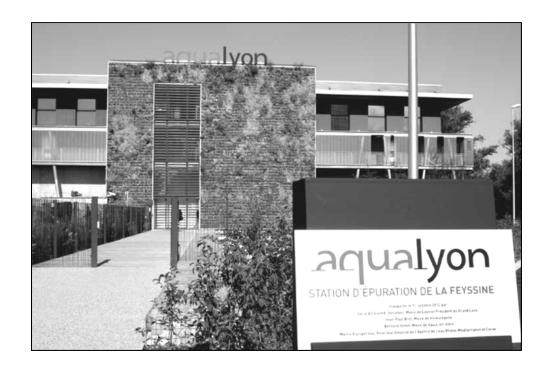
BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE


Ingénierie, innovation et développement durable

INNOVATION TECHNOLOGIQUE ET ÉCO-CONCEPTION

Durée de l'épreuve : 4 heures

CORRECTION

Analyse des performances de la station de traitement des eaux usées de la Feyssine avec unité de méthanisation.

Partie 1 : comment de la station de la Feyssine permet de répondre aux besoins de la métropole ?

Question 1.1

Question	Attendus	Barême
Donner	La station de Saint Fons est saturée en DBO.	
Expliquer	Il faut donc construire une autre station afin de pouvoir répondre à l'augmentation de population	

Question 1.2

Question	Attendus	Barême
Justifier	Lecture des documents techniques : - Le terrain est près du Rhône - Le terrain est près du périphérique - Le terrain est au point altimétrique XX qui est le plus bas - La station est entourée de parc naturel pas d'habitation à proximité direct	

Question 1.3

Question	Attendus	Barême
Calculer	Surface de la station avec lit planté de roseaux 10 m²/EqHab x 300 000 = 3 000 000 m² (300 Ha)	
	Consommation NRJ 3,2 KWh/KDBO5 x 17 100 = 54 720 KWh	
	Cout investissement 2142€/EqHab x 300 000 = 642.6 M€	

DR1

Calcul estimatif en fonction du type de traitement de la surface, de la consommation d'énergie et du coût de la <u>STEU</u> de la <u>Feyssine</u> .				
	Types de traitement			
Filtre plantée de Roseaux Boue Activée aération prolongée			Biofiltre	
Surface par équivalent habitant	m²	3000000	318000	75000
Énergie exploitation	Kwh	8550	54720	76950
Cout investissement	M€	540	68,4	642,6

Question 1.4

Question	Attendus	Barême
Déterminer	Le choix d'une Boue Activée comme process de traitement se justifie car elle : Lit planté de roseaux est trop grand consomme moins d'énergie qu'un biofiltre nécessite moins de surface d'un lit planté de roseaux.	

Partie 2 : comment la digestion des boues permet d'améliorer les performances d'une STEU dans une démarche de développement durable ?

Question 2.1

Question	Attendus	Barême
F	Type 1 : Flux entrants : - Énergie électrique Type 2 : Flux entrants : - Énergie électrique - Gaz - GRDF Flux sortants : - Énergie chimique (méthane) (GRDF) - Énergie thermique perdue (torchère)	

Question 2.2

Question	Attendus	Barême
Calculer	6 160 000 kWh x 0,1 = 616 000 kg _{eq.CO2} ·an ⁻¹	
Compléter	La ligne (1) du tableau est correctement complétée	

Question 2.3

Question	Attendus	Barême
Calculer	5 296 000 x -0,2 = -1 059 200 kg _{eq.CO2} ·an ⁻¹	
Compléter	La ligne (4) du tableau est correctement complétée	

Question 2.4

Question	Attendus	Barême
Calculer	Les totaux sont calculés	
Conclure	Argumentation attendues point de vue DD: Économique: - Production de biogaz - Valorisation en fin de vie des boues (combustibles) Environnemental: - Réduire les émissions de GAS Sociétal: - Diminuer les nuisances olfactives	

DR2

s		TYPE sans digestic			YPE N°2 estion des boues
	_		kg _{eq.CO2} ·an ⁻¹ Question 2.2:		kg _{eq.CO2} ·an ⁻¹
(1)	Énergie électrique consommée		616 000		760 000
			kg _{eq.CO2} ·an ⁻¹	kWh·an ⁻¹	kg _{eq.CO2} ·an⁻¹
(2)	Consom- mation de Gaz Naturel	NON	0	2900000	1 284 700
			kg _{eq.CO2} ·an ⁻¹	Nombre d'allers- retours	kg _{eq.CO2} ·an ⁻¹
	T	Nombre d'allers- retours		91	
(3)	Transport des boues		89 005	Distance aller- retour	9 767
		2665		200	
			kg _{eq.CO2} ·an⁻¹	KWh·an⁻¹	kg _{eq.CO2} ·an ⁻¹
(4)	Production de Gaz	_	0	5296000	Question 2.3 :
` ,	naturel				- 1 059 200
			En kg _{eq.CO2}		En kg _{eq.CO2}
(5)	Fin de vie des boues	Épandage agricole	575 600	Valorisation comme combustible	-106 000
[TOTAL kg _{eq.0}	₂₀₂ ·an ⁻¹ :	Question 2.4 :] [Question 2.4 :
	(1)+(2)+(3)+	>	1 280 605		889 267

Partie 3 : comment la maîtrise de l'information permet de garantir la sécurité des personnes ?

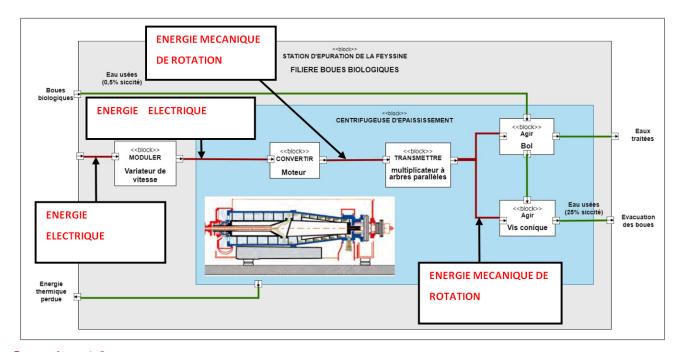
Question 3.1

Question	Attendus	Barême
Calculer	Masque réseau 255.255.0.0 → (256 x 256) – 2 = 65534 adresses possibles	
Convertir	10101100.00010000.00110010.11001000 → 172.16.50.200	

Question 3.2

Question	Attendus	Barême
Proposer Justifier	L'adresse proposée est compatible et disponible.	

Question 3.3


Question	Attendus	Barême
Conclure	Argumentation attendues: Protection des personnes: Détecteurs multigaz pour les personnels; Surveillance en temps réel des expositions des personnels aux gaz nocifs.	

Partie 4 : comment justifier l'utilisation d'un séparateur de boues biologiques ?

Question 4.1

Question	Attendus	Barême
Inscrire	- Flux Énergie électrique	
	- Flux Énergie mécanique	
	- Flux Énergie mécanique	

DR3

Question 4.2

Question	Attendus	Barême
Calculer	$\Omega_{\text{bol}} = 2 \text{ x } \pi \text{ x } 2600 / 60 = 272 \text{ rad} \cdot \text{s}^{-1}.$	

Question 4.3

Question	Attendus	Barême
Calculer	F_{cb} = 1200 x 1 x 0,335 x 300 ² = 36 180 kN	

Question 4.4

25-2D2IDITECME3C

Question	Attendus	Barême
Comparer	F_{cb} = 36180 kN > F_{ce} =30200 kN	
Conclure	Les forces centrifuges appliquées à la boue et à l'eau sont différentes d'où la séparation	

Partie 5 : peut-on valider l'implantation d'une torchère ?

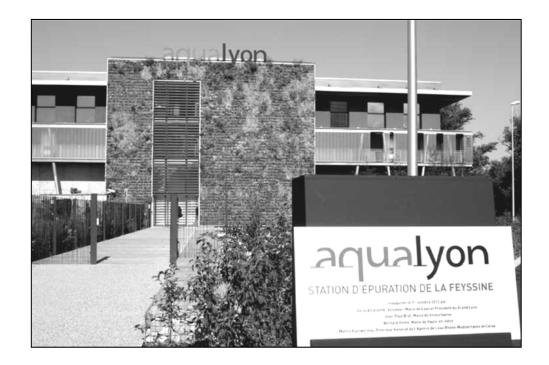
Question 5.1

Question	Attendus	Barême
Calculer	$V = H * \pi * (R^2 - r^2)$	
	H = 7m = 7000 mm	
	D = 1500 donc R = 750 mm	
	Ep = 10 donc r = 740 mm	
	V = 3,28 10 ⁸ mm ³ = 0,328 m ³	

Question 5.2

Question	Attendus	Barême
Calculer	Masse volumique donnée dans le DT (ρ = 8000 kg/m³) Masse = 8000 x 0,328 = 2624 kg	
Calculer	Charge = 9,81*(2624 + 1250) = 9,81*3874 = 38004 N Donc par cornière : Pc = 38004 / 4 = 9501 N	

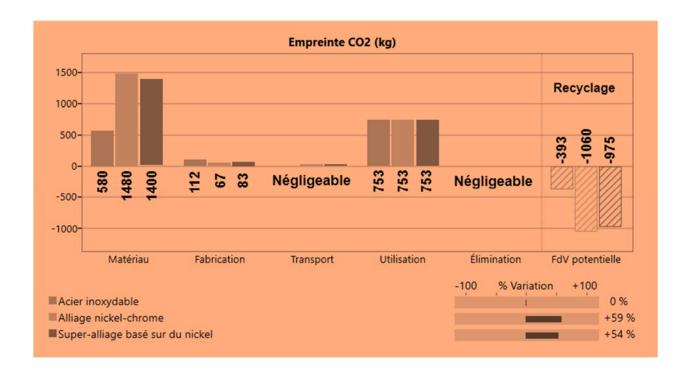
Question 5.3


Question	Attendus	Barême
Calculer	- Calculer la bonne section à partir du DT :	
	4 m x 2,5 m = 10 m ²	
	- Faire le bon calcul :	
Calculer	σ _{sol} = 200 000 / 10 = 20 000 Pa = 0,02 MPa	
	Le sol supportera la charge.	
Conclure		

Question 5.4

Question	Attendus	Barême
Conclure	 Il est plus intéressant (écologie) de bruler le méthane plutôt que de le relâcher dans l'atmosphère. La dalle existante est capable de supporter la charge liée à la torchère. Le sol est capable de supporter la totalité de l'équipement. 	

INNOVATION TECHNOLOGIQUE ET ÉCO-CONCEPTION


Station de Traitement des Eaux Usées de la Feyssine

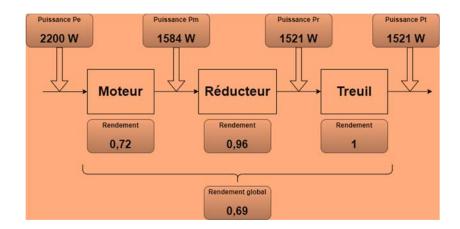
25-2D2IDITECME3C 10/16

Question A.1

Question	Attendus	
Choisir	- Acier inoxydable (les 2 autres ont +59% / +54%)	
Calculer	- Calculer : 580 + 112 + 753 = 1445 kg de CO ₂ (sans recyclage)	
Calculer	- Calculer : (393 / 1445)*100 = 27,2 %	

Question A.2

Question	Attendus	
Déterminer	- Epaisseur = 9 mm	
Justifier	- $R_{pe} = R_e / s = 170 / 2 = 85 Mpa$	


Question A.3

Question	Attendus	
Exprimer	- (30 / 150) = 20%	
Calculer	- (580 + 112) *0,2 = 138,4 kg	
Calculer	- (138,4 / 1400) * 100 = 9,9 %	

Question A.4

Question	Attendus	
Conclure	L'inox est le matériau le moins impactant. La mise en place d'une filière de recyclage permet de gagner 27% sur les impacts. La diminution de l'épaisseur permet de gagner 10% sur les impacts.	

Question B.1

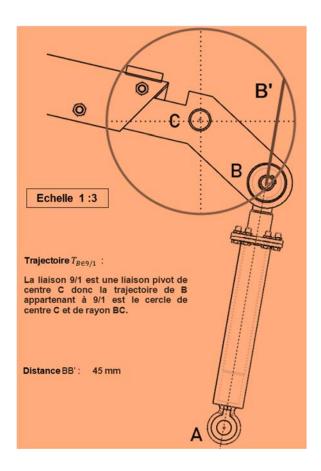
Question	Attendus	
Reporter	- Placer P _e et les 3 rendements	
Calculer	 Rendement global = 0,72*0,96*1= 0,69 Calculer P_m = 0,72*2200 = 1584 W Calculer P_r = 0,96*1584 = 1521 W Calculer P_t = 1*1521 = 1521 W 	

Question B.2

Question	Attendus	
Calculer	- Utiliser : $P_m = C_m * \omega_m$ - Calculer : $\omega_m = 1584 / 10 = 158,4 \text{ rad/s}$	
Calculer	 Utiliser R_{red} = 1 / 75 Calculer ω_r = 158,4 / 75 = 2,112 rad/s 	
Remarque : ne pas pénaliser en cas d'erreur qui vient de la question précédente		

Question B.3

Question	Attendus	
Calculer Déduire	- Calculer R = $(220+8)/2 = 114$ mm - Déduire $V_{5/1} = \omega_r *R = 2 * 114$ = 228 mm/s = 0,23 m/s	


Question B.4

Question	Attendus	
Calculer	 Utiliser V = d /t Trouver course d = 10,4 m Calculer t = 10,4 /0,25 = 41,6 s 	
Calculer	- Calculer T = 5 + 41,6 + 5 + 41,6 = 93,2 s - Conclure : valeur < 2 min donc acceptable CdC	

Question B.5

Question	Attendus	
Calculer	- Calculer F = $P_t / V_{5/1} = 1500 / 0,25 = 6000 N$	
Calculer	6000 / 9,81 = 612 kg - 612 - (150+50) = 412 kg	
Conclure	- Conclure : valeur > 300 kg donc acceptable CdC	

Question C.1

Question	Attendus	Barême
Indiquer	- Définir correctement la trajectoire (centre, rayon)	
Tracer	Tracer le cercleTracer la droite et trouver le point d'intersection	
Mesurer Déduire	 Mesurer la distance : 45 mm (tolérance +/- 2 mm) Échelle 1/3 donc course réelle = 45*3 = 135 mm 	

Question C.2

Question	Attendus	Barême
Calculer	- V = d/t donc t = 135 / 30 = 4,5 s	
Conclure	- Conclure : valeur < 5 s donc acceptable CdC	
Remarque : ne pas pénaliser en cas d'erreur qui vient de la question précédente		

Question C.3

Question	Attendus	Barême
Expliquer Expliquer	 ΔL1 correspond à l'allongement du câble à cause du rouleau qui rallonge la trajectoire. 	
	 ΔL2 correspond à la modification de longueur (réduction) du câble liée à la rotation de la poche. 	

Question C.4

Question	Attendus	Barême
Calculer	- Calcul: $\cos \alpha = 1 - \frac{1}{2} \left(\frac{\Delta L}{R}\right)^2 = 1 - \frac{1}{2} \left(\frac{490}{470}\right)^2 = 0,4565$	
Déduire Conclure	- Calcul : α = 62,8°	
• • • • • • • • • • • • • • • • • • • •	- Conclure : valeur comprise entre 60° et 75° donc acceptable CdC	

Question C.5

Question	Attendus	
Calculer	- Calculer : P = 9,81 * 65 = 638 N	
Calculer	- Calculer: $P * Lh = F * Lv$ donc $F = \frac{P*Lh}{Lv} = \frac{638*300}{25} = 7652N$	

Question C.6

Question	Attendus	
Calculer	- Calcul : S = 36*420 = 15 120 mm²	
Calculer	- Calcul : p = F/S = 7652 / 15120 = 0,51 MPa	
Conclure	- Conclure : valeur comprise entre 0,4 et 1 MPa donc acceptable CdC	
F	acceptable CdC <i>Pemarque :</i> ne pas pénaliser en cas d'erreur qui vient de la que	stion précédente