Partie 1 - Sciences de l'ingénieur

CORRIGÉ

25-SCIPCJ1ME3C Page 1/8

Sous-partie 1

Question 1.1 Le robot à assistance à la mobilité transforme n'importe quelle chaise en un fauteuil roulant d'intérieur. Il est fin et passe partout. Il est doté de repose-pieds pour être plus confortable et permet de se relever sans trop d'efforts grâce à un vérin électrique.

Question 1.2 Mouvement de 5/1: rotation d'axe $(0,\overline{z_0})$ (de centre O accepté)

 $TC \in 5/1$: cercle de centre O et de rayon (CO)

Voir DR1

Question 1.3 Voir DR1

Question 1.4 Sur le dessin :

Longueur $[C_0D_0] = 7,7$ cm

Longueur $[C_1D_1] = 9,1 \text{ cm}$

A l'échelle :

Longueur $[C_0D_0] = 38,5 \text{ cm}$

Longueur $[C_1D_1] = 45,5 \text{ cm}$

Question 1.5 Course du vérin électrique en phase d'utilisation = 70 mm

Conclusion : La course est inférieure à 150 mm (voir exigence) donc

le vérin est validé.

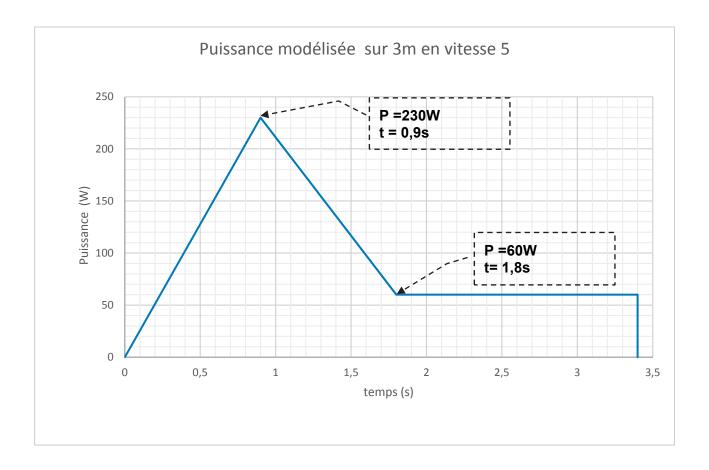
25-SCIPCJ1ME3C Page 2/8

Sous-partie 2

Question 1.6 Vmax = $4.3 \text{ km/h} = 1.19 \text{ m} \cdot \text{s}^{-1}$

Question 1.7 Voir DR2

Question 1.8 $r = \frac{\omega_{\text{sortie}}}{\omega_{\text{entrée}}} = \frac{\omega_{\text{roue}}}{\omega_{\text{sortie réducteur}}} = \frac{Z_2}{Z_1} = \frac{40}{72} = 0,55$ $r_{\text{global}} = \frac{\omega_{\text{roue}}}{\omega_{\text{moteur}}} = r_{\text{réducteur}} \times r = \frac{1}{10,215} \times \frac{40}{72} = 0,054$ $\omega_{\text{roue}} = \omega_{\text{moteur}} \times r_{\text{global}} = \frac{3300 \times 2 \times \pi}{60} \times 0,054 = 18,79 \text{ m·s}^{-1}$ $V_{\text{déplacement}} = \omega_{\text{roue}} \times R_{\text{roue}} = 18,79 \times \frac{0,125}{2} = 1,17 \text{ m·s}^{-1} = 4,23 \text{ km·h}^{-1}$


Question 1.9 A t = 0.8 s: $V_{sim} = 1.12 \text{ m} \cdot \text{s}^{-1}$

Question 1.10 x = 0.421 - 0.313 = 0.108 m $V_{\text{r\'eelle}} = \frac{x}{t} = \frac{0.108}{(0.8 - 0.7)} = 1.08 \text{ m} \cdot \text{s}^{-1}$

Question 1.11 $\epsilon_r = \frac{V_{\text{sim}} - V_{\text{r\'eelle}}}{V_{\text{r\'eelle}}} = \frac{1,12 - 1,08}{1,08} = 0,037 \text{ soit } 3,7\%$ L'écart obtenu est faible ce qui permet de conclure que le modèle multiphysique pourra être utilisé pour les autres vitesses du robot.

Sous-partie 3

Question 1.12

Question 1.13 Distance parcourue par le robot avec la batterie

Nb de cycle de 3m =
$$\frac{227}{0,092}$$
 = 2467 cycles

Distance=Nb cycle de 3m ×3=2467 ×3=7400 m

Le constructeur annonce 12 km alors que l'on obtient 7,4 km, il n'a pas tenu compte de la phase d'accélération.

Sans prendre en compte la phase d'accélération, la distance parcourue par le robot est de 11,85 km, ce qui est beaucoup plus proche de l'autonomie annoncée par le constructeur.

L'autonomie affichée correspond donc à un cas idéal, sans phase d'accélération, ce qui n'est pas représentatif de l'usage réel du robot.

25-SCIPCJ1ME3C Page 4/8

Question 1.14 La batterie est constituée de 6 éléments en séries

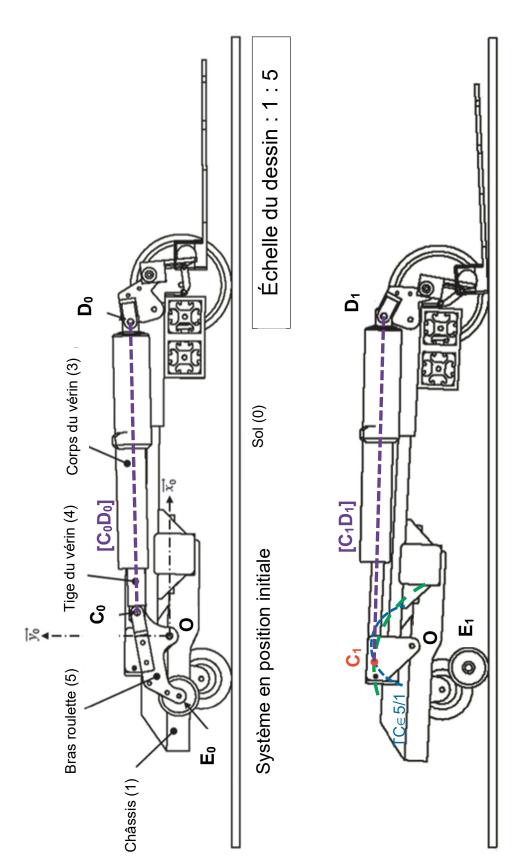
UBatterie_{10%}=6×3,5=**21 V**

Question 1.15 La carte à microcontrôleur est alimentée en 5V, il n'est donc pas possible d'injecter à cette carte une tension supérieure à 5V, la batterie délivre une tension nettement supérieure, d'où la présence du pont diviseur pour réduire et adapter la tension à l'entrée du CAN.

$$UPont_{10\%} = \frac{UBatterie_{10\%} \times 6800}{47000 + 6800} = \frac{21 \times 6800}{47000 + 6800} = 2,65V$$

Question 1.16 Valeur du quantum : $q = \frac{V_{FS}}{2^N} = \frac{5}{2^{10}} = 4,88 \text{ mV}$

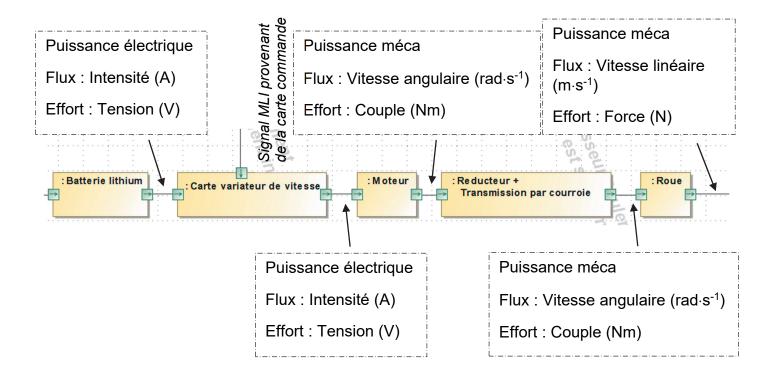
Le nombre N_{10%} est obtenu quand la batterie délivre une tension de 21V donc UPont_{10%} vaut 2,65V.


$$N_{10\%} = E\left(\frac{UPont_{10\%}}{q}\right) = E\left(\frac{2,65\times1024}{5}\right) =$$
542 (**543** accepté)

Question 1.17 Voir DR3:

L'autonomie réelle semble moins importante que celle affichée par le constructeur. Il est donc intéressant pour l'utilisateur d'avoir un suivi précis sur l'état de charge de la batterie afin de gérer les recharges indépendamment de la distance parcourue par le robot d'assistance.

25-SCIPCJ1ME3C Page 5/8


Questions 1.2

Système en position finale (Bras 5 non représenté)

25-SCIPCJ1ME3C Page 6/8

Question 1.7

25-SCIPCJ1ME3C Page 7/8

Document réponse DR3

Question 1.17

```
grovepi.ledBar_setLed(pin,led,state)
Allume (state=1) ou éteint (state=0) la led spécifiée (1 à 10) du bargraphe connecté à la broche (pin)

time.sleep(t)
Permet d'attendre un délai de durée t exprimée en seconde

SOC_Alerte_10()
Permet de faire clignoter avec une fréquence de 1Hz la led rouge la plus à gauche du bargraphe
```

```
1 import time
 2 import grovepi
 3 # Entrée analogique A2 connectée à UPont
 5 # Bargraph indicateur du taux de charge batterie connecté à la broche D5
 6 ledbar = 5
 7 grovepi.pinMode(ledbar,"OUTPUT")
 8 # Config. de l'orientation du Bargraph (0 = rouge vers vert, 1 = vert vers rouge)
 9 grovepi.ledBar init(ledbar, 0)
10 def SOC Alerte 10():
11 # Clignotement de la Led Rouge à gauche du Bargraphe à une fréquence de 1Hz
12 # ledbar setLed(pin,led,state),led: which led (1-10), state: off or on (0,1)
13 grovepi.ledBar setLed(ledbar, 1, 1)
14 time.sleep(.5)
15 grovepi.ledBar setLed(ledbar, 1, 0)
16 time.sleep(.5)
17 def SOC Batterie():
18 # Calcul du taux de charge batterie et retourne un entier correspondant au level
19 # à afficher sur le Bargraph
20 # cette fonction est cachée pour plus de lisibilité
21 while 1:
22 # Affichage sur Bargraph de l'énergie dans la batterie
23 N=grovepi.analogRead(UPont)
24 if N > 542:
25
       SOC = Calc_SOC_Batterie(N)
       grovepi.ledBar setLevel(ledbar, SOC)
28 # Appel de la fonction qui permet de faire clignoter la Led Rouge
29 \# à gauche du Bargraphe à une fréquence de 1Hz
       SOC Alerte 10()
31 # Suite du programme
```

25-SCIPCJ1ME3C Page 8/8