Exercice 1 (6 points)

Correction

Question	Niveau	Contenu	Solution				
1	1	Protocole	Table de rou	tage R ₁			
		de routage	destination	prochain saut	distance		
			R_2	R_2	0		
			R_3	R_2	1		
			R_4	R_4	0		
			R_5	R_5	0		
			R_6	R_5	1		
2	1	Protocole de routage	Pour sortir du routeur R_6 .	maillage à destir	ation d'interr	net, la requête doit traverser	le
			La table préce	edente donne une	e route <i>LAN</i> ₁	$-R_1 - R_5 - R_6Inter$	ernet
3	1	Protocole de routage	Table de rou	tage R ₁			
			destination	prochain saut	distance		
			R_2	R_2	10		
			R_3	R_2	11		

Question	Niveau	Contenu	Solution					
			R_4	R_2	12			
			R_5	R_2	13			
			R_6	R_2	14			
4	1	Protocole de routage	Pour sortir du mailla routeur R_6 . La table précedente $-R_5R_6Inte$	donne u			·	
5	1	Protocole de routage	Pour sortir du mailla traverser le routeur La table précedente distance=101	R_6 .			·	•
6	1	Première :	Calcul d'une adres	se de rés	seau			
	1	binaire	machine (binaire)	11	000000	10101000	00000001	01100100
			masque (binaire)	11	111111	11000000	00000000	00000000
			réseau (binaire)	11	000000	10000000	00000000	00000000
			réseau (déc. pointe	ée) 19	92	128	0	0

25-NSIJ1PO1C Page : 2 / 13

Question	Niveau	Contenu	Solution
7	1	Première : binaire	Calcul d'une adresse de broadcast réseau (binaire) 11000000 10000000 00000000 00000000 masque (binaire) 11111111 11000000 00000000 00000000 complément. (binaire) 00000000 00111111 11111111 11111111 broadcast (binaire) 11000000 10111111 11111111 11111111 broadcast (déc. pointée) 192 191 255 255
8	1	Syst. Exploitatio n et Réseaux	 adresse réseau: 172.16.0.0/16 broadcast: 172.16.255.255 disponibles, au maximum: 2¹⁶ – 2 = 65534 adresses
9	2	Syst. Exploitatio n et Réseaux	<pre>1 def masquer(self, masque: str)->str: 2 """ 3 Détermine le préfixe masqué de l'adresse, 4 le masque (décimal pointé) étant passé en 5 paramètre. 6 >>> add = IPv4('192.168.1.100') 7 >>> add.masquer('255.192.0.0') 8</pre>

25-NSIJ1PO1C Page : 3 / 13

Question	Niveau	Contenu	Solution
			<pre>tmp = [] ip = self.octets() crible = IPv4(masque).octets() for i in range(4): # Opération booléenne : tmp.append(ip[i] & crible[i]) return ".".join([str(element) for element in tmp])</pre>
10	3	Syst. Exploitatio n et Réseaux	<pre>def adresse_suivante(self, adresse_max:str)->str: """ Détermine l'adresse décimale pointée suivant immédiatement l'adresse courante, sous réserve d'existence d'une adresse disponible >>> add = IPv4('192.168.1.100') >>> add.adresse_suivante('192.168.1.254') '192.168.1.101' >>> add = IPv4('192.168.1.255') >>> add = IPv4('192.168.1.255') >>> add.adresse_suivante('192.168.255.254') 11 '192.168.2.0' 12 """ 13 assert self.adresse < adresse_max 14 liste_courante = self.octets() 15 liste_suivante = list() 16 retenue = 1 17 for index in range(4): 18 somme = liste_courante[3 - index] + retenue</pre>

25-NSIJ1PO1C Page : 4 / 13

Question	Niveau	Contenu	Solution
			<pre>valeur, retenue = somme%256, somme//256 liste_suivante = [str(valeur)] + liste_suivante return '.'.join(liste_suivante)</pre>
			•

25-NSIJ1PO1C Page : 5 / 13

Exercice 2 (6 points)

Correction

Question	Niveau	Contenu	Solution
1	1	dévolution du problème	La première possibilité est de jouer la première case en plaçant un pion. La seconde possibilité est de jouer la troisième case en enlevant le pion.
2	1	écriture d'une fonction	<pre>1 def initialiser(n): 2 tab = [] 3 for i in range(n): 4 tab.append(False) 5 return tab ou toute autre variante acceptée.</pre>
3	1	Compléter un programm e	<pre>def victoire(tab): for etat_case in tab: if etat_case == False: return False return True</pre>

25-NSIJ1PO1C Page : 6 / 13

Question	Niveau	Contenu	Solution
4	2	écriture d'une fonction avec parcours	<pre>1 def indice_premiere_case_occupee(tab): 2 for i in range(len(tab)): 3 if tab[i]: 4 return i 5 return None</pre>
5	2	coder une fonction	<pre>1 def coup_valide(tab, case): 2 if case==0: 3 return True 4 elif case==indice_premiere_case_occupee(tab)+1 and case<len(tab) and="" case="">=0: 5 return True 6 else: 7 return False</len(tab)></pre>
6	1	écriture d'une fonction	<pre>1 def changer_case(tab, case): 2 if coup_valide(tab, case): 3 tab[case] = not tab[case] 4 return tab</pre>
7	1	concaténat ion	<pre>1 def vider(n): 2 if n == 1: 3 print('Vider case 1') 4 elif n > 1: 5 vider(n-2) 6 print('Vider case '+str(n)) 7 remplir(n-2) 8 vider(n-1)</pre>

25-NSIJ1PO1C Page : 7 / 13

Question	Niveau	Contenu	Solution
8	2	déterminat ion affichage d'une fonction récursive	Vider case 1 Vider case 3 Remplir case 1 Vider case 2 Vider case 1
9	3	écriture d'une fonction récursive	<pre>1 def remplir(n): 2 if n == 1: 3 print('Remplir case 1') 4 elif n > 1: 5 remplir(n-1) 6 vider(n-2) 7 print(f'Remplir case {n}') 8 remplir(n-2)</pre>
10	2	problème posé par une fonction récursive avec un baguenau dier de grande taille	En raison du grand nombre d'appels récursifs, la limite de taille de la pile des appels récursifs risque d'être dépassée ce qui provoquerait l'arrêt du programme avec une erreur de type RecursionError (ou tout autre justification cohérente).

25-NSIJ1PO1C Page : 8 / 13

Exercice 3 (8 points)

Correction

Question	Niveau	Contenu	Solution
1	1	Programm ation	gen_mdp(10, True, True, False) # Le paramètre longueur doit être supérieur ou égal à 8.
2	2	Tableau donné en compréhe nsion.	<pre>minuscules = [chr(i) for i in range(97, 123)] majuscules = [chr(i) for i in range(65, 91)] caracteres_speciaux = [chr(i) for i in range(33, 48)] + [chr(i) for i in range(58, 65)]</pre>
3	2	Programm ation	<pre>jeu_caracteres = [] if cont_min: jeu_caracteres += minuscules if cont_maj: jeu_caracteres += majuscules if cont_spe: jeu_caracteres += caracteres_speciaux</pre>
4	1	Programm ation	<pre>mot_de_passe = mot_de_passe + jeu_caracteres[randint(0, n-1)]</pre>
5	2	Mise au point des programm es.	L'utilisation de randint à la ligne 21 choisit au hasard des caractères dans jeu_caracteres pour créer le mot de passe. Il se peut donc que celui-ci ne contienne, par exemple, que des minuscules et aucun caractère spécial.

25-NSIJ1PO1C Page : 9 / 13

Question	Niveau	Contenu	Solution
		Gestion des bugs.	
6	1	Modèle relationnel	L'attribut mot_de_passe est une clé primaire de la table compte : chaque valeur de cet attribut est donc nécessairement unique. Alice ne peut donc pas avoir deux fois le même mot de passe.
7	1	Langage SQL : requête d'interroga tion.	SELECT url FROM site;
8	1	Langage SQL : requête de mise à jour.	<pre>UPDATE compte SET mot_de_passe = 'yhTS?d@UTJe' WHERE mot_de_passe = '@rDfohpj!&';</pre>
9	1	Langage SQL : requête d'interroga tion.	<pre>SELECT site_id FROM compte WHERE renouvellemement < '2024-03-20'; ou la réponse comportant un signe <=.</pre>
10	1	Mise au point des	Le format AAAA-MM-JJ permet plus facilement d'écrire des requêtes ordonnant les résultats par date de renouvellement du mot de passe. En effet, l'ordre lexicographique sur les chaînes au format AAAA-MM-JJ correspond à l'ordre chronologique, ce qui n'est pas le cas sur les chaînes

25-NSIJ1PO1C Page : 10 / 13

Question	Niveau	Contenu	Solution
		programm es.	au format JJ-MM-AAAA, où l'on a par exemple '10-10-2010' < '11-06-2010', alors que le 10 octobre est postérieur au 11 juin de la même année.
11	3	Langage SQL : requête d'interroga tion.	<pre>SELECT utilisateur, mot_de_passe FROM compte JOIN site ON compte.id_site = site.id WHERE nom_site = 'Votremailp' ORDER BY renouvellement;</pre>
12	2	Base de données relationnell e (repérer des anomalies)	La solution à une seule table impliquerait la redondance des informations (nom_site et url) dans le cas où Alice possède plusieurs comptes chez un même service. ou toute autre réponse cohérente.
13	2	Systèmes d'exploitati on. Programm ation	<pre>chiffrement('gestionnaire.db','/Perso/secret.db','/P erso/cle') ou également des chemins absolus.</pre>
14	2	Écriture d'un entier positif dans une base	La représentation binaire de A3 est 10100011. La représentation binaire de 59 est 01011001. 10100011 XOR 01011001 = 11111010 Le résultat exprimé en binaire (11111010), décimal (250) ou hexadécimal (FA).

25-NSIJ1PO1C Page : 11 / 13

Question	Niveau	Contenu	Solution
15	1	Expressio ns booléenne s	Le candidat pourra, par exemple, établir la table de vérité de (a XOR b) XOR b en fonction de a et b et montrer que les colonnes (a XOR b) XOR b et a sont identiques
16	3	Sécurisati on des communic ations.	Le chiffrement est symétrique. En effet, si a est le bit à chiffrer et b le bit de clé, on a alors a XOR b qui corespond au bit chiffré. La propriété montre qu'en appliquant le même bit de clé b sur le bit chiffré, on retrouve le bit initial a. La même clé b a donc permis de chiffrer et de déchiffrer.
17	2	Utiliser les command es de base en ligne de command e. Gérer les droits et permission s d'accès aux fichiers.	Tous les utilisateurs utilisant le système d'Alice possèdent les droits de lecture sur le fichier secret. db. Ils peuvent donc notamment ouvrir ce fichier et tenter une attaque. Alice peut corriger ce problème en modifiant les permissions sur le fichier (par exemple avec la commande chmod, dont le nom n'est pas attendu).
18	3	Mise au point des programm es.	Le mot de passe différent pour chaque site est respecté par Alice. En effet, elle a choisi mot_de_passe comme clé primaire de la table compte, ce qui impose l'unicité des mots de passe ;

25-NSIJ1PO1C Page : 12 / 13

Question	Niveau	Contenu	Solution
		Gestion des bugs.	 Création de mots de passe suffisamment longs, complexes et inattendus : oui, dans la mesure où Alice effectue des appels à la fonction gen_mdp avec un paramètre longueur suffisamment grand, idéalement bien supérieur à 8. On peut aussi remarquer que la règle énoncée peut porter à confusion sur le fait que le mot de passe PEUT ou DOIT contenir tel ou tel type de caractère. Idéalement, il ne faut pas imposer que le mot de passe contienne tel ou tel type de caractères pour diminuer le nombre d'informations connues sur le mot de passe;
			 Non communication des mots de passe à un tiers : cette bonne pratique est respectée par le chiffrement de gestionnaire.db et par l'application de permissions adaptées; Utilisation d'un gestionnaire de mots de passe : oui, c'est le projet d'Alice.

25-NSIJ1PO1C Page : 13 / 13