	Académie :		Session:	
0	Examen :		Série :	
sorire	Spécialité/option :		Repère de l'épreuve :	
i ii	Epreuve/sous épreuve);		
Ne rien inscrire	NOM: (en majuscule, suivi s'il y a lieu,			
_	Prénoms :		N° du candidat :	
	Né(e) le :		(le numéro est celui qui figure sur la convocation ou la liste d'appel)	
	Note: Appréciation du co		ır:	
Ne rien inscrire				

Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer sa provenance.

CERTIFICAT DE SPÉCIALISATION TECHNICIEN EN ÉNERGIES RENOUVELABLES

ÉPREUVE E1 : PRÉPARATION D'UNE INTERVENTION

SESSION 2025

Rénovation villa Bella

L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

PARTIE DU SUJET	DURÉE CONSEILLÉE
PARTIE 1 : Amélioration de l'efficacité énergétique du bâtiment	0 h 30
PARTIE 2 : Remplacement de la chaudière à gaz	1 h 00
PARTIE 3 : Chauffage et climatisation de l'étage	1 h 00
PARTIE 4 : Installation photovoltaïque	1 h 30
TOTAL:	4 HEURES

CERTIFICAT DE SPÉCIALISATION TECHNICIEN EN ÉNERGIES RENOUVELABLES	25-CS4-TER-E1-MEAG 1	Session : 2025	SUJET
ÉPREUVE E1	Durée : 4 H	Coefficient : 4	Page 1 / 13

NE RIEN ÉCRIRE DANS CETTE PARTIE

Mise en situation:

Vous êtes technicien en énergies renouvelables dans la société ENR38. Vous avez en charge la préparation de la pose d'équipements énergétiques d'une maison individuelle au sud de Grenoble (38) qui date d'une quinzaine d'années.

Le nouveau propriétaire désire améliorer les performances énergétiques et de confort de son acquisition, avant son occupation.

Les travaux prévus sont :

- Renforcement de l'isolation des murs du bâtiment ;
- Remplacement de la chaudière gaz par une pompe à chaleur Air / Eau pour le chauffage du rezde-chaussée et la production d'Eau Chaude Sanitaire (ECS) ;
- Installation d'un tri-split à l'étage afin de chauffer les chambres l'hiver et de les climatiser l'été, en remplacement de convecteurs électriques ;
- Installation de panneaux photovoltaïques.

PARTIE 1 : Amélioration de l'efficacité énergétique du bâtiment

Pour améliorer l'efficacité énergétique de cette maison, le propriétaire décide d'isoler par l'extérieur l'ensemble des murs du bâtiment à l'exception de celui donnant sur le garage. Vous devez calculer le gain énergétique de cette mise en œuvre. Vous vous appuierez sur le bilan thermique dont un récapitulatif est disponible dans le dossier technique.

Question 1.1:

Déterminer l'épaisseur d'isolant pour les murs extérieurs afin de respecter la réglementation en cours pour les murs extérieurs (R mur ext : résistance thermique du mur extérieur en m² K / W).

R mur extérieur actuel	
R mur extérieur désiré	
R isolant extérieur nécessaire	
Valeur de l'épaisseur d'isolant	

Question 1.2:

Calculer la résistance thermique du mur extérieur avec le nouvel isolant choisi, ainsi que son coefficient de transmission surfacique.

R nouveau mur =		
U =		

NE RIEN ÉCRIRE DANS CETTE PARTIE

Question 1.3:

Calculer les nouvelles déperditions de la maison (le coefficient de transmission surfacique du mur extérieur est de 0.25 W / m² K). On admettra une réduction des déperditions linéiques liaison mur extérieur/dalle et mur extérieur/toiture de 70 %.

Nouvelle déperdition surfacique					
Désignation	U (W/m² K)	S (m²)	ΔT (K)	Déperditions (W)	
Mur extérieur		138.8	32		
	Nouvelle	es déperditions linéi	ques	•	
Désignation		Déperditions (W)			
Liaison mur ext / dalle					
Liaison mur ext / toiture					
Liaison mur ext / terrasse et étage					
	Nouv	elle déperdition tota	le		
Somme des déperditions surfaciques					
Somme des déperditions linéiques					
Déperditions par renouvellement d'air					
Nouvelle déperdition totale					

Question 1.4:

Déterminer en pourcentage le gain énergétique de cette mise en œuvre.

en pourcentage
e

PARTIE 2 : Remplacement de la chaudière à gaz

Vous devez sélectionner la pompe à chaleur air/eau en remplacement de la chaudière gaz. Celle-ci assurera le chauffage du rez-de-chaussée ainsi que la production d'Eau Chaude Sanitaire (ECS).

On estime la déperdition thermique du rez-de-chaussée égale à 5.3 kW.

La PAC sera installée dans le garage et son alimentation électrique sera en monophasée.

Question 2.1:

Déterminer la pompe à chaleur (PAC) correspondante aux besoins en chauffage et en ECS.

Marque et modèle	
Туре	
Puissance calorifique	
Puissance électrique absorbée	
COP : coefficient de performance	
Type de fluide et quantité	
Longueur en mm	
Largeur en mm	

Question 2.2:

À partir des plans du dossier technique, représenter à l'échelle sur le document réponse page suivante :

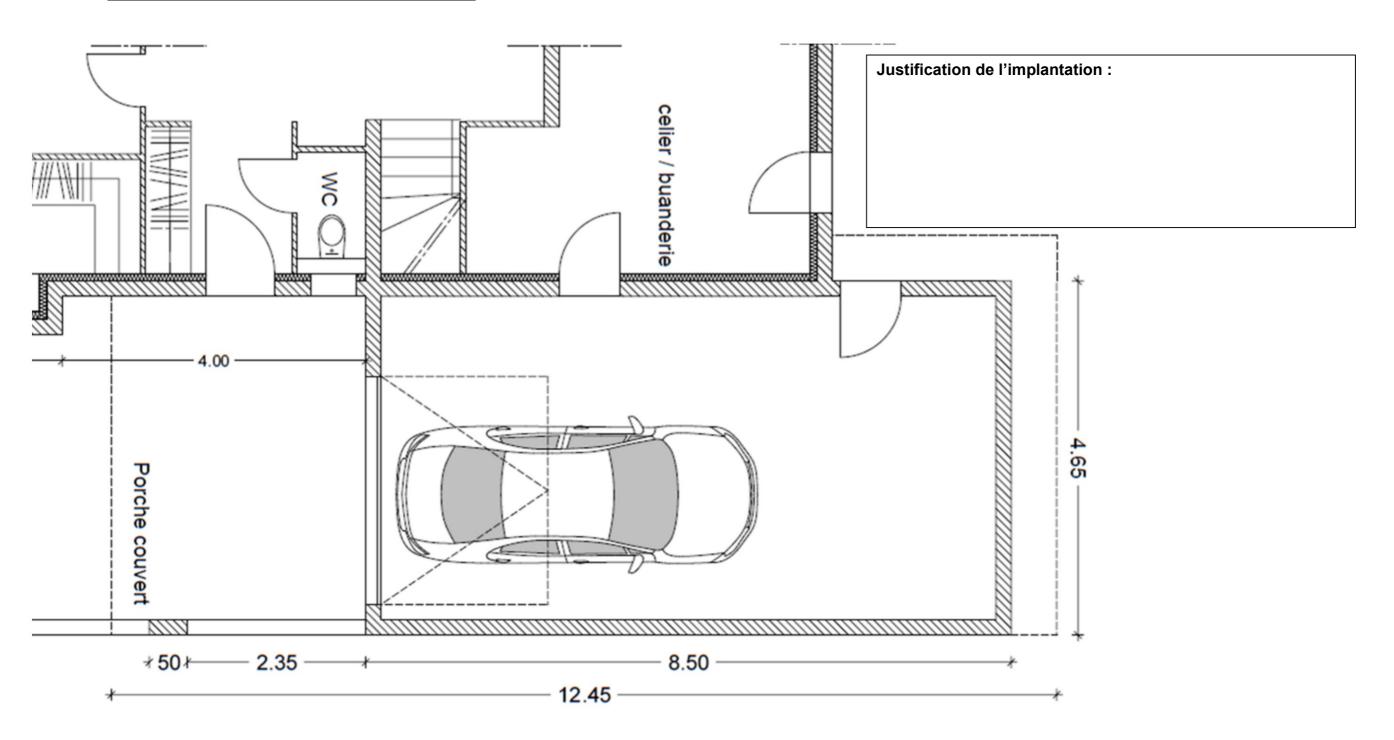
- L'emplacement de la PAC, en justifiant votre proposition ;
- Les conduits d'aspiration et de refoulement d'air ;
- Les sens de circulation d'air par des flèches ;
- La sonde extérieure.

NE RIEN ÉCRIRE DANS CETTE PARTIE

Question 2.3:

À partir du schéma hydraulique, donner le nom et la fonction des différents éléments.

Numéro	Nom	Fonction
1		
3		
4		
5		
6		
12		
15		
18		


Question 2.4:

À partir du schéma électrique, donner le nom et la fonction de l'appareil nommé F 10. Préciser sa valeur de réglage.

1			

NE RIEN ÉCRIRE DANS CETTE PARTIE

Document réponse : plan du garage échelle 1/50

PARTIE 3 : Chauffage et climatisation de l'étage

Afin de préparer l'installation du tri-split à l'étage, vous allez dimensionner les éléments et les implanter.

La déperdition de l'étage est égale à 3.6 kW répartie en trois unités de puissance identique, dans chacune des chambres.

La salle de bains sera équipée d'un radiateur sèche serviette électrique. Le groupe extérieur sera installé au sol, à gauche de la porte d'entrée de la maison. Le raccordement entre le groupe extérieur et les unités intérieures se fera par les combles. Les unités intérieures seront munies de pompe de relevage pour l'évacuation des condensats. Le groupe extérieur est préchargé à 2.2 kg de fluide frigorigène.

Question 3.1:

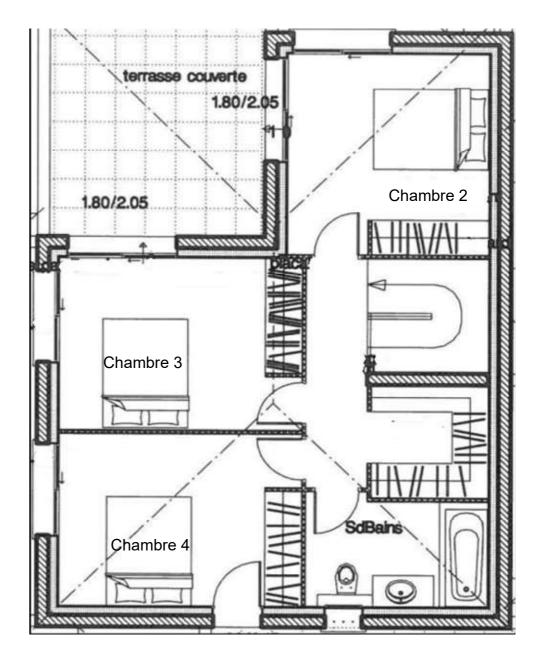
Représenter sur le plan de l'étage ci-contre :

- Par un rectangle, les unités intérieures ;
- Par un rectangle, le groupe extérieur ;
- Par des traits, les raccordements fluidiques.

Question 3.2:

Estimer la longueur de liaison entre les différentes unités intérieures et le groupe extérieur.

Liaison	Longueur
Groupe extérieur / chambre 2	
Groupe extérieur / chambre 4	
Groupe extérieur / chambre 3	
TOTAL des liaisons	

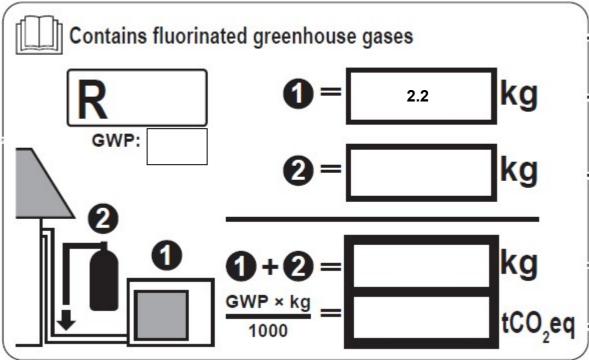

۱ pa	artır	des	préconisa	tions c	onstruct	eur,	justifier	la	taisabilité	dι	ı raccord	lement	d	e ce	trı-s	plit
------	-------	-----	-----------	---------	----------	------	-----------	----	-------------	----	-----------	--------	---	------	-------	------

Ī	_		
	-		
	-		
-			
	-		

Entourer la bonne réponse pour la faisabilité de l'installation : OUI NON

NE RIEN ÉCRIRE DANS CETTE PARTIE

Plan de l'étage à compléter


Question 3.3:

On estime la longueur totale des raccordements du groupe extérieur et des unités intérieures à 50 m. Déterminer la quantité de fluide frigorigène à ajouter dans l'installation. Donner les différentes opérations à réaliser pour effectuer le complément de charge lors de la première mise en service.

Quantité de fluide frigorigène	
Opérations à réaliser	

Question 3.4:

Compléter l'étiquette que vous devrez apposer sur le groupe extérieur.

NE RIEN ÉCRIRE DANS CETTE PARTIE

Question 3.5:

Compléter les caractéristiques spécifiques du groupe extérieur et des unités intérieures.

Référence de l'unité extérieure	
Puissance de chauffage d'une unité intérieure	
Puissance nominale totale	
Courant total maximum	

Question 3.6:

Donner le nom et la fonction de l'élément **k**, présent dans le schéma fluidique du groupe extérieur.

Contains fluorinated greenhouse gases						
R	0 =	2.2	kg			
GWP:	9 =		kg			
	1+2= GWP × kg =		kg			
	1000 =		tCO ₂ eq			

PARTIE 4 : Installation photovoltaïque

Vous devez préparer la réalisation de l'installation photovoltaïque.

La solution retenue est une installation photovoltaïque en autoconsommation avec revente de surplus et stockage.

L'installation sera composée de 10 panneaux de 330Wc pour la production photovoltaïque, et de 4 batteries « Enphase » pour le stockage.

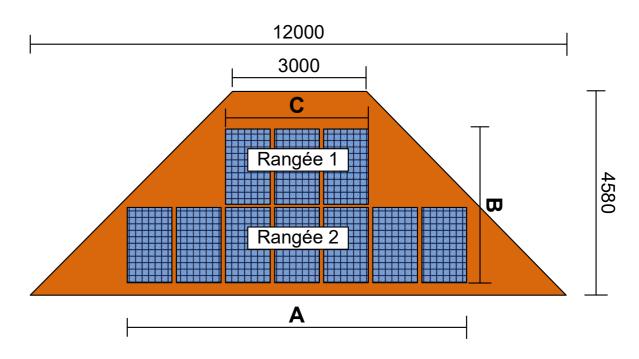
Vous devez:

- Choisir le matériel nécessaire à la réalisation ;
- Préparer la réalisation.

Question 4.1:

Expliquer le principe d'une installation en autoconsommation avec revente du surplus de production et ses avantages par rapport aux autres types d'installations raccordées au réseau.

NE RIEN ÉCRIRE DANS CETTE PARTIE


Question 4.2:

Le champ photovoltaïque est composé de 10 panneaux « aleo solar » de puissance 330 Wc, associés à des micro-onduleurs de marque « Enphase ».

La pose sera faite avec le système « CrossHook de K2 systems ».

En tenant compte des dimensions des panneaux, et des étriers, compléter les cotations manquantes (A, B et C). Pour des raisons esthétiques, l'espacement entre les panneaux sera le même horizontalement et verticalement.

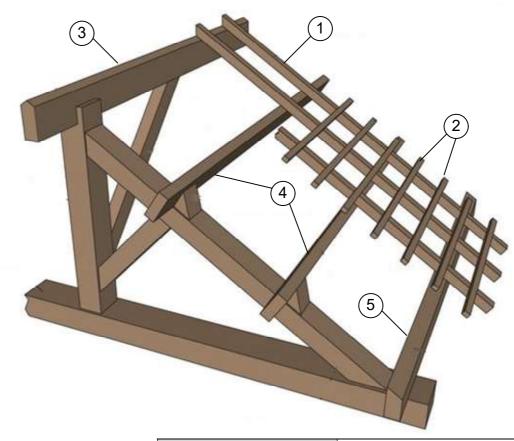
Schéma du pan de toiture :

Cote	Longueur (mm)
Α	
В	
С	

Question 4.3:

Établir la liste du matériel nécessaire à la pose en surimposition.

Le fabricant préconise 4 crochets « CrossHook 4S » par rail pour la rangée 1 et 8 crochets par rail pour la rangée 2.


Rangée 1						
Dénomination	Référence	Nombre				
Kit CrossHook 4S K2						
Vis à bois HECO-TOPIX auto- foreuse						
Rail de montage single rail K2						

Rangée 2					
Dénomination	Référence	Nombre			
Kit CrossHook 4S K2					
Vis à bois HECO-TOPIX autoforeuse					
Rail de montage single rail K2	Longueur : 4.4 m				
itali de montage single fall tz	Longueur : 3.3 m				

NE RIEN ÉCRIRE DANS CETTE PARTIE

Question 4.4 : Préparation à la réalisation en toiture.

Indiquer dans le tableau ci-dessous le repère de chaque élément de charpente de la vue suivante :

Chevron	
Panne intermédiaire	
Panne faitière	
Liteau	
Panne sablière	

Sur quel élément de charpente seront fixés les crochets « CrossHook » ?

•				
CERTIFICAT DE SPÉCIALISATION TECHNICIEN EN ÉNERGIES RENOUVELABLES	SUJET	Session : 2025	ÉPREUVE E1	Page 8 / 13

Question 4.5 :							
Les onduleurs à installer seront de la gamme IQ7 de la marque « Enphase » (1 onduleur par panneau). Sélectionner le modèle d'onduleur permettant d'obtenir la meilleure production, justifier ce choix :							
Question 4.6 :							
Une boîte de dérivation sera placée sous les tuiles, un câble devra donc descendre jusqu'à l'emplacement du coffret de protection AC. Après mesure, le câble aura une longueur de 14 mètres , son âme conductrice sera en cuivre. Le choix se porte sur des onduleurs IQ7+.							
4.6.1 : Quel sera le courant maximum débité par l'installation ?							
4.6.2 : D'après le guide UTE C 15-172-1, quelle est la chute de tension maximale en pourcentage recommandée entre les onduleurs et le disjoncteur de branchement ?							
<u>4.6.3</u> : Déterminer la section de câble minimale pour relier la sortie des micro-onduleurs (boîte de dérivation sous les tuiles) au tableau électrique.							

4.6.4 : Choisir la section de câble normalisée qui convient :

NE RIEN ÉCRIRE DANS CETTE PARTIE

Question 4.7:

Les batteries seront implantées sur le mur du garage à gauche de la porte d'accès à la buanderie. Déterminer l'implantation des 4 batteries.

4.7.1 : Déterminer l'encombrement des deux solutions : (faire apparaître le calcul)

	Hauteur (mm)	Largeur (mm)
1 rangée de 4 batteries		
2 rangées de 2 batteries		

4.7.2 : Quelle solution convient pour l'installation (justifier) ?

Question 4.8:

Lister l'outillage nécessaire à la réalisation de l'installation photovoltaïque :

Tâches à accomplir	Outillage nécessaire
Découpe des tuiles	
Fixation des crochets « CrossHook »	
Découpe des rails	
Montage des rails et des modules	
Fixation des batteries sur le mur en parpaings	
Raccordements électriques	

Question 4.9:

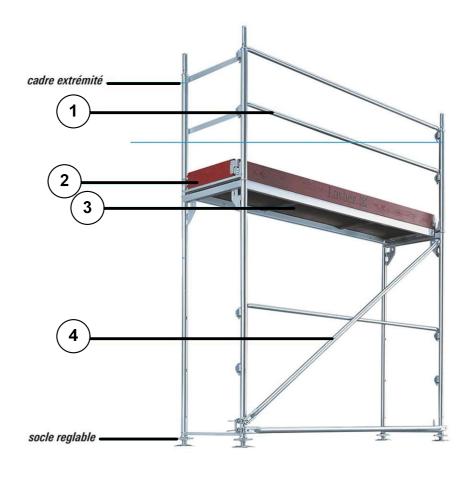
Le chantier nécessite la pose d'un échafaudage fixe (sans roulette).

<u>4.9.1</u> : Donner la qualification requise pour le monteur de l'échafaudage :

4.9.2 : Pour créer un appui sous un pied de l'échafaudage, vous utilisez :

4.9.3 : Échelles et voies d'accès :

Quel montage d'échafaudage de pied est à privilégier ?



Choix et justification:

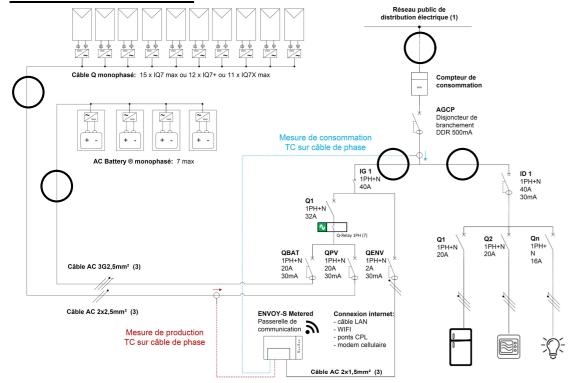
<u>4.9.4</u>: Nommer les éléments de l'échafaudage de la représentation ci-contre:

Elément	Dénomination
1	
2	
3	
4	

NE RIEN ÉCRIRE DANS CETTE PARTIE

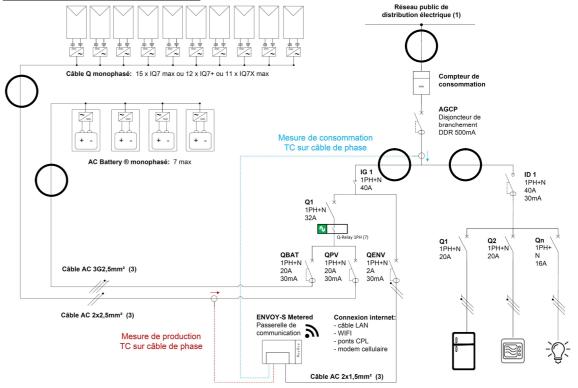
Question 4.10:

4.10.1 : Donner le nom de la procédure à réaliser pour travailler hors-tension en sécurité.

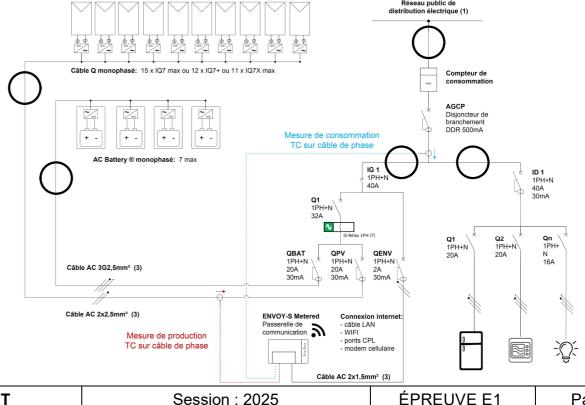

4.10.2 : Donner le nom de l'appareil qui devra être ouvert et condamné.

4.10.3 : Donner les équipements nécessaires à cette tâche.

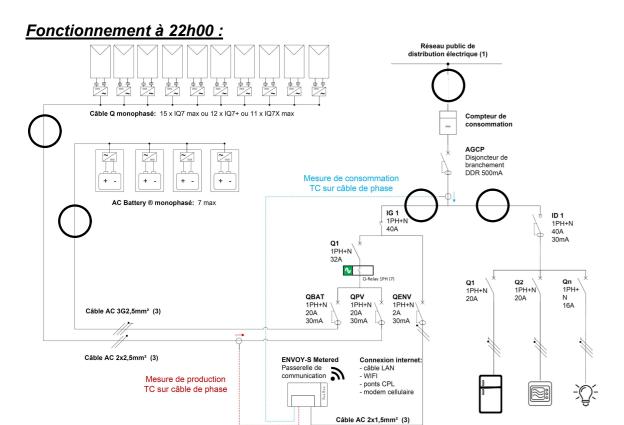
Question 4.11:


- 4.11.1 : Sur le document réponse N°1 (page 13 /13), compléter le schéma de raccordement :
 - Du champ photovoltaïque et des batteries au coffret de protection AC ;
 - Du coffret de protection AC au tableau électrique ;
 - Des transformateurs de courant permettant à l'envoy-s de mesurer la production et la consommation, après les avoir représentés.
- 4.11.2 : Les graphiques ci-dessous représentent le fonctionnement journalier d'une installation photovoltaïque en autoconsommation avec revente du surplus de production et stockage batterie. Indiquer dans les cercles:
 - Des flèches pour le sens de l'énergie aux différentes heures de la journée ;
 - Des croix quand il n'y a pas de circulation d'énergie.

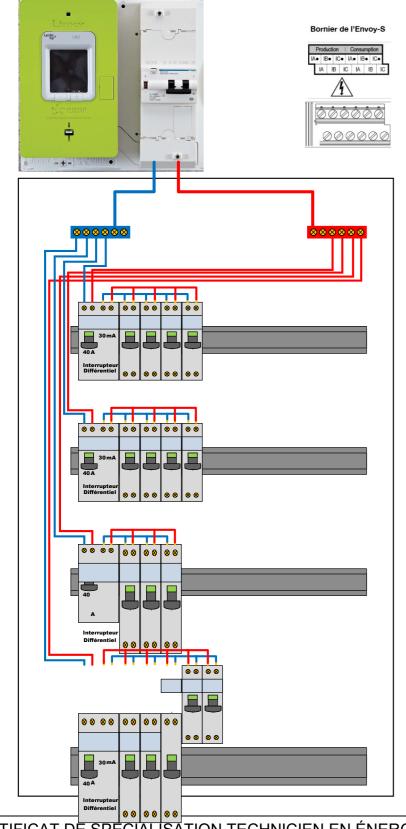
Fonctionnement à 6h00:

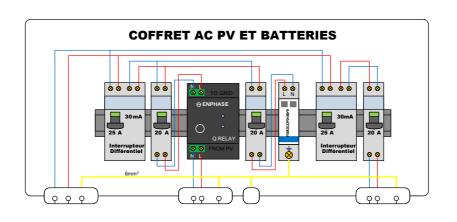


NE RIEN ÉCRIRE DANS CETTE PARTIE

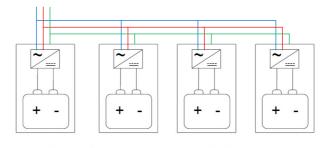

Fonctionnement à 12h00 :

Fonctionnement à 16h00 :


NE RIEN ÉCRIRE DANS CETTE PARTIE



<u>4.11.3</u>: Indiquer par des croix si les batteries sont utilisées en générateur ou en récepteur. Préciser si l'électricité est revendue, autoconsommée ou si elle est achetée au fournisseur d'électricité.


Heure de la journée	Fonctionnement des batteries		Électricité		
	Récepteur	Générateur	Achat	Auto consommation	Revente du surplus
6h					
12h					
16h					
22h					

NE RIEN ÉCRIRE DANS CETTE PARTIE

Document réponse N°1

AC Battery ® monophasé: 13 max