Brevet de technicien supérieur

Fluides Énergies Domotique

Option: FCA-GCF-DBC

Épreuve E32 Physique et chimie

Session 2025

Durée : 2 heures Coefficient : 1

L'usage de calculatrice avec mode examen actif est autorisé.

L'usage de calculatrice sans mémoire, type collège, est autorisé.

Important

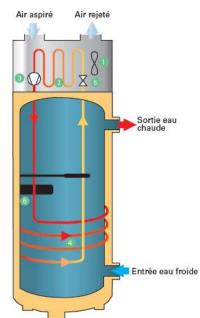
Ce sujet comporte, en plus de cette page de garde, 8 pages.

Le document réponse en page 8 est à rendre avec la copie.

BTS Fluides Energies Domotique – session 2025 – épreuve E32 toutes options

Code sujet: 25FEPC

Production d'eau chaude sanitaire


Un couple avec deux enfants vient de faire l'acquisition d'un pavillon et souhaite remplacer le ballon d'eau chaude sanitaire standard défectueux.

Le couple se renseigne chez un professionnel qui propose de leur expliquer l'intérêt d'un chauffe-eau thermodynamique tout en les informant sur les éventuelles nuisances sonores.

La production d'eau chaude par un chauffe-eau thermodynamique est un des éléments permettant de respecter la réglementation thermique lors de la conception d'un logement.

Le fluide frigorigène contenu dans la pompe à chaleur du chauffe-eau effectue un cycle thermodynamique lui permettant de transférer l'énergie contenue dans l'air ambiant d'un local non chauffé vers l'eau du ballon.

Les trois parties à traiter sont indépendantes :

- A. Économies réalisées
- B. Impact sonore de l'installation thermodynamique
- C. Vérification de la sonde de température

BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC		Page 1/7

A. Économies réalisées

I. Coût de fonctionnement annuel du chauffe-eau thermodynamique

On souhaite chauffer l'eau du ballon d'un volume de 200 L d'une température initiale θ_i = 18 °C à une température finale θ_f = 62 °C.

Données : capacité thermique massique de l'eau : $C = 4,18 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$

masse volumique de l'eau : $\rho_{eau} = 1 000 \text{ kg} \cdot \text{m}^{-3}$

prix du kW·h en heures creuses (tarif nuit): 0,1615 € TTC

puissance thermique du chauffe-eau : $P_{th} = 1 660 \text{ W}$

- 1. Calculer la quantité de chaleur Q que doit recevoir l'eau.
- 2. En supposant que la chaleur évacuée par le condenseur est entièrement transmise à l'eau du ballon, en déduire le temps de chauffe Δt en heures.
- 3. La puissance électrique moyenne absorbée P_{abs} vaut 425 W. Montrer que le coût de fonctionnement annuel C_{cf} en euros du chauffe-eau, lorsque celui-ci fonctionne 6 heures par nuit tous les jours de l'année est de 150 euros.

II. Retour sur investissement grâce aux économies du chauffe-eau thermodynamique

Un ballon standard électrique de 200 litres, intégrant une résistance de chauffage d'eau chaude sanitaire de puissance égale à 1800 W, a un coût de fonctionnement annuel de 648 euros quand il fonctionne 6 heures par nuit tous les jours de l'année.

Le prix moyen d'un ballon standard de 200 L est de 600 euros et celui d'un ballon thermodynamique est de 3 000 euros.

Le chauffe-eau thermodynamique bénéficie d'une aide par le dispositif MaPrimRénov' de 30 % du prix d'achat.

- 1. Vérifier que la durée d'amortissement est de 3 ans environ.
- 2. Rédiger une note de synthèse justifiant le choix d'un chauffe-eau thermodynamique.

B. Impact sonore de l'installation du chauffe-eau

Le niveau de pression acoustique se note L_p et se mesure en dB.

C'est la grandeur acoustique perçue par l'oreille humaine et mesurée par un sonomètre.

Pour une source donnée, le niveau de pression acoustique L_p dépend de l'environnement d'installation et de la distance à laquelle on réalise la mesure.

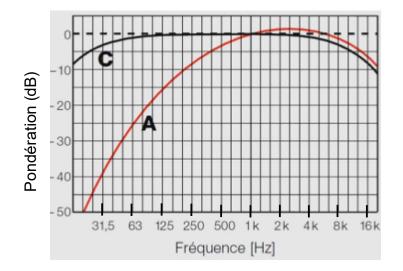
BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC		Page 2/7

Le tableau des caractéristiques techniques fourni par le fabriquant du ballon thermodynamique est donné dans le document réponse 1.

Une fois le chauffe-eau installé dans le local de la chaufferie, le technicien réalise une mesure de niveau acoustique : il obtient $L_{pAtotal}$ = 37 dB(A).

Il cherche à comparer cette valeur aux données du constructeur.

Données:


On donne $L_{pA} = L_p$ + pondération A

$$L_{pAtotal} = 10 \cdot \log \left[\sum_{i=1}^{n} 10^{LpA_i/10} \right]$$

 L_p : niveau de pression acoustique en dB.

 $L_{pAtotal}$: niveau de pression acoustique total en dB(A).

- 1. Calculer le niveau de pression acoustique L_p pour les bandes d'octave n °3 et n °4 et compléter le tableau du document réponse 1.
- 2. En exploitant la courbe ci-dessous, déterminer le niveau de pression acoustique L_{pA} , en pondération A, pour les deux premières bandes d'octaves 1 et 2 et finir de compléter le document réponse 1.

- 3. Calculer $L_{pAtotal}$, le niveau de pression acoustique total en pondération A.
- 4. Justifier l'écart de pression acoustique obtenu par rapport à la valeur donnée par le constructeur.
- 5. Expliquer la nécessité de donner le niveau de pression acoustique en dB(A) plutôt qu'en dB.

BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC		Page 3/7

C.Vérification de la sonde de température

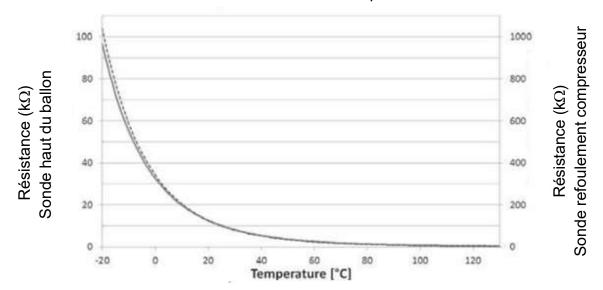
Le technicien, en charge de l'installation, souhaite vérifier le bon fonctionnement de la sonde de température située au niveau haut du ballon.

Le graphique de l'annexe 1 donne les courbes constructeur de la résistance en fonction de la température de deux sondes du chauffe-eau thermodynamique.

Le tableau de l'annexe 2 donne les valeurs de résistance en fonction de la température pour différents types de sondes.

Le technicien souhaite identifier le type de la sonde de température située au niveau haut du ballon.

- 1. Citer les grandeurs d'entrée et de sortie de la sonde de température.
- 2. En s'aidant des annexes 1 et 2, indiquer le type de sonde de température utilisée.
- 3. Le technicien désire vérifier le bon fonctionnement de la sonde pour une température de l'eau connue.
 - Il dispose pour cela d'un multimètre, d'un thermomètre, d'un agitateur magnétique et d'un barreau aimanté.
- 3.1. Légender le schéma proposé sur le document réponse 2.
- 3.2. Proposer un protocole expérimental permettant de vérifier le bon fonctionnement de la sonde.


BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC	•	Page 4/7

Annexe 1

Valeurs de la résistance en fonction des températures

___ : Sonde haut du ballon

----: : Sonde refoulement compresseur

BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC		Page 5/7

Annexe 2

Valeurs de résistance, en ohms, pour différents types de sonde en fonction de la température

Température (°C)	K2	K10	Pt100	Pt1000	
-50	149 808	669 534	80,31	803,06	
-49	139 761	623 574	80,70	807,03	
-48	130 264	581 063	81,10	811,00	
-47	121 472	541 722	81,50	814,97	
-46	113 329	505 296	81,89	818,94	
-45	105 783	471 552	82,29	822,90	
-44	98 787	440 275	82,69	826,87	
-43	92 297	411 271	83,08	830,83	
-42	86 275	384 362	83,48	834,79	
-41	80 682	359 383	83,87	838,75	
-40	75 487	336 185	84,27	842,71	
-39	70 659	314 630	84,67	846,66	
-38	66 170	294 593	85,06	850,62	
-37	61 993	275 957	85,46	854,57	
-36	58 106	258 616	85,85	858,53	
-35	54 487	242 473	86,25	862,48	
-34	51 115	229 439	86,64	866,43	
-33	47 973	212 430	87,04	870,38	
-32	45 043	200 370			
-31	42 310	188 191	87,83	878,27	
-30	39 759	176 827	88,22	882,22	
-29	37 378	166 219	CONTRACTOR OF STREET		
-28	35 154	145 313	SENIOR DESCRIPTION		
-27	33 076	147 057	89,40	894,04	
-26	31 133	138 407	89,80	897,98	
-25	29 316	130 318	90,19	901,92	
-24	27 616	122 751	90,59	905,86	
-23	26 025	115 670	90,98	909,80	
-22	24 535	109 040	91,37	913,73	
-21	23 139	102 830	91,77	917,67	
-20	21 832	97 011	92,16	921,60	
-19	20 605	91 557	92,55	925,53	
-18	19 455	86 442	92,95	929,46	
-17	18 376	81 643	93,34	933,39	
-16	17 364	77 140	77 140 93,73		
-15	16 413	72 912 94,12		941,24	
-14	15 520	68 941 94,52		945,17	
-13	14 680	65 210 94,91		949,09	
-12	13 891	61 703 95,30		953,02	
-11	13 150	58 406	58 406 95,69 9		
-10	12 452	55 304 96,09 9		960,86	
-9	11 795	52 385	96,48	964,78	
-8	11 177	49 637	96,87	968,70	

Température (°C)	K2	K10	Pt100	Pt1000	
-7	10 594,2	47 049,9	7 049,9 97,26		
-6	10 045,7	44 612,6	976,53		
-5	9 528,7	42 315,9	98,04	980,44	
4	9 041,4	40 150,8	98,44	984,36	
-3	8 581,8	38 109,1	98,83	988,27	
-2	8 148,2	36 183,1	99,22	992,18	
-1	7 739,1	34 365,6	99,61	996,09	
0	7 352,8	32 650.0	100,00	1 000,0	
1	6 988,0	31 029,9	100,39	1 003,91	
2	6 643,5	29 499,6	100,78	1 007,81	
3	6 317,9	28 053,5	101,17	1 011,72	
4	6 010,1	26 686,7	101,56	1 015,62	
5	5717,1	25 394,2	101,95	1 019,53	
6	5 443,8	24 171,8	102,34	1 023,43	
7	5 183,3	23 015,2	102,73	1 027,33	
8	4 936,8	21 920,5	103,12	1 031,23	
9	4 703,4	20 884,1	103,51	1 035,13	
10	4 482,4	19 902,6	103,90	1 039,03	
11	4 273,0	18 972,8	104,29	1 042,92	
12	4 074,5	18 091,7	104,68	1 046,82	
13	3 886,4	17 256,4	17 256,4 105,07		
14	3 708,0	16 464,5	105,46	1 054,60	
15	3 538.8	15 713,3 105,85		1 058,49	
16	3 378.3	15 000,6	106,24	1 062,38	
17	3 226,0	14 324,2	106,63	1 066,27	
18	3 081,3	13,682,1	107,02	1 070,16	
19	2 944,0	13 072,4	107,40	1 074,05	
20	2 813,6	12 493,2	107,79	1.077,94	
21	2 689,6	11 942,9	108,18	1 081,82	
22	2 571,8	11 419,8	108,57	1 085,70	
23	2 459,8	10 922,6	108,96	1 089,59	
24	2 353,3	10 449,8	109,35	1 093,47	
25	2 252,0	10 000,0	109,73	1 097,35	
26	2 155,6	9 572,1	110,12	1 101,23	
27	2 063,9	9 164,8 110,51		1 105,10	
28	1 976,6	8 777_1 110,90		1 108,98	
29	1 893,4	8 407,9 111,29		1 112,86	
30	30 1814,2 8 056,2		111,67	1 116,73	
31	1 738,7	7 721,1	112,06	1 120,60	
32	1 666,8	7 401,9 112,45		1 124,47	
33	1 598,3	7 097,5	112,83	1 128,35	
34	1 532,9	6 807,3	113,22	1 132,21	
35	1 470,6	6 530,5	113,61	1 136,08	

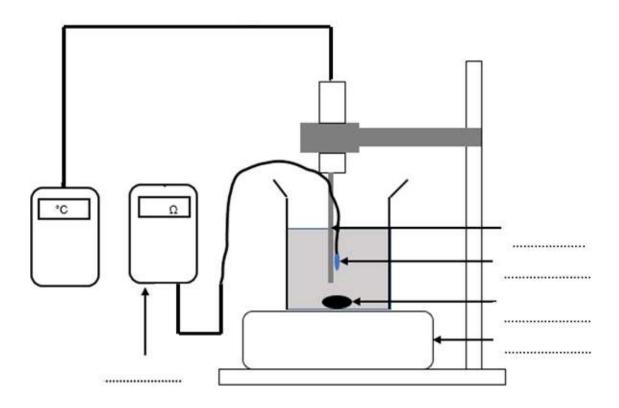
BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC	l	Page 6/7

Document réponse 1 à rendre avec la copie

Niveaux par bande d'octave (mesurées effectuées en champ libre)

Bande n°	1	2	3	4	5	6	7	8
Fréquence (Hz)	63	125	250	500	1 000	2 000	4 000	8 000
L_{ρ} (dB)	51	40			27	22	22	24
Pondération A			-8	-3	0	+1	+1	+1
$L_{\rho A}$ (dB(A))			23	23	27	23	23	25

Données:


On donne $L_{pA} = L_p$ + pondération A

$$L_{\it pAtotal}$$
 = 10·log [$\sum_{i=1}^{n} 10^{LpA_i/10}$]

 L_p : niveau de pression acoustique en dB.

 $L_{pAtotal}$: niveau de pression acoustique total en dB(A).

Document réponse 2 à rendre avec la copie

BTS Fluide Énergies Domotique	Sujet	Session 2025
Épreuve E32 : physique et chimie	Durée : 2 heures	Coefficient : 1
Code: 25FEPC		Page 7/7