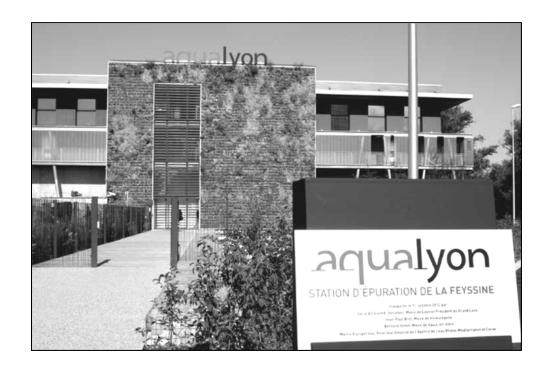
BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE


Ingénierie, innovation et développement durable

ÉNERGIES ET ENVIRONNEMENT

Durée de l'épreuve : 4 heures

CORRECTION

Analyse des performances de la station de traitement des eaux usées de la Feyssine avec unité de méthanisation.

Partie 1 : comment de la station de la Feyssine permet de répondre aux besoins de la métropole ?

Question 1.1

Question	Attendus	Barême
Donner	La station de Saint Fons est saturée en DBO.	
Expliquer	Il faut donc construire une autre station afin de pouvoir répondre à l'augmentation de population	

Question 1.2

Question	Attendus	Barême
Justifier	Lecture des documents techniques : - Le terrain est près du Rhône - Le terrain est près du périphérique - Le terrain est au point altimétrique XX qui est le plus bas - La station est entourée de parc naturel pas d'habitation à proximité direct	

Question 1.3

Question	Attendus	Barême
Calculer	Surface de la station avec lit planté de roseaux 10 m²/EqHab x 300 000 = 3 000 000 m² (300 Ha)	
	Consommation NRJ 3,2 KWh/KDBO5 x 17 100 = 54 720 KWh	
	Cout investissement 2142€/EqHab x 300 000 = 642.6 M€	

DR1

Calcul estimatif en fonction du type de traitement de la surface, de la consommation d'énergie et du coût de la <u>STEU</u> de la <u>Feyssine</u> .				
	Types de traitement			
Donnée	unité	Filtre plantée de Roseaux	Boue Activée aération prolongée	Biofiltre
Surface par équivalent habitant	m²	3000000	318000	75000
Énergie exploitation	Kwh	8550	54720	76950
Cout investissement	M€	540	68,4	642,6

Question 1.4

Question	Attendus	Barême
Déterminer	Le choix d'une Boue Activée comme process de traitement se justifie car elle : Lit planté de roseaux est trop grand consomme moins d'énergie qu'un biofiltre nécessite moins de surface d'un lit planté de roseaux.	

Partie 2 : comment la digestion des boues permet d'améliorer les performances d'une STEU dans une démarche de développement durable ?

Question 2.1

Question	Attendus	Barême
Lister	Type 1: Flux entrants: - Énergie électrique Type 2: Flux entrants: - Énergie électrique - Gaz - GRDF Flux sortants: - Énergie chimique (méthane) (GRDF) - Énergie thermique perdue (torchère)	

Question 2.2

Question	Attendus	Barême
Calculer	6 160 000 kWh x 0,1 = 616 000 kg _{eq.CO2} ·an ⁻¹	
Compléter	La ligne (1) du tableau est correctement complétée	

Question 2.3

Question	Attendus	Barême
Calculer	5 296 000 x -0,2 = -1 059 200 kg _{eq.CO2} ·an ⁻¹	
Compléter	La ligne (4) du tableau est correctement complétée	

Question 2.4

Question	Attendus	Barême
Calculer	Les totaux sont calculés	
Conclure	Argumentation attendues point de vue DD: Économique: - Production de biogaz - Valorisation en fin de vie des boues (combustibles) Environnemental:	
	Réduire les émissions de GASSociétal :Diminuer les nuisances olfactives	

DR2

		TYPE N°1 sans digestion des boues		TYPE N°2 avec digestion des boues	
	Énergie		kg _{eq.CO2} ·an ⁻¹ Question 2.2:		kg _{eq.CO2} ·an ⁻¹
(1)	électrique consommée		616 000		760 000
			kg _{eq.CO2} ·an ⁻¹	kWh·an⁻¹	kg _{eq.CO2} ·an ⁻¹
(2)	Consom- mation de Gaz Naturel	NON	0	2900000	1 284 700
			kg _{eq.CO2} ·an ⁻¹	Nombre d'allers- retours	kg _{eq.CO2} ·an ⁻¹
	- ,	Nombre d'allers- retours		91	
(3)	Transport des boues	2665	89 005	Distance aller- retour	9 767
				200	
			kg _{eq.CO2} ·an ⁻¹	KWh·an ⁻¹	kg _{eq.CO2} ·an ⁻¹
(4)	Production de Gaz naturel		0	5296000	Question 2.3 :
					- 1 059 200
			En kg _{eq.CO2}		En kg _{eq.CO2}
(5)	Fin de vie des boues	Épandage agricole	575 600	Valorisation comme combustible	-106 000
TOTAL kg _{eq.CO2} ·an ⁻¹ :		Question 2.6 :		Question 2.6 :	
	(1)+(2)+(3)+	-(4)+(5)	1 280 605		889 267

Partie 3 : comment la maîtrise de l'information permet de garantir la sécurité des personnes ?

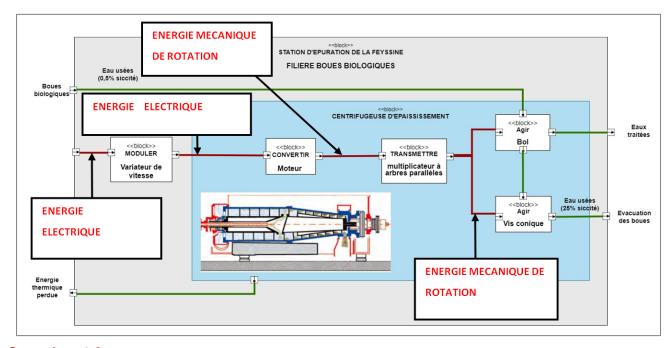
Question 3.1

Question	Attendus	Barême
Calculer	Masque réseau 255.255.0.0 → (256 x 256) – 2 = 65534 adresses possibles	
Convertir	10101100.00010000.00110010.11001000 → 172.16.50.200	

Question 3.2

Question	Attendus	Barême
Proposer Justifier	L'adresse proposée est compatible et disponible.	

Question 3.3


Question	Attendus	Barême
Conclure	Argumentation attendues : Protection des personnes : - Détecteurs multigaz pour les personnels ; - Surveillance en temps réel des expositions des personnels aux gaz nocifs.	

Partie 4 : comment justifier l'utilisation d'un séparateur de boues biologiques ?

Question 4.1

Question	Attendus	Barême
Inscrire	- Flux Énergie électrique	-
	- Flux Énergie mécanique	
	- Flux Énergie mécanique	

DR3

Question 4.2

Question	Attendus	Barême
Calculer	$\Omega_{\text{bol}} = 2 \text{ x } \pi \text{ x } 2600 / 60 = 272 \text{ rad} \cdot \text{s}^{-1}.$	

Question 4.3

Question	Attendus	Barême
Calculer	F_{cb} = 1200 x 1 x 0,335 x 300 ² = 36 180 kN	

Question 4.4

Question	Attendus	Barême
Comparer	F_{cb} = 36180 kN > F_{ce} =30200 kN	
Conclure	Les forces centrifuges appliquées à la boue et à l'eau sont	
	différentes d'où la séparation	

Partie 5 : peut-on valider l'implantation d'une torchère ?

Question 5.1

Question	Attendus	Barême
	$V = H * \pi * (R^2 - r^2)$	
	H = 7m = 7000 mm	
	D = 1500 donc R = 750 mm	
	Ep = 10 donc r = 740 mm	
	V = 3,28 10 ⁸ mm ³ = 0,328 m ³	

Question 5.2

Question	Attendus	Barême
Calculer	Masse volumique donnée dans le DT (ρ = 8000 kg/m ³)	
	Masse = 8000 x 0,328 = 2624 kg	
Calculer	Charge = 9,81*(2624 + 1250) = 9,81*3874 = 38004 N Donc par cornière : Pc = 38004 / 4 = 9501 N	

Question 5.3

Question	Attendus	Barême
Calculer	- Calculer la bonne section à partir du DT :	
	4 m x 2,5 m = 10 m ²	
	- Faire le bon calcul :	
Calculer	σ _{sol} = 200 000 / 10 = 20 000 Pa = 0,02 MPa	
	Le sol supportera la charge.	
Conclure	Le del dapportera la driargo.	

Question 5.4

Question	Attendus	Barême
Conclure	 Il est plus intéressant (écologie) de bruler le méthane plutôt que de le relâcher dans l'atmosphère. La dalle existante est capable de supporter la charge liée à la torchère. Le sol est capable de supporter la totalité de l'équipement. 	

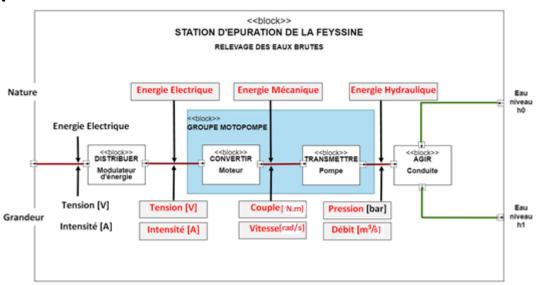
ÉNERGIES ET ENVIRONNEMENT

Station de Traitement des Eaux Usées de la Feyssine

Poste de relèvement des eaux brutes

CORRIGÉ

25-2D2IDEEME3C 10/16


Étude du relevage des eaux brutes

Travail demandé

Partie A : quelles pompes choisir pour assurer le relevage des eaux usées ?

Question A.1

DRS1

Question	Attendus	Barême
Compléter	- Flux d'énergie	
Préciser	- Unités	
	- Grandeur	

Question A.2

Question	Attendus	Barême
Relever	- 10m	
Préciser	- refoulement	

Question A.3

Question	Attendus	Barême
calculer	- PH = 1000x 3000/3600 x 9,81 x 10 = 81 750W soit	
	81,8kW	

Question A.4

Question	Attendus	Barême
Vérifier	- Pour un débit de 3000 m ³ ·h ⁻¹ la hauteur maximale	
	est de 10m ce qui correspond au CDC	

25-2D2IDEEME3C 11/16

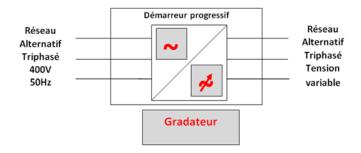
Question A.5

Question	Attendus	Barême
Déterminer	- Sur la courbe le rendement est de 76%	
	- <u>OU</u> calcul: 81,8 / 110 = 0,744 soit 74,4%	
	- Pour une puissance électrique de 110kW	

Question A.6

Question	Attendus	Barême
Donner	- Couplage dérivation	
justification	- pour doubler le débit	

Question A.7


Question	Attendus	Barême
Conclure	- Puissance électrique 120kW > 110kW requis	
	- Indice de protection IP68 immersion permanente	

Partie B : comment distribuer l'énergie électrique aux groupes motopompes ?

Étude de la solution 1 :

Question B.1

DRS2

Question	Attendus	Barême
Choisir Indiquer	gradateursymboles alternatif, alternatif variable	

25-2D2IDEEME3C 12/16

Question B.2

						o,		, _, , , , _
75	132	132	233	250	129	206 x 299 x 425/	ATS22C25Q	33,000/
						8,11 x 11,77 x 16,73		72,752

Question	Attendus	Barême
Choisir	- ATS22C25Q	
la diama	- courant nominal du démarreur lcL = 250A	
Indiquer	- courant nominal moteur I _N = 233A	

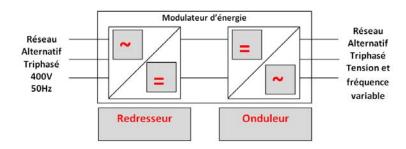
Question B.3

DRS3

Description	Code	Réglage usine	Valeur de réglage client
Tension entre phase au démarrage	t90	30% de U _n = 120V	250x100/400 = 62.5% de U _n
Limitation du courant	<u>ll.t.</u>	350% de I _n = 815A	410x100/233 = 176% de I _n
Temps d'accélération	ACC	10s	20s
Temps de décélération	DCC	libre	10s

Question	Attendus	Barême
Compléter		
	- accepter 164% pour la limitation du courant	

Question B.4


Question	Attendus	Barême
Donner	- Montée progressive de la vitesse	
	- Limite la pointe de courant au démarrage	
	- Démarrage sans à coups	
	- Usure réduite des systèmes de transmission	
	mécaniques	

25-2D2IDEEME3C 13/16

Étude de la solution 2 :

Question B.5

DRS4

Question	Attendus	Barême
Compléter	- redresseur - onduleur	
	- symboles alternatif continu	

Question B.6

ND 132 200 237 213 161,4 50 250 300 ATV930C13N4C										
	82,000/	ATV930C13N4C	300	250	50	161.4		200	132	ND

Question	Attendus	Barême
Donner	- ATV930C13N4C	
Relever	- 237A	

Question B.7

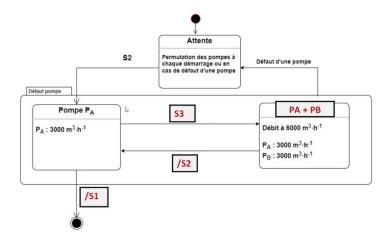
DRS5

Paramètres	Valeur de réglage client
BFr	50Hz
UnS	400V
nCr	269A
nSP	590tr⋅mn ⁻¹

Question	Attendus	Barême
Compléter		

Question B.8

Question	Attendus	Barême
Conclure	 Régulation (asservissement) (réglage possible) de vitesse (donc du débit) 	
	- Meilleur rendement	
	- Economie d'énergie	
	- Couple constant	


25-2D2IDEEME3C 14/16

Partie C : comment gérer le fonctionnement des pompes de relevage ?

Pilotage des groupes motopompes par la solution 1

Question C.1

DRS6

Question	Attendus	Barême
Compléter		

Question C.2

Question	Attendus	Barême
Compléter	- En mode TOR le système est fluctuant avec une	
	grande amplitude de niveau	
	- La chaine de puissance est très sollicitée	
	- Démarrage et arrêt fréquent des pompes	

Pilotage des groupes motopompes par la solution 2

Question C.3

Question	Attendus	Barême
Donner	Débit $P_A = 1800 \text{ m}^3 \cdot \text{h}^{-1}$; Cons $P_A = 6V$	
	Débit $P_B = 0 \text{ m}^3 \cdot \text{h}^{-1}$; Cons $PB = 0V$	

Question C.4

Question	Attendus	Barême
Donner	Débit $P_A = 3000 \text{ m}^3 \cdot \text{h}^{-1}$; Cons PA = 10V	-
	Débit $P_B = 1200 \text{ m}^3 \cdot \text{h}^{-1}$; Cons PB = 4V	

25-2D2IDEEME3C 15/16

Question C.5

DRS7

Question	Attendus	Barême
Compléter	Cons PA = $2 \times U_h$; Cons PB = 0	
	Cons PA = 10 ; Cons PB = 2 x (U _h - 5)	

Question C.6

Question	Attendus	Barême
Conclure	- Solution 1 :	
	- Avantages : plus simple à mettre en œuvre	
	- Inconvenants : régulation par palier (instable)	
	- Solution 2 :	
	- Avantages : Régulation plus fine	
	- Inconvenants : plus complexe à mettre en œuvre	

25-2D2IDEEME3C 16/16