BREVET DE TECHNICIEN SUPÉRIEUR CONCEPTION ET INDUSTRIALISATION EN MICROTECHNIQUES

ÉPREUVE E4 : CONCEPTION PRÉLIMINAIRE D'UN SYSTÈME MICROTECHNIQUE

SESSION 2025

Durée : 4 heures Coefficient : 2

DOSSIER TECHNIQUE

Ce dossier comporte 16 pages repérées de DT 1/16 à DT 16/16.

•	Mise en situation et présentation du produit	DT 1/16 à DT 2/16
•	Cahier des charges du gant bionique	DT 3/16 à DT 5/16
•	Constitution du gant et architecture du gant bionique	DT 6/16
•	Algorigramme de fonctionnement général	DT 7/16
•	Documentations techniques	DT 8/16 à DT 16/16

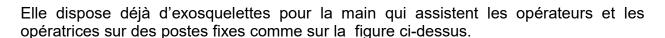
BTS CIM - Épreuve E4 - Conception pré	iminaire d'un système	e microtechnique	Session 2025
Code:	Durée : 4 heures	Coefficient : 2	Page de garde

Mise en situation et présentation du produit

1- Les Troubles Musculo-Squelettiques de la main (T.M.S.)

Les mouvements répétitifs, les positions non naturelles de la main, ou encore la préhension serrée et prolongée peuvent générer des maladies professionnelles. Les opérateurs et opératrices exposés à ces gestes sont sujets à différents symptômes :

- · picotements dans les doigts,
- douleurs nocturnes,
- · douleur diverse et engourdissement,
- · perte de dextérité et de force dans la main,
- difficulté à pincer ou à saisir des objets,
- assèchement de la peau.


Ces symptômes peuvent être les signes avant-coureurs d'un T.M.S.

2- Les exosquelettes

Les exosquelettes d'assistance physique répondent à des besoins militaires, médicaux ou industriels. Ils visent à apporter une assistance physique à ceux qui les emploient. Cela peut concerner des personnes souffrant d'un handicap physique, des salariés soumis à des tâches fortement répétitives ou encore des militaires en opération.

Une société conçoit, fabrique et commercialise une large gamme d'exosquelettes industriels pour assister les opérateurs dans :

- la manutention de charge.
- les travaux avec bras en hauteur,
- les postures pénibles et répétitives.

3- Le gant bionique

L'exosquelette actuel nécessite un raccordement filaire à une source d'énergie électrique.

Afin d'élargir sa gamme de produits, la société souhaite maintenant développer un modèle nomade, autonome en énergie.

Pour répondre au besoin, la création du nouveau produit devra intégrer les exigences ci-dessous :

- un encombrement minimal des composants ;
- une autonomie en énergie compatible avec un temps de travail journalier;
- une réactivité adaptée.

4- Les constituants du gant bionique

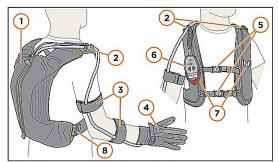


Schéma 3 : les composants du système Ironhand

Élément	Nom	Fonction
1	Harnais avec bloc d'alimentation	Protège le bloc d'alimentation
2	Collier du cordon	Maintient les cordons en place
3	Brassards	Maintiennent le cordon attaché à votre bras
4	Gant	Assure la force de prise
5	Sangles de fermeture ventrales	Relie les bretelles
6	Télécommande	Réglages par l'utilisateur
7	Support de la télécommande	Maintient la télécommande en place
8	Sangle latérale	Sert à attacher le harnais de façon confortable

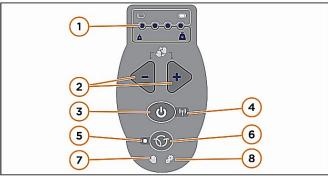


Schéma 7 : télécommande d'Ironhand.

Élément	Nom	Fonction
1	LED	Indique en blanc le niveau de la batterie ou en bleu le niveau de force.
2	Réglage de la force	Une simple pression permet de régler le niveau de force.
3	Bouton ON/OFF	Maintenez-le enfoncé pendant environ 1 seconde pour allumer ou éteindre le système. Double-cliquez pour activer/désactiver le WiFi.
4	Voyant WiFi	Clignotant = la fonctionnalité WiFi est activée. Fixe = connecté au WiFi.
5	Voyant de sélection du profil	Éteint = profil principal ; allumé = profil secondaire.
6	Bouton de sélection du profil	Une simple pression permet de sélectionner le profil.
7	Voyant d'état du gant	Indique les erreurs relatives au gant.
8	Voyant d'état du bloc d'alimentation	Indique les erreurs relatives au bloc d'alimentation.

Prototype du bloc de commande et d'alimentation avec sa télécommande

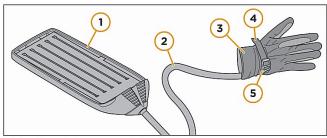


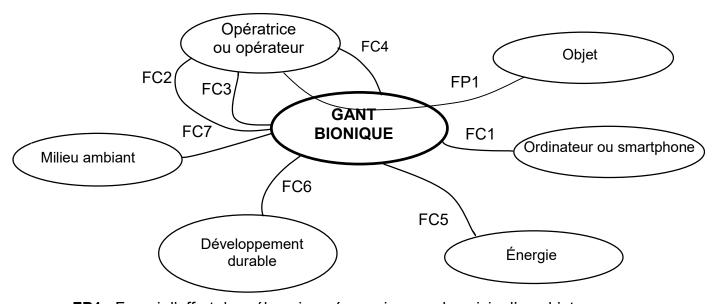
Schéma 5 : gant et connecteur de Ironhand.

Élément	Nom	Fonction	
1	Connecteur	Connecte le gant au bloc d'alimentation	
2	Cordon	Transmet les données sensorielles et la force	
3	Gant	Assure la force de prise	
4	Sangle	Attache le gant à la main	
5	Boucle	Maintient et détend la sangle	


Schéma 6 : capteurs d'Ironhand.

Nom Fonction

Capteurs Fournissent des données sensoriels au bloc d'alimentation


Cahier des charges du gant bionique

1- Expression du besoin :

- * : Gant bionique: gant + cordon + bloc d'alimentation + télécommande
- **: Troubles Musculo-Squelettiques

2- Recensement des fonctions de services et des contraintes

FP1 : Fournir l'effort de préhension nécessaire pour la saisie d'un objet

FC1 : Permettre la connexion de l'ordinateur ou smartphone au gant bionique

FC2 : Dialoguer avec l'opératrice ou l'opérateur

FC3: S'adapter à chaque opératrice ou opérateur

FC4 : Être ergonomique

FC5 : Être autonome en énergie

FC6: Limiter l'impact environnemental

FC7: S'adapter au milieu ambiant

3- Caractérisation des fonctions de services et des contraintes

FP1 : Fournir l'effort de préhension nécessaire pour la saisie d'un objet		
Critères	Niveaux	Flexibilité
Force de serrage	75 Newtons par main (5 doigts) ±5%	F0
Temps de serrage complet	1,5 seconde maximum	F0

FC1 : Permettre la connexion de l'ordinateur ou smartphone au gant bionique		
Critères	Niveaux	Flexibilité
WIFI	Protocole: 802.11 b/g/n/e/i (802.11n jusqu'à 150 Mb/s)	F0

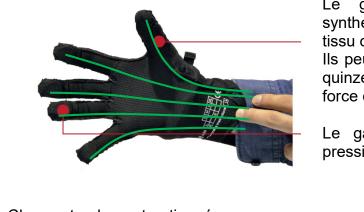
FC2 : Dialoguer avec l'opératrice ou l'opérateur		
Critères	Niveaux	Flexibilité
Indication du niveau batterie et du niveau de force	Affichage avec 4 leds bicolores : – blanches (batterie) – bleues (force) Par led rouge pour erreur de la batterie	F1
Réglage du niveau de Force	2 Boutons-poussoirs + et -	F0
Marche/Arrêt	Bouton unique ON/OFF	F0
Visualisation de l'état de connexion du Wifi	Par led	F1
Profil utilisateur réglable* :	Deux profils Par bouton-poussoir Par led :	F1
Visualisation de l'état système du gant	Par led pour l'erreur du système	F1

^{*} Le gant peut être préréglé pour différents utilisateurs

FC3 : S'adapter à chaque opératric	e ou opérateur	
Critères	Niveaux	Flexibilité
Taille Préférence manuelle	4 tailles : S-M-L-XL Main droite ou main gauche	F0

FC4 : Être ergonomique		
Critères	Niveaux	Flexibilité
Masse du gant	20 g maximum	F1
Masse de l'unité motrice Masse du harnais	2 kg maximum 0,5 kg maximum	F1
Dimension maximale du bloc d'alimentation	L = 300, I =120, H = 75	F0

FC5 : Être autonome en énergie		
Critères	Niveaux	Flexibilité
Type de batterie	LI-ion 15 V maximum	F1
Autonomie	6 h à 8 h suivant utilisation	F0


FC6 : Limiter l'impact environnemental			
Critères Niveaux		Flexibilité	
Durée de vie de l'unité motrice	2 ans ou 1 million de cycles d'utilisation	F1	
Durée de vie du gant	2 mois ou 100 000 cycles de serrage	F1	
Batterie	Recyclable	F0	
Matériaux	Nombre de familles de matériaux limités	F1	
Composants électroniques	Interchangeables	F0	

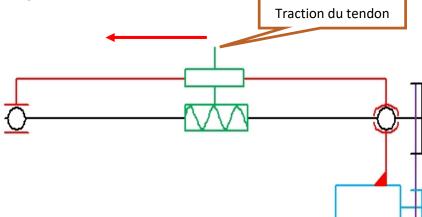
FC7 :S'adapter au milieu ambiant						
Critères Niveaux Flexibilité						
Classe IP	IP4X	F0				

Signification des classes de flexibilité :

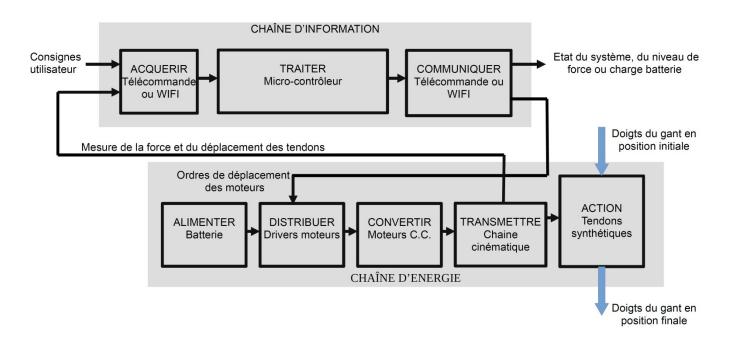
F0	Impératif
F1	Un peu négociable
F2	Moyennement négociable
F3	Négociable

Constitution du gant et architecture du gant bionique

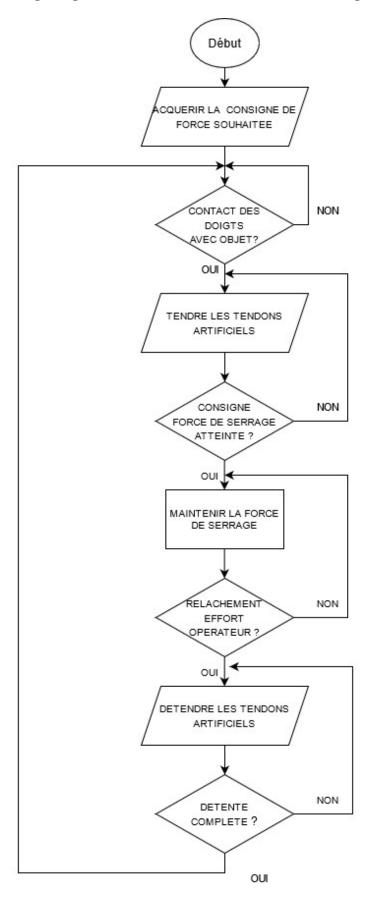
Le gant est équipé de cinq tendons synthétiques intégrés dans chaque doigt du tissu du gant.


Ils peuvent développer une force de l'ordre de quinze Newtons chacun en se substituant à la force qu'aurait dû développer l'opérateur.

Le gant est équipé de cinq capteurs de pression au niveau des doigts, un par doigt.


Chaque tendon est actionné par une unité de traction.

Chaque unité de traction est constituée d'un moteur électrique, d'une transmission par poulies-courroie et d'un système vis-écrou.


Chaque unité de traction fonctionne de manière indépendante.

Architecture du gant bionique

Algorigramme de fonctionnement général

Contact

Serrage

Relâchement

Propriétés mécaniques des matériaux

Matériaux	Resistance à la traction	Module d'Young E (Gpa)			
polyamides	80 MPa	3			
Polyéthylène Haut	3.6 GPa	116			
Module (HMPE)					
Fibre de lin	1.1 GPa	80			
Fibre de verre	2.5 GPa	70			
polyester	66 MPa	3.4			
Polypropylène	27 MPa	1.5			
Kevlar	3.1 GPa	80			

Formulaire de traction

loi de Hooke:

$$\begin{cases} \sigma = E.\varepsilon = E.\frac{\Delta l}{l} \\ \sigma = \frac{N}{S} \end{cases} \Rightarrow \Delta l = \frac{N.l}{E.S}$$

 σ : Contrainte en MPa (N/mm 2)

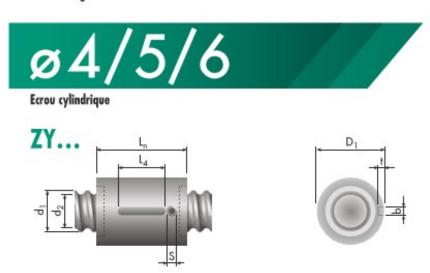
 \triangle L: allongement en mm

N: effort normal en Newton (N)

I: longueur soumise à la traction en mm

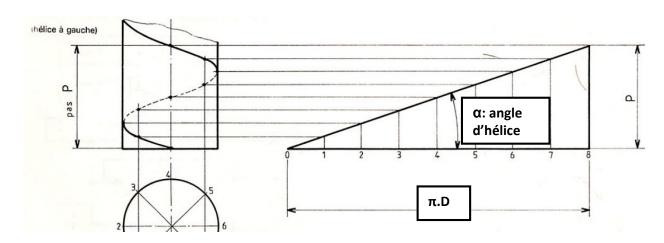
S: surface de la section en mm2

E: module de Young en MPa (N/mm²)


Solutions technologiques

	Avantages	Inconvénients
Tambour d'enroulement	Simplicité	Encombrement
	Prix	Risque d'usure du fil par frottement
Pignon crémaillère	Simplicité	Encombrement
	Prix	Risque d'usure
levier	Simplicité Prix	Encombrement important pour course longue
Vis écrou classique	Simplicité	Mauvais rendement
	Prix-	Risque d'usure
	Rigidité	
	Système compact	
Vis écrou à bille	Simplicité	Prix+
	Très bon rendement	
	rigidité	
	Système compact	
Moteur linéaire	Simplicité	Prix +++
	Pas d'usure	Encombrement
	rigidité	Masse +
Pignon /courrole	Prix-	Complexité mécanique
d'entraînement	Bon rendement	Risque d'usure
		Flexibilité

Caractéristiques des vis à billes


Dimensions

Carry vis à billes

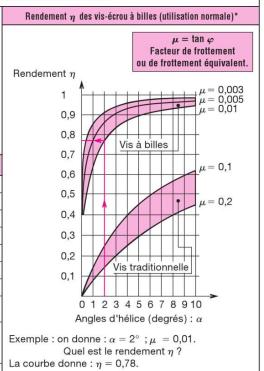
Dimension	Recirculation	Coûts	Filet	Dimensi	ions [mr	n]										Capacité	de	Dimension
nominale	de billes	relatifs	à droite /	Vis		Ecrou										charge [N	1]	nominale
d _o ×p [mm]	Туре		à gauche	d ₁	d ₂	D,	L,	L ₄	L ₈ h13	i	D _w	B +0.5/0	b P9	t	T	Cdyn	C _{stet}	d _o ×p [mm]
4×1	• •	€€€	RH/—	4.0	3.2	8 g6	10	_	_	3×1	0.80	_	ø2 +0.1/0	1.0	0.03	430	580	4×1
5×2	• •	€€€	RH/—	5.0	4.0	10 g6	14	8	_	3×1	0.80	_	2	1.0	0.03	500	800	5×2
6×1	• •	€€€	RH/—	6.0	5.0	12 g6	14	8	-	3×1	0.80	-	2	1.2	0.03	600	1 000	6×1

Hélice et pas de vis

Calcul des systèmes vis - écrou

60 ■ 33 VALEURS DE RENDEMENTS DE MÉCANISMES

soit on calcule les valeurs à partir de relations faisant intervenir le


Pour les calculs de rendements de mécanismes :

facteur de frottement entre matériaux (voir chapitre 12 et chapitre 31).

soit on utilise les valeurs expérimentales du tableau ci-dessous.

soit on utilise les valeurs experimentales du tableau ci-dessous. Une place particulière est faite aux systèmes vis-écrou à billes, étant donné leur importance dans les parties opératives des machines à commandes d'axes numériques et des systèmes asservis.

Mécanismes particuliers	Rendement η
Arbres sur paliers à roulements	0,98
Arbres sur paliers lisses bien lubrifiés	0,95
Commandes par courroie	0,95
Engrenages droits rectifiés, bien lubrifiés	0,98
Engrenages taillés, bien lubrifiés	0,95 à 0,97
Arbres sur paliers lisses à graissage discontinu	0,9 à 0,92
Engrenages taillés mal lubrifiés	0,9 à 0,92
Engrenages bruts de matriçage, selon montage et entretien	0,75 à 0,85
Roue et vis sans fin :	
– réversible bien lubrifié	0,4 à 0,8
– irréversible, lubrifié à la graisse	0,3 à 0,4
Vis et écrou d'assemblage (irréversible)	0,15 à 0,3

^{*} D'après Korta. Utilisation normale : tourner la vis pour obtenir une déplacement en translation de l'écrou.

Rendement n (théorique)

en fonction de la nature de la transmission de force

Cas 1 : couple → déplacement linéaire

$$\eta = \frac{\tan \alpha}{\tan (\alpha + \mu)}$$
 [-]

Cas 2 : force axiale → mouvement rotatif

$$\eta' \approx \frac{\tan (\alpha - \mu)}{\tan \alpha}$$

... où l'on a respectivement:

$$\tan \alpha = \frac{\mathbf{p}}{\mathbf{d}_0 \cdot \pi} [-]$$

η = rendement [%]

η' = rendement corrigé [%]

p = pas du filetage [mm]

d_o = diamètre nominal de la vis [mm]

 μ = angle de frottement [°] $\rightarrow \rho$ = 0.30...0.60°

Rendement np (en pratique)

Le rendement η se situe, pour une vis à billes Carry, à plus de 0.9

Couple d'entraînement/couple de sortie M en fonction du type de la transmission de force

Cas 1 : couple → déplacement linéaire

$$M_a = \frac{F_a \cdot p}{2000 \cdot \pi \cdot \eta} [Nm]$$

Cas 2 : force axiale → mouvement rotatif

$$M_{e} = \frac{F_{a} \cdot p \cdot \eta'}{2000 \cdot \pi} [Nm]$$

M_o = couple d'entraînement [Nm], cas 1

M_a = couple de sortie [Nm], cas 2

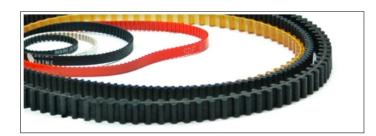
F = force axiale [N]

p = pas du filetage [mm]

η = rendement [%]

η' = rendement corrigé [%]

Puissance d'entraînement P


$$P = \frac{M_a \cdot n}{9550} \text{ [kW]}$$

P = puissance d'entraînement [kW]

n = vitesse [min⁻¹]

Transmission par poulies et courroie

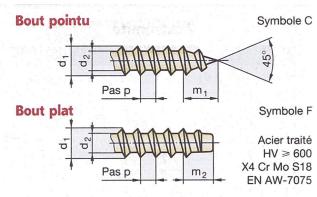
Courroies

A 6R51M033060

pas de 1mm, 72 dents, largeur 3mm, denture simple face, neoprene renforcé fibre de verre

Poulies

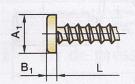
Numéro d'article	pas	Nombre de dents		Largeur de courroie (mm)	(mm)	Configuration de la bride et du moyeu	Diamètre extérieur (mm)	Longueur totale (mm)	Diamètre du moyeu (mm)	Prix
Un 6A18M021DF3003	1 mm	21	Alliage d'aluminium	3,00	3,00	2 brides/avec moyeu	6.5	11	9.00	11,93
Un 6A18M040DF3004	1 mm	40	Alliage d'aluminium	3,00	4.00	2 brides/avec moyeu	13	11	14.90	13,09
Un 6A18M040DF3003	1 mm	40	Alliage d'aluminium	3,00	3,00	2 brides/avec moyeu	13	11	14.90	13,09
Un 6A18M021DF3002	1 mm	21	Alliage d'aluminium	3,00	2,00	2 brides/avec moyeu	6.5	11	9.00	11,93


Visserie

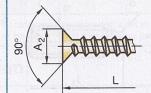
Vis autotaraudeuses

Il existe deux types d'extrémités pour les vis autotaraudeuses :

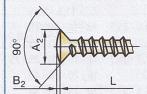
- Les vis à bout pointu, symbole C, utilisées pour les tôles minces (e < 1,5 mm).
- Les vis à bout plat, symbole F, utilisées pour les tôles plus épaisses, les métaux tendres et les matières plastiques.


Ces vis se fabriquent suivant différents types de têtes et différentes formes d'empreintes.

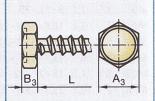
d nominal	A ₁ max.	B ₁ max.	A ₂ max.	B ₂ max.	A ₃ max.	B ₃ max.	d ₁ max.	d ₂ max.	p ≈	m ₁ ≈	m ₂ ≈	L (entièrement filetée)	n
ST 2,2	4	1,3	4,4	0,5	3,2	1,6	2,24	1,63	0,8	2	1,6	4,5-6,5-9,5-13-16	0
ST 2,9	5,6	1,8	6,3	0,7	5	2,3	2,9	2,18	1	2,6	2,1	6,5-9,5-13-16-19	10
ST 3,5	7	2,1	8,2	0,8	5,5	2,6	3,53	2,64	1,3	3,2	2,5	6,5-9,5-13-16-19	15
ST 4,2	8	2,4	9,4	1	7	3	4,22	3,10	1,4	3,7	2,8	9,5-13-16-19-22-25	20
ST 4,8	9,5	3	10,4	1,2	8	3,8	4,8	3,58	1,6	4,3	3,2	9,5-13-16-19-22-25-32	25
ST 5,5	11	3,2	11,5	1,3	8	4,1	5,46	4,17	1,8	5	3,6	13-16-19-22-25-32	25
ST 6,3	12	3,6	12,6	1,4	10	4,7	6,25	4,88	1,8	6	3,6	13-16-19-22-25-32-38	30
						Fo	rmes (de tête					
ôte cylin	driano	lavao	T	ito fra	icáo n	lato		Tôto f	raicóc	homi	-éa	Tête hexagonale	



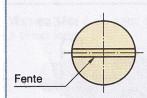
Fendue: NF EN ISO 1481 Cruciforme: NF EN ISO 7049 Six lobes: NF EN ISO 14585


Tête fraisée plate

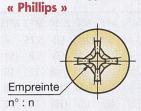
Fendue: NF EN ISO 1482 Cruciforme: NF EN ISO 7050 Six lobes: NF EN ISO 14586

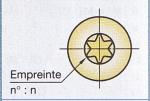

Tête fraisée bombée

Fendue: NF EN ISO 1483 Cruciforme: NF EN ISO 7051 Six lobes: NF EN ISO 14587


Tête hexagonale

NF EN ISO 1479


Fendue


Cruciforme – Type Z « Pozidriv »

Cruciforme - Type H

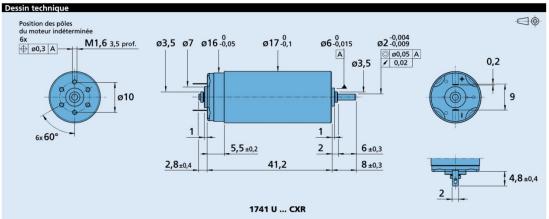
Six lobes internes « Torx »

Moteurs

FAULHABER SR 1016 012 Ø 10 mm Longueur 16 mm Tension nominale 12 V Vitesse à vide N₀ = 14100 tr.min⁻¹ Couple de démarrage Cd = 2,32 mNm FAULHABER CXR 1741 Ø 17 mm Longueur 41 mm Tension nominale 12 V Vitesse à vide N₀ = 7600 tr.min⁻¹ Couple de démarrage Cd = 27,9 mNm

Batteries

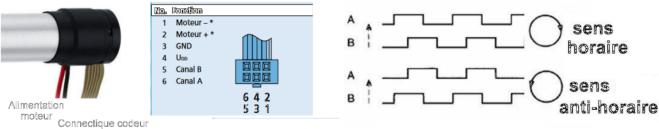
RRC2024	RRC2054-2	RRC2054
Caractéristiques	Caractéristiques	Caractéristiques
Batterie Lithium-ion	Batterie Lithium-ion	Batterie Lithium-ion
Tension nominale : 14,4 V	Tension nominale: 14,4 V	Tension nominale: 14,4 V
Capacité nominale : 6,60 A.h	Capacité nominale : 6,9 A.h	Capacité nominale : 3,45 A.h
Energie: 95,0 W.h	Energie : 99,4 W.h	Energie : 49,7 W.h
Longueur : 167 mm	Longueur : 150 mm	Longueur : 85 mm
Largeur : 107	Largeur : 77	Largeur : 77
Hauteur : 21 mm	Hauteur : 22 mm	Hauteur : 22 mm


Moteur FAULHABERT 1741U012CXR avec codeur incrémental

Tension nominale: 12 V Résistance induit : 5,8 Ω Rendement max: 74 %

Vitesse à vide : $N_0 = 7600 \text{ tr.min}^{-1}$ Courant à vide : $I_0 = 0,028$ A

Couple de démarrage : Cd = 27,9 mN.m Constante de fem : K_e = 1,496 mV/ min⁻¹ Constante de couple : K_c = 14,29 mN.m/A


Codeurs

codeurs magnétiques, sorties digitales, Combinaisons avec 2 canaux, 64 - 1024 impulsions par tour

Micromoteurs C.C. Moteurs C.C. sans balais

FAULHABER

Série IE2-1024 11392434 11524128 11504540 119251024 1122250 Nombre d'impulsions par tour N 64 128 256 512 1 024 Gamme de fréquence, jusqu'à1) 20 80 160 kHz 40 300 Nombre de signaux de sortie (forme carrée) Canaux 4,5 ... 5,5 typ. 9,5, max. 13 V Tension d'alimentation UDD Consommation moyenne²⁾ mA IDD Courant de sortie, max.3) **I**OUT mΑ Déphasage des signaux entre canal A et B 90 ± 45 (1) °e 0,1/0,1 Temps de transition du signal, max. (CLOAD = 50 pF) tr/tf μs gcm² Inertie du disque⁴⁾ 0.09 Température d'utilisation -25 ... +85 No. Fondion

Le codeur incrémental disposé sur le moteur permet de connaître le sens de rotation grâce à deux signaux A et B disponibles en sortie. Le déphasage entre A et B dépend du sens de rotation.

Le codeur incrémental permet aussi de connaître la fréquence rotation du moteur. Le nombre d'impulsions sur A ou sur B par tour moteur dépend du choix du codeur : 64, 128, 256, 512 ou 1024 impulsions par tour sont possibles.

Capteur FSR

Description : le capteur de force de type FSR (Force Sensing Resistor) permet de détecter une pression physique sur un support.

Caractéristique électrique des capteurs de la gamme :

L'abscisse correspond à la force appliquée sur une surface de 1cm² du capteur.

L'ordonnée est la résistance correspondante du capteur exprimée en kiloohms.

Sa courbe caractéristique montre que sa résistance décroît en fonction de la force appliquée sur le capteur. Les échelles sont de type logarithmiques

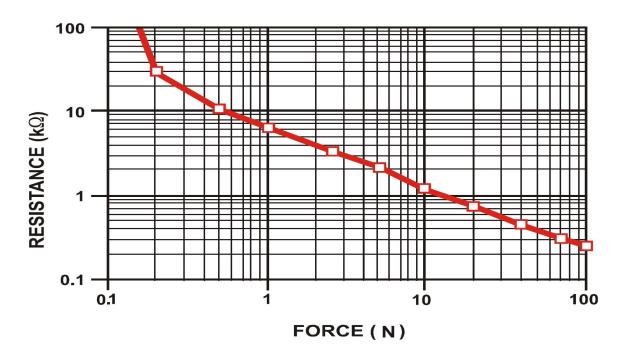
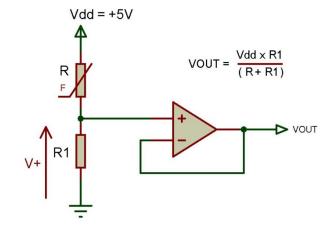
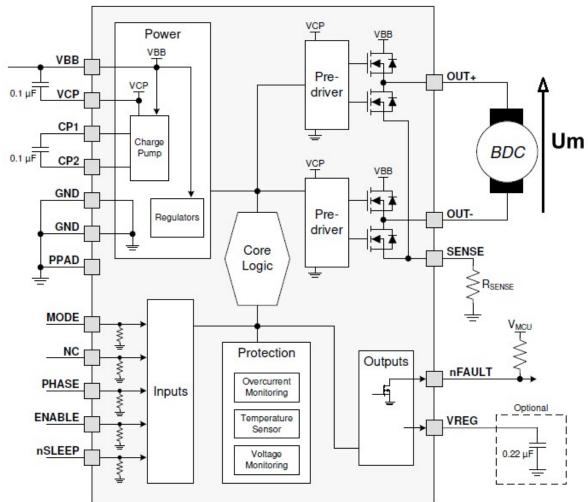



Schéma proposé par le constructeur du capteur pour l'interface vers l'unité de traitement

Série normalisée E12:



Driver DRV8800

Tension d'alimentation maximale : 36 V Courant maximal en crête : 2,8 A

Le driver DRV8800 permet la commande d'un moteur à courant continu grâce à un pont en H intégré. Il peut être interfacé avec un microcontrôleur afin d'établir les modes de fonctionnement désirés. Une mesure de l'intensité du moteur à travers le résistor R_{SENSE} permet un contrôle du couple moteur.

Table de fonctionnement

. 45.5 4	o ionotion				
PHASE	ENABLE	MODE	nSLEEP	Um	OPERATION
X	Х	Х	0	Z : haute impédance	Pont H bloqué
1	1	X	1	> 0 V	MOTEUR SENS ROTATION 1
0	1	Х	1	< 0 V	MOTEUR SENS ROTATION 2
X	0	1	1	0 V	Freinage "lent" ou arrêt
1	0	0	1	Inversion de tension	Freinage "rapide" pour le sens horaire
0	0	1	1	Inversion de tension	Freinage "rapide" pour le sens anti-horaire

Z: transistors bloqués

légende:

X : état logique 1 ou 0 indifféremment

Freinage lent : mise en court-circuit du moteur

Freinage rapide : inversion de la polarité aux bornes du moteur