BACCALAURÉAT GÉNÉRAL
CORRECTION DE L'ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ
SESSION 2024
NUMÉRIQUE ET SCIENCES INFORMATIQUES
Durée de l'épreuve : 3 heures 30
Le sujet est composé de trois exercices indépendants.

Exercice 1	6 points				
Questions	$Contenu\ et \ notions$	Capacités exigibles / Niveau	Éléments de réponses et commentaires		
1	Savoir dénombrer les adresses IP disponibles sur un réseau en fonction du masque de sous-réseau.	Simuler ou mettre en oeuvre un réseau /1	Avec un tel masque, on ne peut pas obtenir plus de 256 adresses IP sur un sous-réseau, dont 2 sont réservées en plus ce qui donne un total de 254 adresses disponibles.		
2	Conversion décimal à binaire	Passer de la représentation d'une base à une autre /1	11011001		
3	Conversion binaire à décimal	Passer de la représentation d'une base à une autre /1	50		
4	Déterminer si une machine fait partie d'un réseau en utilisant son adresse IP et celle du réseau.	Simuler ou mettre en oeuvre un réseau /2	Non car avec le masque utilisé, les adresses doivent toutes commencer par 110.217.52.		
5	Remplir une table de routage simple en indiquant les adresses IP et les interfaces.	Simuler ou mettre en oeuvre un réseau /2	Voir le tableau 1.		

Exercice 1	6 points		
6	Remplir une table de routage simple et tenir compte du protocole RIP	Identifier, suivant le protocole de routage utilisé, la route empruntée par un paquet /1	Sur la sdeuxième ligne de la table de routage, la passerelle est modifée en 110.217.50.253 et l'interface en 110.217.54.253.
7	Vérifier si le protocole RIP est bien respecté.	Identifier, suivant le protocole de routage utilisé, la route empruntée par un paquet /1	Aucun changement car depuis R2, les routes menant aux réseaux P1 et P2 ont le même nombre de routeurs.
8	Comprendre la notion de condition terminale d'un algorithme récursif.	Chercher un chemin dans un graphe /2 + analyser le fonctionnement d'un programme récursif /1	Problème : la fonction n'arrêtera pas de s'appeler car jamais la condition terminale R1==R2 ne sera satisfaite.
9	Connaître un algorithme de parcours de graphe	Chercher un chemin dans un graphe /3	La solution classique est de marquer les sommets par lesquels l'algorithme passe, en les stockant par exemple dans une liste et en vérifiant que le sommet S n'est pas marqué avant de lancer l'appel recherche($S,R2$).

Tableau 1 :

Destination	Passerelle	Interface
110.217.50.0	on-link	110.217.50.254
110.217.52.0	110.217.54.253	110.217.54.254
110.217.54.0	on-link	110.217.54.254
110.217.56.0	110.217.54.253	110.217.54.254

Exercice 2	6 points	6 points			
Questions	Contenu et notions	Capacités exigibles / Niveau	Éléments de réponses et commentaires		
1	langage	N1	<pre>def possible_avec_penalites_seules(score): return score % 3 == 0</pre>		
2	algorithmique	N1	$\begin{array}{l} 0 \to [0] \; ; \; 1 \\ 1 \to [] \; ; \; 0 \\ 2 \to [] \; ; \; 0 \\ 3 \to [0, 3] \; ; \; 1 \\ 4 \to [] \; ; \; 0 \\ 5 \to [0, 5] \; ; \; 1 \\ 6 \to [0, 3, 6] \; ; \; 1 \\ 7 \to [0, 7] \; ; \; 1 \\ 8 \to [0, 5, 8], \; [0, 3, 8] \; ; \; 2 \\ 9 \to [0, 3, 6, 9] \; ; \; 1 \\ 10 \to [0, 3, 10], \; [0, 5, 10], \; [0, 7, 10]; \; 3 \end{array}$		
3	langage	N1	f(10) = f(7) + f(5) + f(3) = (f(4) + f(2) + f(0)) + f(5) + f(3) = 3.		
4	algorithmique	N1	Les cases de base sont $n=1,2$ et 4 pour lesquels la fontion doit renvoyer 0 et $n=0,3,5$ et 6 pour lesquels la fonctions doit renvoyer 1.		
5	algorithmique	N2	<pre>def nb_solutions(score): if score in [1, 2, 4]: resultat = 0 elif score in [0, 3, 5, 6]: resultat = 1 else: resultat = nb_solutions(score - 3) + nb_solutions(score - 5) + nb_solutions(score - 5)</pre>		
6	algorithmique ; récursivité	N3	On peut utiliser la programmation dynamique, en utilisant une structure de données pour stocker les valeurs déjà calculées.		
7	récursivité, conception	N3	On utilise les lignes correspondant aux scores 8, 6 et 4, en complétant les listes présentes.		

```
Exercice 2
            6 points
8
            récursivité, conception N3
                                                                   def solutions_possibles(score):
                                                                       if score < 0:
                                                                           resultat = []
                                                                       elif score == 0:
                                                                           resultat = [[0]]
                                                                       else:
                                                                          resultat = []
                                                                           for coup in [3, 5, 7]:
                                                                               liste = solutions_possibles(score - coup)
                                                                               for solution in liste:
                                                                                   solution.append(score)
                                                                               resultat.append(solution)
                                                                     return resultat
```

Exercice 3	8 points		
Questions	Contenu et notions	Capacités exigibles / Niveau	Éléments de réponses et commentaires
1	Cours dictionnaire	N1	<pre>python participants['PHILIPSEN Jasper'] classement_general[Participants['PHILIPSEN Jasper']] temps_etapes[Participants['PHILIPSEN Jasper']][3]</pre>
2.	programmation Python	N2	<pre>python def temps_totale(d): temps_total = 0</pre>
3.	programmation Python	N3	<pre>8 while pos>= 0 and element[1] < classement[pos][1]: 9 classement[pos + 1] = classement[pos]</pre>
4	programmation Python - Langage SQL	N2	<pre>python tableau_final = [] difference_temps = 0 premier = True for ligne in tableau_temps: coureur = [ligne[0]] coureur.append(ligne[1]) if premier: temps_premier = ligne[2] coureur.append(temps_premier) premier = False else: difference_temps = ligne[2] - temps_premier coureur.append(difference_temps) tableau_final.append(coureur)</pre>
5	BDD - Modèle relationnel	N1	Les mêmes numéros de dossard apparaîssent à chaque étape. Un même numéro d'étape apparaît pour chaque coureur. Par contre, un coureur ne participe qu'une seule fois à chaque étape. Chaque valeur du couple (#numDossard, #NumEtape) est unique. Celui-ci peut donc servir de clef primaire.
6	BDD - Langage SQL	N1	La requête donne l'ensemble des noms des coureurs de l'équipe Cofidis.

Exercice 3	8 points		
7	BDD - Langage SQL	N1	<pre>sql SELECT Date FROM Etapes WHERE Type = 'contre-la-montre';</pre>
8	BDD - Langage SQL	N1	<pre>sql SELECT DirecteurSportif FROM Equipes JOIN Coureurs ON Equipes.nomEquipe = Coureurs.Equipes WHERE Coureurs.nomCoureur = 'BARDET Romain';</pre>
9	BDD - Modèle relationnel	N1	la série de code SQL provoque une erreur car il faut que la valeur de l'attribut numEtape existe dans la table Etapes avant de pouvoir être utiliser dans la table Temps.
10	BDD - Langage SQL	N2	Pour corriger cette erreur, il suffit d'inverser les deux instructions SQL.
11	BDD - Langage SQL	N2	<pre>sql SELECT sum(tempsRéalisé) From Temps JOIN Coureurs ON Coureurs.numDossard = Temps.numDossard WHERE Coureurs.nomCoureur = 'BARDET Romain';</pre>