BACCALAURÉAT Général

Enseignement de spécialité Sciences de l'Ingénieur

Eléments de correction

PARTIE1-SCIENCES DE L'INGÉNIEUR

Partie 1 : Sciences de l'ingénieur

Robot piscine Zodiac RV 5600

1. Sous-partie 1

Question 1.	Relever sur la figure 6 la valeur du seuil de courant Iseuil correspondant à
Figure 6	la valeur du courant Imoteur_pompe, lorsque le filtre est plein.

Le seuil de courant lseuil est égale à 2.7A. Il correspond au courant à t=2500s temps pour lequel, l'état de la LED filtre plein

	Déterminer à partir de la figure 8, la relation entre Ue et Imoteur_pompe. En
Figures 7 et	déduire la valeur de Rshunt.
8	

Courbe linéaire de la forme Ue=Rshunt*Imoter pompe

Soit Ue = 0.326* Imoteur_pompe => Rshunt= Ue/ Imoteur_pompe = $3/9.2 = 0.326\Omega$

Question 3.	Déterminer la relation entre N(10) (valeur décimale de la grandeur
Figures 7 et	numérique en sortie du CAN) et U_e . En déduire la relation entre $N_{(10)}$ et
8	Imoteur_pompe.
	Montrer que Nseuil ₍₁₀₎ = $\frac{0.326}{2.93*10^{-3}} \cdot I_{\text{moteur_pompe}}$.

$$Q = \frac{Vpe}{2^n} = \frac{3-0}{2^{10}} = 2.93*10^{-3} \text{ V}$$

$$N_{(10)} = \frac{Ue}{q} = \frac{Ue}{2.93 * 10^{-3}}$$
, Comme Ue = 0.326*Imoteur_pompe

$$N_{(10)} = \frac{0.326}{2.93 * 10^{-3}} *Iseuil$$

Question 4.	Compléter sur le document réponse DR1, le diagramme d'états qui avertit
DR1	visuellement l'utilisateur et désactive le mode paroi lorsque le filtre est plein.

Question 5.	Justifier, au regard des données techniques et des exigences, le choix de
Tableau 1 et	ce type de liaison sans fil de type zigbee.
figure 4	

La portée est suffisante par rapport à la position du boitier de commande et respecte l'exigence 2.1, 12m>10m

L'autonomie de la télécommande est de plusieurs années car le protocole choisi est peu énergivore, exigence 2.2 respecté.

Le prix d'un module Zigbee est de 1 euros, exigence est respectée (inférieure à 2€)

Seule le module Zigbee respecte les trois exigences 2.1 à 2.3.

À partir de l'extrait de trame figure 10 et du tableau 2 de correspondance, Question 6. déterminer quelle commande a été envoyée au robot depuis la Figure 10 et télécommande. tableau 2 3.3v -0.5v 150ns 450ns 600ns 900ns 1050ns 1200ns 300ns 750ns LSB 0 0 1 1 **MSB**

DATA = (0011 0010)2 soit 0x32, la commande envoyée par la télécommande est une commande de marche avant

Question 7.	Proposer sur le DR2 les commentaires des lignes 18 à 21 du code
DR2	Python. Compléter ensuite le script Python des lignes 22 à 26, permettant
DIVE	de commander le robot en marche avant à partir de la télécommande
	Kinétic.
	Kinétic.

On teste grâce à l'instruction conditionnelle « if » si la valeur contenue dans la variable xbee_msg est égale à 0x33 ce qui correspond à une commande de marche arrière.

Question 8.	Conclure sur le DR3 quant au respect des exigences concernant la
Figure 4 et	détection filtre plein et le pilotage du robot via la télécommande.
DR3	

2. Sous-partie 2

Question 9.	Compléter le document réponse DR4 en indiquant les différentes
DR4	grandeurs de flux et d'efforts avec leurs unités.

Question 10.	Montrer, en appliquant le théorème de la résultante dynamique, les
Figure 12	équations scalaires suivantes :
	Équation 1 sur Z :
	$F_{m1} \cdot \sin \alpha + F_{m2} \cdot \sin \beta - M_r \cdot g - F_{traîn\acute{e}} + F_{ej} \cdot \sin(30^\circ) + F_{arch} - F_{brosse} = 0$
	Équation 2 sur X :
	$F_{m1} \cdot \cos \alpha + F_{m2} \cdot \cos \beta - F_{ej} \cdot \cos(30^{\circ}) - F_{dep} = 0$

On isole le robot

$$\begin{split} \Sigma \overrightarrow{F_{/robot}} &= \overrightarrow{0} \quad \overrightarrow{F_{m1}} + \overrightarrow{F_{m2}} + \overrightarrow{F_{ej}} + \overrightarrow{F_{arch}} + \overrightarrow{F_{brosse}} + \overrightarrow{F_{dep}} + \overrightarrow{F_{traînée}} + \overrightarrow{P} = \overrightarrow{0} \\ &\text{en projection sur } \vec{z} : \text{Fm1*sin } \alpha + \text{Fm2*sin } \beta - \text{P-Ftraînée} + \text{Fej* sin } 30 + \text{Farch-Fbrosse=0} \\ &\text{en projection sur } \vec{x} : \text{Fm1*cos } \alpha + \text{Fm2*cos } \beta - \text{Fej* cos } 30 - \text{Fdep=0} \end{split}$$

Question 11.	Montrer, en appliquant le théorème du moment dynamique au point B,
Figure 12	l'équation scalaire suivante :
	Équation 3 sur Y:
	$115 \cdot M_r \cdot g + 100 \cdot F_{dep} + 115 \cdot F_{traîn\acute{e}} - 115 \cdot F_{arch} - 280 \cdot F_{m1} \cdot \cos \alpha +$
	$326 \cdot F_{ej} \cdot \cos(30^{\circ}) - 234 \cdot F_{ej} \cdot \sin(30^{\circ}) = 0$

$$326 \cdot \mathbf{F}_{ej} \cdot \cos(30^{\circ}) - 234 \cdot \mathbf{F}_{ej} \cdot \sin(30^{\circ}) = 0$$

$$\Sigma \overline{M(F_{/robot})}_{B} = \vec{0}$$

 $-F_{m1_z}*280 + F_{dep}*100 + F_{traîn\acute{e}}*115 - F_{ej_z}*234 + F_{ej_x}*326 + P*115 - F_{arch}*115=0$ $115*P+100*F_{dep}+115*F_{traîn\acute{e}}-115*F_{arch}-280*F_{m1}*\cos\alpha+326*F_{ej}*\cos30-234*F_{ej}*\sin30=0$

Question 12.	Vérifier que le couple Cm en sortie du motoréducteur droit a une valeur
Figure 13	proche de 0,2 N·m.

Roue avant droite:

 $C_{roue_av_droite} = 0.105*4.5 = 0.472 \text{ Nm}$

 $C_{motoreducteur_av_droit} = C_{roue_av_droite} * 0.1191/0.8 = 0.070 \ Nm$

En projection sur \vec{y}

Roue arrière droite :

 $C_{roue_ar_droite} = 0.105*8.5 = 0.892 \text{ Nm}$

 $C_{motoreducteur_ar_droit} = C_{roue_ar_droite} * 0.1191/0.8 = 0.132 \; Nm$

 $C{\tt r\'educteur_droit} = C{\tt reducteur_av_droit} + C{\tt reducteur_ar_droit} = 0.202\ Nm$

Le couple sortie motoréducteur est de 0.202 Nm

Question 13.	Relever sur la figure 15 les valeurs du courant consommé en régime
Figures 15,	permanent dans les cas de l'expérimentation (valeur moyenne de lexpérimental) et du modèle multiphysique (lsimulé).
	Le modèle est considéré valide si l'écart relatif entre ces deux valeurs est inférieur à 10 %. Conclure .

Isimulé= 130 mA
Iexpérimental = 135 mA

(135-130)/135 = 0.037 soit 3.7 % < 10%, modèle validé

Retrouver la valeur du couple moteur C _{m_simu} à partir de la courbe simulée
et comparer à la valeur Cm déterminée précédemment.

Calcul de Cm_simu; Kc = 1.55 Nm/A

Cm_simu = 130 * 1.55 = 201.5 mNm = 0.201 Nm correspond à Cm (Q13) de 0.202 Nm

Question 15	À partir des figures 17 et 13, déterminer la vitesse de déplacement Vrobot
Figures 11, 13 et 17	du robot en m·min ⁻¹ en régime établi. Conclure quant au respect de l'exigence 1.1, figure 11.

ωmotoréducteur = 11.2 rad/s

 $\omega_{\text{roue}} = 11.2 * 0.1191 = 1.33 \text{ rad/s}$ $V_{\text{robot}} = 1.33 * 0.105 = 0.14 \text{ m/s}$ soit 8.4 m/min

Exigence de 9 m/min ±1 en montée est respectée.

3. Sous-partie 3

Question 16	À partir de la figure 19, calculer l'énergie électrique W _{moteurs} consommée
Figure 19	en Joule puis en W.h (rappel 1J = 1 W.s) par les moteurs de propulsion et
118010 13	de pompe sur un parcours type.

 $W_{moteurs} = 92*40+97*10+19*10+30*4+55*4+92*52=9964 W.s$

soit 2.77 W.h pour un parcours type de 2 minutes

Question 17	Calculer l'énergie électrique Wélectronique consommée en Joule puis en				
	W·h par les composants électroniques sur un parcours type. En déduire l'énergie électrique W _{cycle} consommée pour un cycle.				
	En deduire renergie electrique Wegele Consommee pour un cycle.				

Wélectronique = 0.5 * 5 * 120 = 300 J = 0,083 Wh pour un parcours type de 2 minutes <math>Wcycle=Wélectronique+Wmoteurs=2,853 Wh

Question 18	Déterminer l'énergie minimale Wbatterie de la batterie en W·h satisfaisant					
Figure 18	l'exigence 4.1 (figure 18). En tenant compte de la profondeur de décharge de la batterie, en déduire sa capacité minimale Q _{batterie} en A·h.					

Pour un cycle de 3h, **W**électronique(3h)=30*0.083*3=7.47 W.h (1h correspond à 30 cycles)

Pour un cycle de 3h, **W**moteurs(3h) = 30*2.77*3 = 249.3 W.h

Pour un cycle de 3h, Wtotal(3h) = 256.8 W.h

Soit Capacité minimale Q = 256.8 / (24 *0.8) = 13.37 A.h

Si l'élève a pris en compte la profondeur de décharge de la batterie lors du calcul des différentes énergies sur un cycle de 3 heures, le résultat est correct.

Wélectronique(3h)=30*0.083*3/0.8=9.33 W.h

Wmoteurs(3h) = 30*2.77*3/0.8 = 311.62 W.h

 $W_{total(3h)} = 321 W.h$

Q = 321/24 = 13.37 A.h

Question 19	Proposer une association de modules permettant de réaliser la batterie souhaitée. Déterminer le nombre nécessaire de modules.
Tableau 3	Souliaitee. Determiner le nombre necessaire de modules.
Figure 20	Montrer qu'il est possible de stocker 343 Wh dans cette batterie

7 modules en série soit 7*3.6 = 25.2 V > 24V

4 branches de 7 modules soit 4*3.4 = 13.6 A.h > 13.5A.h

28 $3.6 \times 3.4 = 343$ Wh énergie disponible.

Question 20	À partir du tableau 3, déterminer la masse en kg et le volume en litres
Tableau 3 Figure 18	de cette batterie. Conclure quant au respect des exigences 4.2 et 4.3 données dans le diagramme de la figure 18.

343 Wh => 343/300=1,14 litre

343 / 120 = 2,85 kg

En prenant en compte cette batterie, le volume et la masse restent conforme aux exigences.

Document réponse : DR1

Question 4:

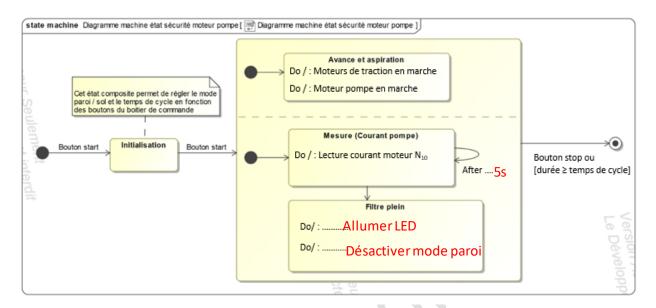
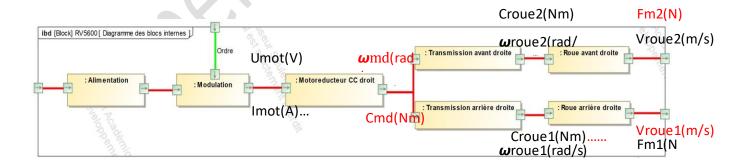


Figure 1 : diagramme machine à état filtre plein

Document réponse : DR2

Question 7:

```
import zigbee
                                                  # Importation de la librairie Zigbee
      From RV5600 import*
                                                  # Importation de la librairie RV5600
      *** Initialisation ***
      RV5600.pump_motor (0,0)
                                                  # Arrêt du moteur pompe
                                                  # Arrêt du moteur traction gauche
      RV5600.Left traction motor (0,0)
      RV5600.Right traction motor (0,0)
                                                  # Arrêt du moteur traction droit
      RV5600.State LED = 0
                                                  # Désactivation de la led
      RV5600.Wall mode = 0
                                                  # Désactivation du mode paroi
10
      # Instantiate a Zigbee device object.
12
      device = ZigBeeDevice("COM1", 9600)
13
      device.open()
14
15
      # Read data.
16
      xbee_msg = device.read_expl_data()
                                                   # Stocke dans xbee_msg les données lues
17
                                                   ‡ via la liaison Zigbee
                                                   #marche arrière à compléter
18
              xbee msq = 0x33:
                                                   moteur gauche à compléter 60%, rot anti-horaire
19
                 RV5600.Left traction motor (60,-1)
20
                                                     moteur droit
                 RVS600.Right traction motor (60,-1) #60%, rot anti-horaire
21
22
         elif xbee_msg = Ox32
                                                                   # à compléter
23
                 NV5600.Left_traction_motor (80,1)
24
                                                                   # à compléter
25
                 RV5600.Right_traction_motor (80,1)
26
                                                                   # à compléter
27
28
          elif xbee msg = 0x35 :
29
                 RVSEOD.Left traction motor (50,1) # Activation du moteur gauche avec une PAM
30
                                                   # à 50% et rotation marche avant
31
                 RV5600.Right traction motor (0,0) # Arrêt du moteur droit
32
          elif xbee msg = 0x34 :
33
                 RV5600.Left traction motor (0,0)
34
                 RV5600.Right traction motor (50,1)
```


Document réponse : DR3

Question 8:

Exigences	Valeur et/ou niveau attendus	Valeur et/ou solutions trouvées	Validité	Justification
Portée communication	>à 10 m	Environ 12 m	validé	Car Tab1 module Zigbee portée de 12 m environ
Autonomie avec pile	Plusieurs années	Plusieurs années	validé	Car tab1autonomie module avec pile est de plusieurs années
Coût module	Inférieur à 2€	1€	validé	Car tab1, prix module estimé à 1€
Détecter filtre plein	Détecter et prévenir l'utilisateur du filtre plein	Capteur + led	validé	capteur de courant et présence led sur boitier

Document réponse : DR4

Question 9:

