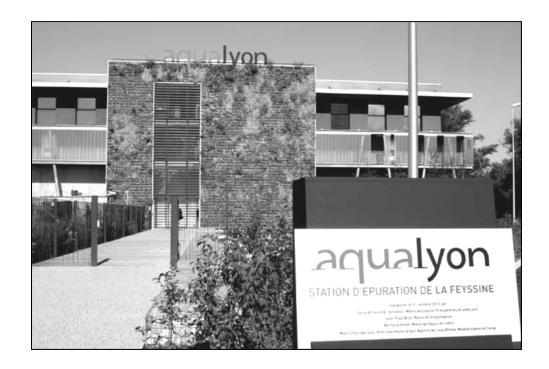
BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE


Ingénierie, innovation et développement durable

ARCHITECTURE ET CONSTRUCTION

Durée de l'épreuve : 4 heures

CORRECTION

Analyse des performances de la station de traitement des eaux usées de la Feyssine avec unité de méthanisation.

Partie 1 : comment de la station de la Feyssine permet de répondre aux besoins de la métropole ?

Question 1.1

Question	Attendus	Barême
Donner	La station de Saint Fons est saturée en DBO.	
Expliquer	Il faut donc construire une autre station afin de pouvoir répondre à l'augmentation de population	

Question 1.2

Question	Attendus	Barême
Justifier	Lecture des documents techniques : - Le terrain est près du Rhône - Le terrain est près du périphérique - Le terrain est au point altimétrique XX qui est le plus bas - La station est entourée de parc naturel pas d'habitation à proximité direct	

Question 1.3

Question	Attendus	Barême
Calculer	Surface de la station avec lit planté de roseaux 10 m²/EqHab x 300 000 = 3 000 000 m² (300 Ha)	
	Consommation NRJ 3,2 KWh/KDBO5 x 17 100 = 54 720 KWh	
	Cout investissement 2142€/EqHab x 300 000 = 642.6 M€	

DR1

Calcul estimatif en fonction du type de traitement de la surface, de la consommation d'énergie et du coût de la <u>STEU</u> de la <u>Feyssine</u> .				
	Types de traitement			
Filtre plantée de Roseaux Boue Activée aération prolongée			Biofiltre	
Surface par équivalent habitant	m²	3000000	318000	75000
Énergie exploitation	Kwh	8550	54720	76950
Cout investissement	M€	540	68,4	642,6

Question 1.4

Question	Attendus	Barême
Déterminer	Le choix d'une Boue Activée comme process de traitement se justifie car elle : Lit planté de roseaux est trop grand consomme moins d'énergie qu'un biofiltre nécessite moins de surface d'un lit planté de roseaux.	

Partie 2 : comment la digestion des boues permet d'améliorer les performances d'une STEU dans une démarche de développement durable ?

Question 2.1

Lister Type 1: Flux entrants: - Énergie électrique Type 2: Flux entrants: - Énergie électrique - Gaz - GRDF Flux sortants: - Énergie chimique (méthane) (GRDF) - Énergie thermique perdue (torchère)	Question	Attendus	Barême
	Lister	Flux entrants : - Énergie électrique Type 2 : Flux entrants : - Énergie électrique - Gaz - GRDF Flux sortants : - Énergie chimique (méthane) (GRDF)	

Question 2.2

Question	Attendus	Barême
Calculer	6 160 000 kWh x 0,1 = 616 000 kg _{eq.CO2} ·an ⁻¹	
Compléter	La ligne (1) du tableau est correctement complétée	

Question 2.3

Question	Attendus	Barême
Calculer	5 296 000 x -0,2 = -1 059 200 kg _{eq.CO2} ·an ⁻¹	
Compléter	La ligne (4) du tableau est correctement complétée	

Question 2.4

Question	Attendus	Barême
Calculer	Les totaux sont calculés	
Conclure	Argumentation attendues point de vue DD : Économique :	
	 Production de biogaz Valorisation en fin de vie des boues (combustibles) 	
	Environnemental : - Réduire les émissions de GAS	
	Sociétal : - Diminuer les nuisances olfactives	

DR2

		TYPE sans digestio			YPE N°2 estion des boues
			kg _{eq.CO2} ·an ⁻¹ Question 2.2:		kg _{eq.CO2} ·an⁻¹
(1)	Énergie électrique consommée		616 000		760 000
			kg _{eq.CO2} ·an ⁻¹	kWh·an⁻¹	kg _{eq.CO2} ·an ⁻¹
(2)	Consom- mation de Gaz Naturel	NON	0	2900000	1 284 700
			kg _{eq.CO2} ·an ⁻¹	Nombre d'allers- retours	kg _{eq.CO2} ·an⁻¹
(0)	Transport	Nombre d'allers- retours		91	
(3)	des boues		89 005	Distance aller- retour	9 767
		2665		200	
			kg _{eq.CO2} ·an ⁻¹	KWh·an⁻¹	kg _{eq.CO2} ·an⁻¹
(4)	Production de Gaz	Gaz NON		Question 2.3 :	
	naturel		0 529	5296000	- 1 059 200
			En kg _{eq.CO2}		En kg _{eq.CO2}
(5)	Fin de vie des boues	Épandage agricole	575 600	Valorisation comme combustible	-106 000
[TOTAL kg _{eq.0}	_{CO2} ·an ⁻¹ :	Question 2.4 :] [Question 2.4 :
	(1)+(2)+(3)+		1 280 605		889 267

Partie 3 : comment la maîtrise de l'information permet de garantir la sécurité des personnes ?

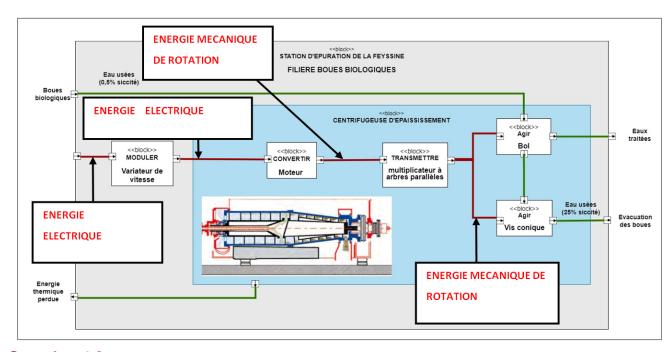
Question 3.1

Question	Attendus	Barême
Calculer	Masque réseau 255.255.0.0 → (256 x 256) – 2 = 65534 adresses possibles	
Convertir	10101100.00010000.00110010.11001000 → 172.16.50.200	

Question 3.2

Quootion		
Question	Attendus	Barême
Proposer Justifier	L'adresse proposée est compatible et disponible.	

Question 3.3


Question	Attendus	Barême
Conclure	Argumentation attendues : Protection des personnes : - Détecteurs multigaz pour les personnels ; - Surveillance en temps réel des expositions des personnels aux gaz nocifs.	

Partie 4 : comment justifier l'utilisation d'un séparateur de boues biologiques ?

Question 4.1

Question	Attendus	Barême
Inscrire	- Flux Énergie électrique	
	- Flux Énergie mécanique	
	- Flux Énergie mécanique	

DR3

Question 4.2

Question	Attendus	Barême
Calculer	$\Omega_{\text{bol}} = 2 \text{ x } \pi \text{ x } 2600 / 60 = 272 \text{ rad} \cdot \text{s}^{-1}.$	

Question 4.3

Question	Attendus	Barême
Calculer	F_{cb} = 1200 x 1 x 0,335 x 300 ² = 36 180 kN	

Question 4.4

Question	Attendus	Barême
Comparer	F_{cb} = 36180 kN > F_{ce} =30200 kN	
Conclure	Les forces centrifuges appliquées à la boue et à l'eau sont	
	différentes d'où la séparation	

Partie 5 : peut-on valider l'implantation d'une torchère ?

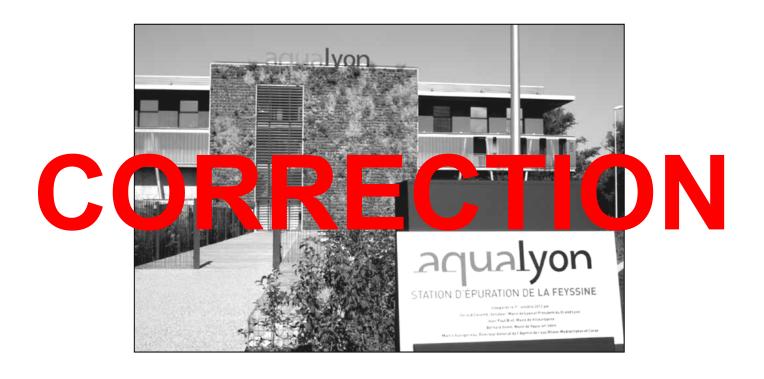
Question 5.1

Question	Attendus	Barême
Calculer	$V = H * \pi * (R^2 - r^2)$	
	H = 7m = 7000 mm	
	D = 1500 donc R = 750 mm	
	Ep = 10 donc r = 740 mm	
	V = 3,28 10 ⁸ mm ³ = 0,328 m ³	

Question 5.2

Question	Attendus	Barême
Calculer	Masse volumique donnée dans le DT (ρ = 8000 kg/m ³)	
	Masse = 8000 x 0,328 = 2624 kg	
Calculer	Charge = 9,81*(2624 + 1250) = 9,81*3874 = 38004 N Donc par cornière : Pc = 38004 / 4 = 9501 N	

Question 5.3


Question	Attendus	Barême
Calculer	- Calculer la bonne section à partir du DT :	
	4 m x 2,5 m = 10 m ²	
	- Faire le bon calcul :	
Calculer	σ _{sol} = 200 000 / 10 = 20 000 Pa = 0,02 MPa	
	Le sol supportera la charge.	
Conclure	Le del dapportera la driargo.	

Question 5.4

Question	Attendus	Barême
Conclure	 Il est plus intéressant (écologie) de bruler le méthane plutôt que de le relâcher dans l'atmosphère. La dalle existante est capable de supporter la charge liée à la torchère. Le sol est capable de supporter la totalité de l'équipement. 	

ARCHITECTURE ET CONSTRUCTION

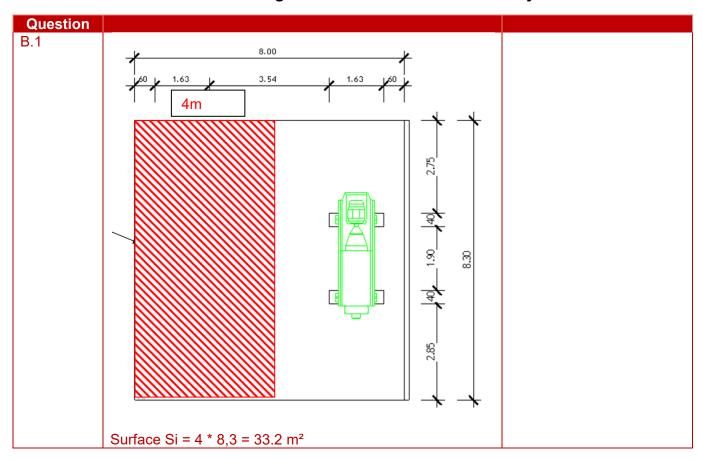
Station de Traitement des Eaux Usées de la Feyssine

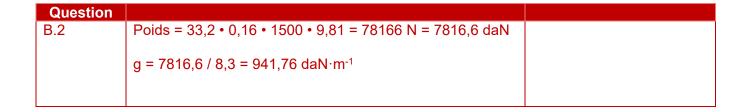
25-2D2IDACME3C 10/14

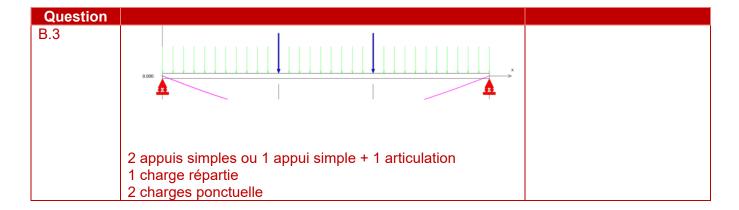
Travail demandé

Partie A : comment réduire les nuisances issues du local compresseur biogaz pour le voisinage ?

Question		
A.1	$Lp_{max} = 45dB$;	
	Lw = 95dB	


Question		
A.2	Mur épaisseur 0,16 m en béton Armé	
	Masse surfacique = 1•0,16•2500= 400 kg.m²	


Question		
A.3	Rw mur = 46 dB	
	Lp = 95-46 = 49 dB	


Question		
A.4	49 dB > 45 dB, la règlementation n'est pas respectée	
	Pour obtenir Lp = 45, Rw doit être égale à 50dB	
	Solution : si on ajoute un doublage 10+100 sur le béton Rw=54 donc suffisant	

25-2D2IDACME3C 11/14

Partie B : comment valider l'intégrité structurale du local de déshydratation?

25-2D2IDACME3C 12/14

Question		
B.4	$M_{\text{max}} = 4,092 \cdot 10^8 \text{ N} \cdot \text{mm}$	
	Wel.z = 1499690 mm ³	
	Mf = 250·1499690 = 3,75·10 ⁸ N·mm	
	M _{max} > Mf donc ça ne passe pas en contrainte.	

Question		
B.5		
	f _{max} = 28 mm	
	f = 8300 / 250 = 33,2 mm	
	f _{max} < f donc OK	

Question		
B.6	Elu Mf max > M admissible poutre ne tient pas	
	Els f max < f admissible poutre OK	
	Il faut mettre une poutre plus haute	

Partie C : comment réduire la consommation d'énergie du méthaniseur?

Question		
C.1	Rsi = 0.13 et Rse = 0.04	
	Rt = Rsi + Rth + Rse = 0.13 + 0,2/1,75 + 0,1/0,043 + 0,01/0,024 + 0,002/230 + 0.04 = 3,026 U = 1/Rt = 0,33 W•K ⁻¹ •m ⁻²	

Question		
C.2		
	$\Phi = U \cdot S \cdot \Delta T = 0.33 \cdot 574 \cdot 47 = 8902$ watt	

25-2D2IDACME3C 13/14

Question		
C.3	$\Delta \Phi = \Phi_{\text{entrant}} - \Phi_{\text{déperdition}}$	
	= 5787 – 8902	
	= - 3115,74 Watt	

Question		
C.4	Le bilan montre une déperdition de chaleur donc le méthaniseur va se refroidir il faut donc le chauffer pour maintenir la température	

25-2D2IDACME3C 14/14