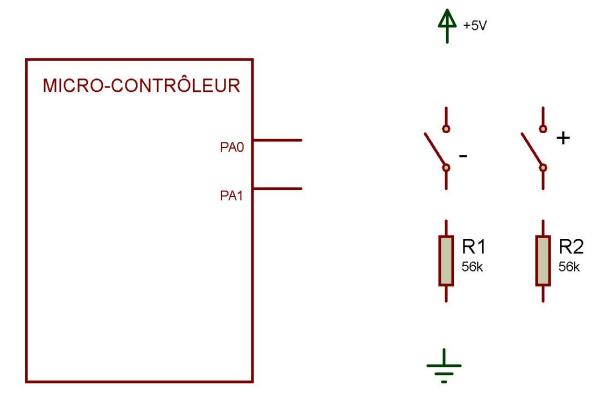
DR3


Question 21: Compléter le dessin d'ensemble


BTS CIM - Épreuve E4 - Conception prélim	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DR3/5

<u>DR4</u>

Questions 27 et 28:


Question 31 : compléter l'algorigramme

BTS CIM - Épreuve E4 - Conception pré	Session 2025		
Code:	Durée : 4 heures	Coefficient : 2	DR4/5

<u>DR5</u>

Question 36 : compléter le schéma structurel

BTS CIM - Épreuve E4 - Conception préliminaire d'un système microtechnique				Session 2025
Code :	Dure	ée : 4 heures	Coefficient : 2	DR5/5