BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2024

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable

INNOVATION TECHNOLOGIQUE ET ÉCO-CONCEPTION

Durée de l'épreuve : 4 heures

CORRECTION

24-2D2IDITECME3C 1/13

PARTIE commune (2,5h) 12 points

Parc photovoltaïque flottant

24-2D2IDITECME3C 2/13

Travail demandé

Partie 1 : Le parc photovoltaïque flottant permet-il de réduire l'impact environnemental ?

Question 1.1

Charbon Fioul Gaz

DT1

Question 1.2 Voir DR1

Masse = 572,2 Tonnes de CO2

DT1, DR1

Document réponses DR1 Émissions annuelles de CO2

P : Production électrique annuelle du parc en MWh	Filière qui produit du CO ₂	Proportion de production d'électricité de la filière en %	W : Energie électrique produite par la filière en MWh/an	M : Émission annuelle de CO ₂ par filière en tonnes de CO ₂ eq
	Gaz	6,3 %	$W = 0.063 \times P$ W = 973.35 MWh/an	M = 0,429 x 973,35 ME = 417,56 Tonnes de CO ₂ eq / MWh
15 450 MWh	Charbon	0,7%	0,007x15 450 = 108,15	M = 0,986 x 108,15 = 106,64
	Fioul	0,4%	0,004x15 450 = 61,80	M = 0,777 x 61,80 = 48,00
Masse totale de CO_2 engendrée par les filières carbonées en tonnes de CO_2 eq :			417,56 + 106,64 + 48,00 = 572,20	

Question 1.3 Surface station = 12 ha

Surface plan d'eau = 27,6 ha

12/27,6 = 0,43 soit 43% de la surface est recouverte

Occupe moins de 50% de la surface donc l'exigence est respectée.

Question 1.4 Voir DR2

DT2. Surface épargnée = 16,56 ha

DR2

Document réponses DR2 Impact sur les surfaces cultivables

	Parc photovoltaïque au sol de Cintegabelle	Parc photovoltaïque flottant de Saint-Elix
Surface occupée par le parc (ha)	7,19 ha	12 ha
Production annuelle du parc (MWh)	6 700	15 450

cultivables utilisées pour	7,19 x 15 450/6 700 = 16,58 ha	0 ha
----------------------------	-----------------------------------	------

Question 1.5

DR3

Sur DR3, **noter** pour chaque critère dans cases grisées (favorable +, nuisible – ou neutre 0) et **écrire** le commentaire pour le critère « occupation des surfaces cultivables » en fonction des résultats de la question 1.4.

Voir DR3

Déterminer le parc le moins impactant. Justifier

Le parc le moins impactant est le parc flottant car

- L'eau rafraichit les panneaux et augmente la production d'électricité
- Moins d'impact sur les terres cultivables
- Moins d'impact visuel

Document réponses DR3 Critères d'évaluation

Critères	Parc photovoltaïque flottant	Parc au sol	Commentaires
Influence de la température ambiante sur la production	+	-	L'eau permet une diminution des températures de fonctionnement, ceci permet un gain de production pour les parcs installés sur l'eau.
Occupation des surfaces cultivables	+	-	Un parc photovoltaïque installé sur un plan d'eau utilise très peu de surfaces cultivables contrairement au parc au sol.
Impact sur la faune et la flore	0	0	Quelle que soit le parc, flottant ou au sol, les nuisances apportées à la faune et à la flore sont limitées. Des mesures compensatoires aux quelques impacts générés sont imposés aux abords des installations (mise en place de nichoirs, plantation de haies).
Impact visuel	+	-	Le parc flottant ne doit pas dépasser la surface de l'eau de plus de 44 cm, ceci lui permet d'être discret et peu visible. Le parc au sol est visible car les panneaux sont inclinés à 30° et plus grands que ceux utilisés pour les parcs flottants. L'impact visuel est important.
Maintenance de l'installation	-	+	La maintenance d'un parc au sol est facile à réaliser car l'accès au parc est peu contraint. Pour les parcs flottants, l'accès au système se fait sur des passerelles flottantes et en milieu humide, ceci complique les opérations de maintenance.

Question 1.6

Réduit les impacts car :

- évite la production de CO2 par rapport aux moyens de production du mix électrique français ;
- épargne des terres cultivables par rapport à une centrale au sol.

Partie 2 : Comment optimiser la production d'énergie électrique dans l'espace disponible du plan d'eau ?

Question 2.1

DT!

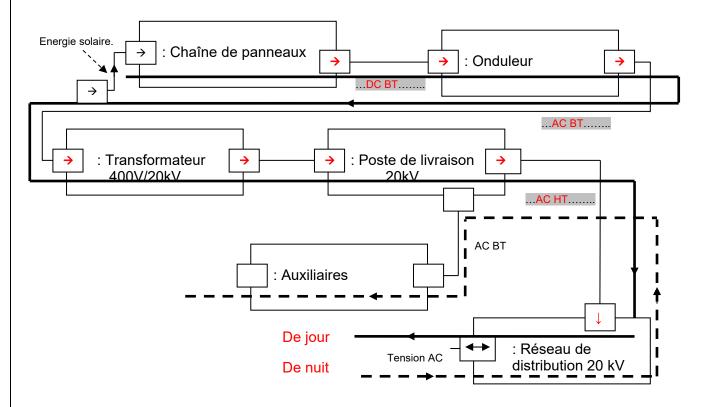
La puissance crête d'un panneau est de 425 W et il y a 34 000 panneaux donc 34 000×425 = 14,45 MWc posé

Question 2.2

DT3, DT4, DT5

Le constructeur des panneaux assure une puissance de 92% de la puissance installée au bout de 25 ans donc P_{C25} [MWc] = 0,92×14,45 = 13,294 MWc.

Vérifier la conformité au cahier des charges.


Le cahier des charges donne la contrainte d'avoir « au moins 13 MWc après 25 ans de fonctionnement », P_{C25} = 13,294 MWc est bien supérieure donc l'exigence est respectée.

Question 2.3

Voir DR4

DT6 DR4

DR4 : Diagramme de bloc interne partiel

Question 2.4

Voir DR4

DR4

L'onduleur permet d'adapter la tension DC au réseau AC.

Question 2.5

Voir DR5

DR5: Paramétrage du logiciel PVGIS

Technologie d'un	Silicium monocristallin ?	X
panneau	CIS (Cuivre Indium et Sélénium) ?	
	Ou Cdte (Tellurure de Cadmium) ?	
Position de montage	A l'air libre ?	X
	Ou Intégré au bâtiment ?	
Puissance crête (kWc)	8 <mark>,5</mark>	
Inclinaison (°)	11	
Azimut (°)	<mark>15</mark>	

Question 2.6

Voir DR6

DT8, DR6

DR6 : Production électrique d'une rangée de 20 panneaux

Angle d'inclinaison d'un panneau α (°)	11	22	35
Distance Dp (m) entre deux panneaux.	158	205	251
Energie électrique produite E _{an} (kWh) par une rangée de	10002,5 Q2.6	12673	13053
20 panneaux Ratio RA (kWh·m ⁻¹) = Eh/Dp	6330,7 Q2.7	6182,0 Q2.7	5200,0 Q2.7

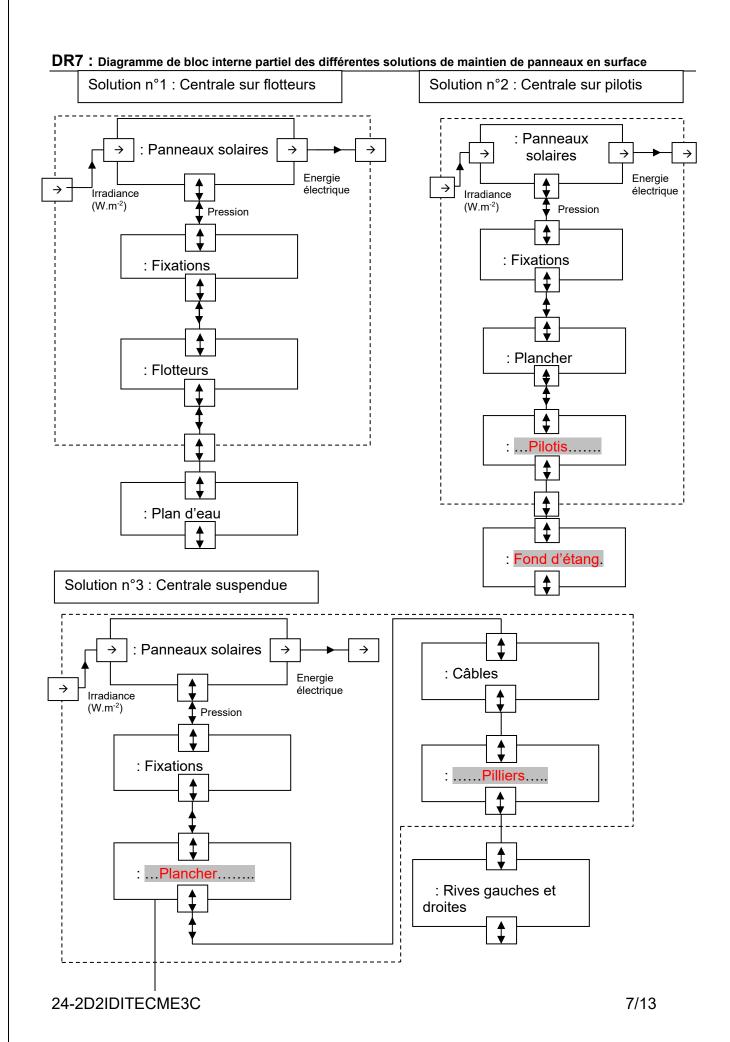
Question 2.7

Voir DR6

DR6

Question 2.8

Pour optimiser la surface d'étendue d'eau il faut rapprocher le plus possible les panneaux entre eux et réduire l'inclinaison pour éviter l'ombre portée d'un panneau sur l'autre. La production électrique est alors impactée par la faible inclinaison mais le ratio de production par mètre reste important en comparaison à une installation terrestre classique.


Partie 3 : Comment maintenir des modules photovoltaïques en surface d'un plan d'eau en toute sécurité et en minimisant les impacts environnementaux?

Question 3.1

Voir DR7

DT9,

DR7

Question 3.2 $S = (1.046+758)\times1.812 = 3,27\times106 \text{ mm}^2 \text{ soit } 3,27 \text{ m}^2$ $S_m = S - (2\times S1) - (4\times S2) = 3,27 - (2\times 0,063248) - (4\times 0,035140) = 3 \text{ m}^2$ $S_{mt} = 3\times34.000 = 102.000 \text{ m}^2$

Question 3.3 L'évaporation est limitée car la centrale masque les rayons incidents du soleil, limite l'effet du vent, permet de maintenir une humidité relative. La couleur blanche des flotteurs réfléchisse aussi les rayons solaires.

Question 3.4 Sa = (1.890×980) - (631×315) - $(3,14159 \times 315^2/4)$ Sa = $1.852\ 200$ - $198\ 765$ - $77\ 931$ = $1.575\ 504\ mm^2$ = $1.57\ m^2$

Question 3.5 $h_i = \text{Poids}/(\rho \times \text{Sa} \times g) = 34,4 \times 9,81/(1.000 \times 1,60 \times 9,81) = 21,5 \cdot 10^{-3} \text{ m}$ soit 21,5 mm

Question 3.6 Les panneaux sur flotteurs restent bien en flottaison car leurs immersions ne dépassent pas 21,5 mm sur une hauteur de 150mm. Les panneaux connectés entre eux forment une centrale flottante suffisamment ramassée pour ne pas occuper tout le plan d'eau.

Partie 4 : Comment stabiliser la position de la centrale sur le lac, éviter sa dérive ?

Question 4.1 $V_{\text{max}} = 33,7 \text{ m} \cdot \text{s}^{-1}$

DT12

Question 4.2 $F_v = 214 \text{ kN (compris entre } 200 \text{ et } 225 \text{ kN)}$

Question 4.3 Pour une valeur en compression de 94,5 kN le tableau propose un couple de

DT14 6404 N.m

Question 4.4 $| T_{A15K} = 47.3 \text{ kN}$

DT13

Question 4.5 $T_{H L5K} = T_{A L5K} \times \cos 12^{\circ} = 47.3 \text{ kN} \times \cos 12^{\circ} = 46.3 \text{ kN}$

 $Nb_{pieux} = F_V / T_{HL5K} = 214 / 46,3 = 4,62$

Il faudra donc 5 pieux pour reprendre les efforts horizontaux liés au vent.

Partie 5 : Comment structurer le réseau de communication ?

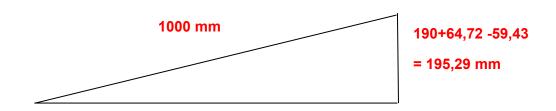
Question 5.1 Informations numériques

Question 5.2

Exemple: 172.16.64.5/27

Question 5.3

Nombre de clients sur le LAN (figure 8) -> 3 si on ne considère que les caméras et station météo de la figure et 4 si on rajoute le serveur DNS II y a le réseau LAN (réseau local) et le réseau WAN (réseau étendu, réseau couvrant une zone géographique de grande envergure donc ici coté internet).


On a ces 2 types de réseaux étant donné que l'on doit pouvoir obtenir, consulter des informations de l'installation (station météo, caméras...) depuis l'extérieure du site (WAN) et à partir du site (LAN).

INNOVATION TECHNOLOGIQUE ET ÉCOCONCEPTION

Partie A:

Question A.1

DTS1

 $Sin\alpha = 195,29 / 1000 = 0,19529 donc \alpha = 11,26^{\circ}$

Le panneau est bien installé car la valeur de l'angle α est bien comprise entre 10,5 et 11°.

Question A.2

DRS1

4 efforts permettent l'équilibre du panneau

Question A.3

DRS1

Voir DRS1 cases grisées

Question A.4

Voir DRS2

Question A.5 | Compression

Question A.6

la limite d'élasticité du matériau = 75,83 MPa contrainte maximale = 11,1 MPa s= limite d'élasticité / contrainte maximale = 75.83 / 11.1 = 6, 8

Question A.7

Le système de fixation est bien dimensionné car le panneau est bien installé à 11° et la biellette résiste aux efforts induits par le vent sur la structure. Le coefficient de sécurité est supérieur à 2,5.

Partie B:

Question B.1

Voir DRS3

DRS3

Question B.2

Le PVC et le PEHD répondent à tous les critères, pas le PETP, on garde donc PVC et PEHD

DRS3

Question B.3 Confection du matériau – fabrication – transport – utilisation – fin de

vie

Question B.4 Voir DRS4.

Question B.5 | Le PEHD comme le PVC répondent aux critères technologiques.

Pour tous les critères environnementaux le PEHD génère moins d'impact

aue le PVC.

Il faut donc choisir le PEHD

Partie C:

Question C.1

 $\cos \beta = 0.6 / 1 = 0.6 \text{ donc } \beta = 53^{\circ}$

Question C.2

 $\Theta = 180 - 2 \times \beta = 74^{\circ}$

Question C.3

ωMAXI_{flotteur2/sol} = 4 rd·s⁻¹ et -4 rd·s⁻¹, accepter si une seule des 2 réponses est données.

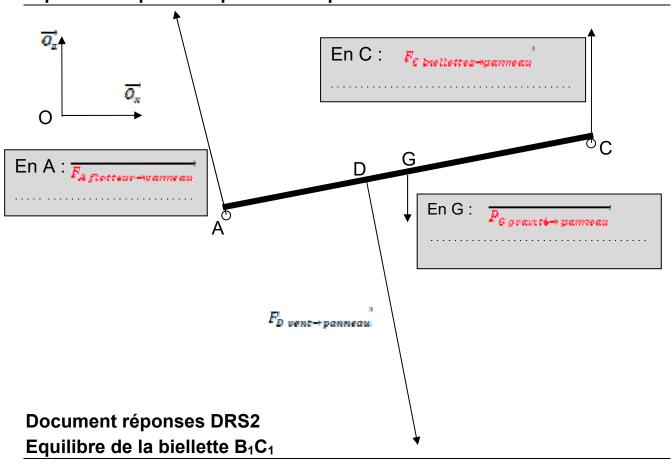
DRS4

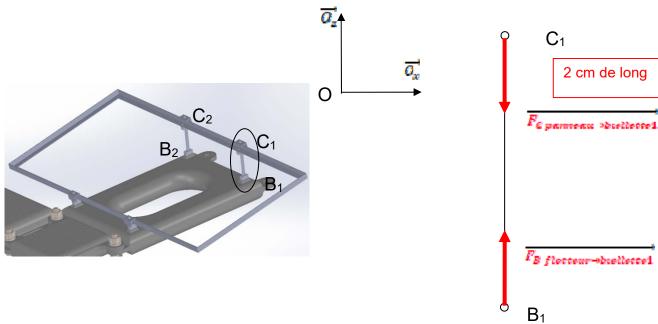
DTS7

Angle β MAXI = 90°

ωMAXI_{flotteur2/sol} est atteinte quand le flotteur est horizontal.

Question C.4


 $V = R \times \omega$ flotteur1/flotteur2 = 0,1 x 8 = 0,8 m·s⁻¹


Question C.5

La liaison convient car V frottement entre 2 flotteurs ne dépasse pas 1 m·s⁻¹

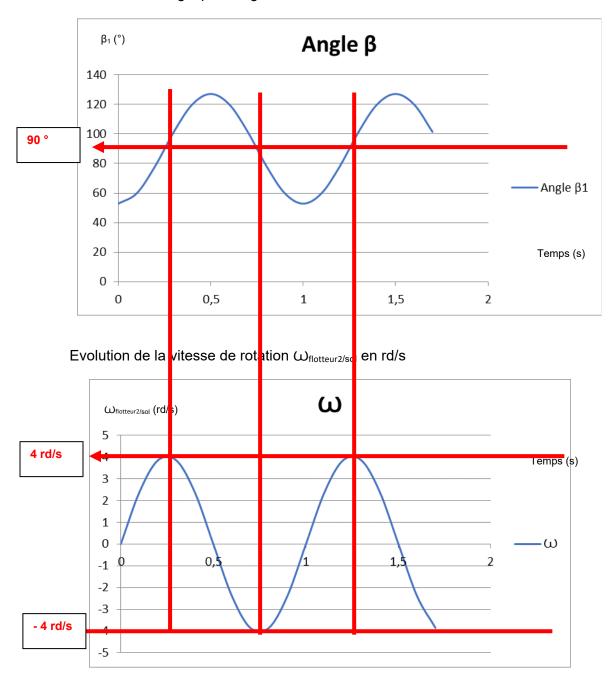
Document réponses DRS1

Equilibre du panneau photovoltaïque

24-2D2IDITECME3C 11/13

Document réponses DRS3 Choix de 2 matériaux en fonction des critères technologiques

	D) (O	DELID	DETD
Critères technologiques	PVC	PEHD	PETP
Résistance mécanique	3000	1150	3500
(valeur mini 1000MPa)	+	+	+
Etanchéité	0.2	0.01	0.25
(absorption d'eau, valeur maxi 0,2%)	+	+	-
Densité	1.36	0.95	1.39
(valeur maxi 1,36 g/cm³)	+	+	-
Température maxi d'utilisation	60	90	100
(valeur 60 °C)	+	+	+
Température mini d'utilisation	-16	-50	-20
(valeur mini -15°C)	+	+	+
Bilan			
(nombre de + et de -)	5+ 0-	5+ 0-	3+ 2-


Document réponses DRS4

	PEHD	PVC
Empreinte carbone Kg de CO ₂	70	140
Energie totale consommée MJ	1400	2300
Acidification de l'air Kg SO ₂	0,53	1,1
Eutrophisation de l'eau Kg PO ₄	0,035	0,075
Impact financier Dollar américain	33	68,10

24-2D2IDITECME3C

Document technique DRS5:

Evolution de l'angle β en degré

24-2D2IDITECME3C 13/13