MENTION COMPLEMENTAIRE

TECHNICIEN EN ÉNERGIES RENOUVELABLES

<u>ÉPREUVE E1</u> PRÉPARATION D'UNE INTERVENTION

SESSION 2023

DOSSIER TECHNIQUE ET RESSOURCES

MAISONS À HAUTE AMBITION ENVIRONNEMENTALE

Mention complémentaire technicien en énergies renouvelables	2306-MC4 TER E1	Session : 2023	Dossier technique et ressources
Épreuve E1	Durée : 4 H	Coefficient : 4	Page 1 / 14

RAPPORT DE L'ÉTUDE THERMIQUE				
Promoteur	Ville de Mauregard 12 rue de la Grande Allée 77990 MAUREGARD			
Architecte AR-CHE 80 rue du Foubourg Saint Denis 75010 PARIS				
Bureau d'études thermiques	EFFILIOS 1 rue de la Goélette 86 280 Saint Benoit			

PRÉSENTATION DU SITE - DONNÉES GÉNÉRALES

Le présent document a pour objet de définir les travaux de construction de quatre maisons à haute ambition environnementale (trois maisons T4 et une maison T3) dans la commune de Mauregard (77). Ce document présente les résultats des deux études réalisées, se différenciant uniquement sur l'isolation des murs extérieurs. Deux versions sont présentées : Maison à Ossature Bois (MOB) et murs en béton de chanvre.

Données générales communes aux deux versions :

- Zone climatique :

Mauregard; Ile-de-France (77) – Zone H1a; Altitude: 125 m

- Températures :

Température extérieure de référence : -7°C,

Températures intérieures : Entrée, séjour, chambres, cuisine : + 19°C ; SdB : + 21°C

- Perméabilité à l'air :

0,20 m³ /h.m² sous 4 Pa

Rappel des formules de calcul :

Résistance thermique R : La résistance thermique d'une couche homogène, exprimée en m².K/W, se calcule d'après la formule suivante :

$$R = \frac{e}{\lambda}$$

avec e : épaisseur de la couche en m

 λ : conductivité thermique de la couche en W/m.K

Le **Coefficient de transmission surfacique U** d'une paroi s'exprime en W/m².K. Il est donné par la formule suivante :

$$U = \frac{1}{R_{\text{totale}}}$$

où R_{totale} est la somme des résistances thermiques des couches constituant la paroi et des résistances superficielles

intérieures et extérieures.

HYPOTHÈSES DE CALCUL - VERSION MOB

Caractéristiques du bâti :

Murs extérieurs version MOB : $U_{murs\ MOB} = 0$, 140 W/m^2 .K :

- parement pierre + lame d'air
- OSB ép. 1,2 cm avec R = 0,09 m².K/W;
- fibre de chanvre entre montants ép. 20 cm avec R = 5,00 m².K/W;
- fibre de chanvre en complément intérieur ép. 7cm avec R = 1,75 m².K/W;
- OSB ép. 1,2cm avec R = 0,09 m².K/W;
- parement intérieur.

HYPOTHÈSES DE CALCUL – VERSION BÉTON DE CHANVRE

Les caractéristiques sont identiques que pour la solution MOB, à l'exception de la composition des murs extérieurs :

Murs extérieurs version béton de chanvre : Umurs Béton Chanvre = 0, 166 W/m².K :

- parement pierre + lame d'air
- OSB ép. 1,2 cm avec R = 0,09 m² K/W;
- béton de chanvre (type Tradical thermo + chanvribat) ép. 30 cm avec R = 3,95 m².K/W;
- fibre de chanvre en complément intérieur ép. 7cm avec R = 1,75 m².K/W;
- parement intérieur.

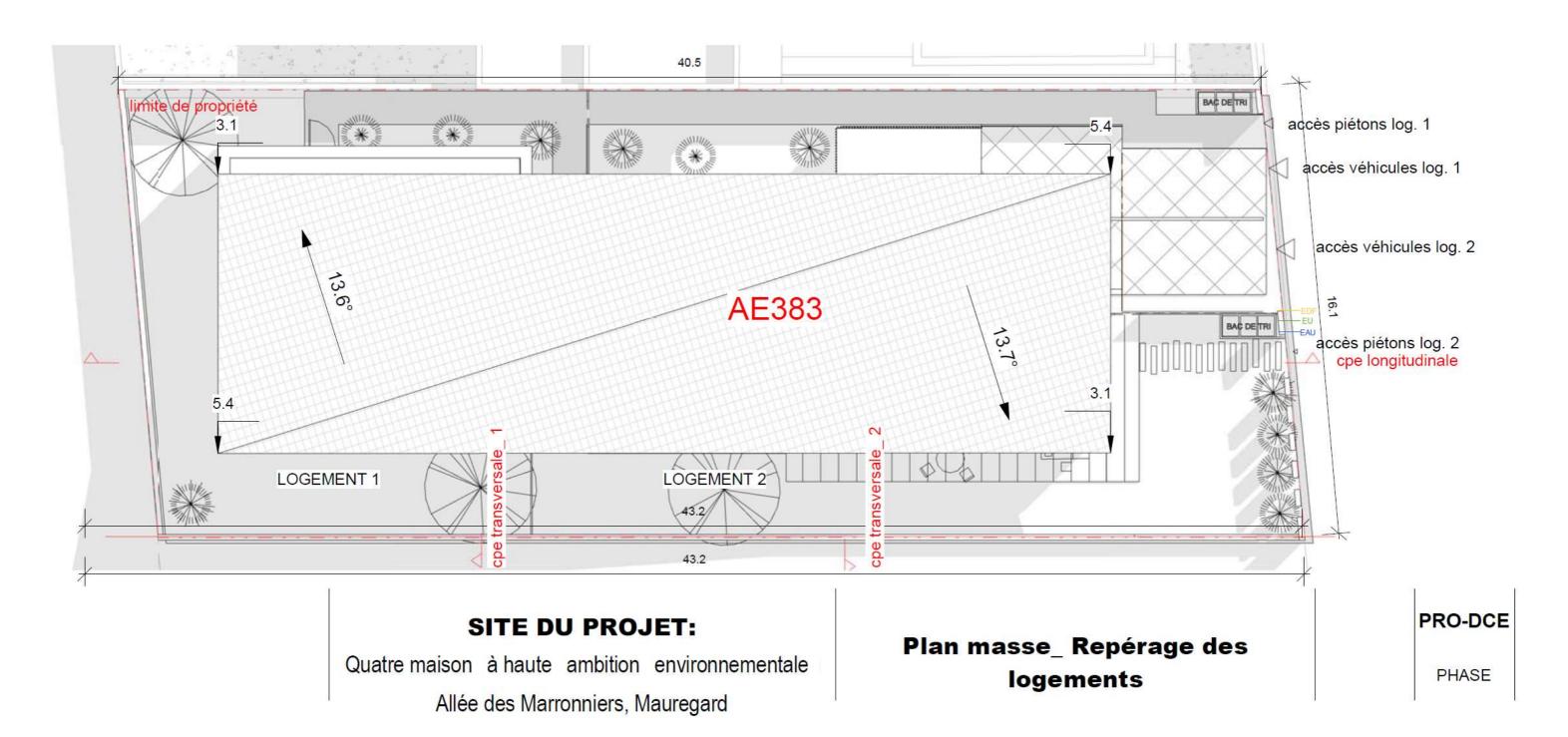
ÉQUIPEMENTS

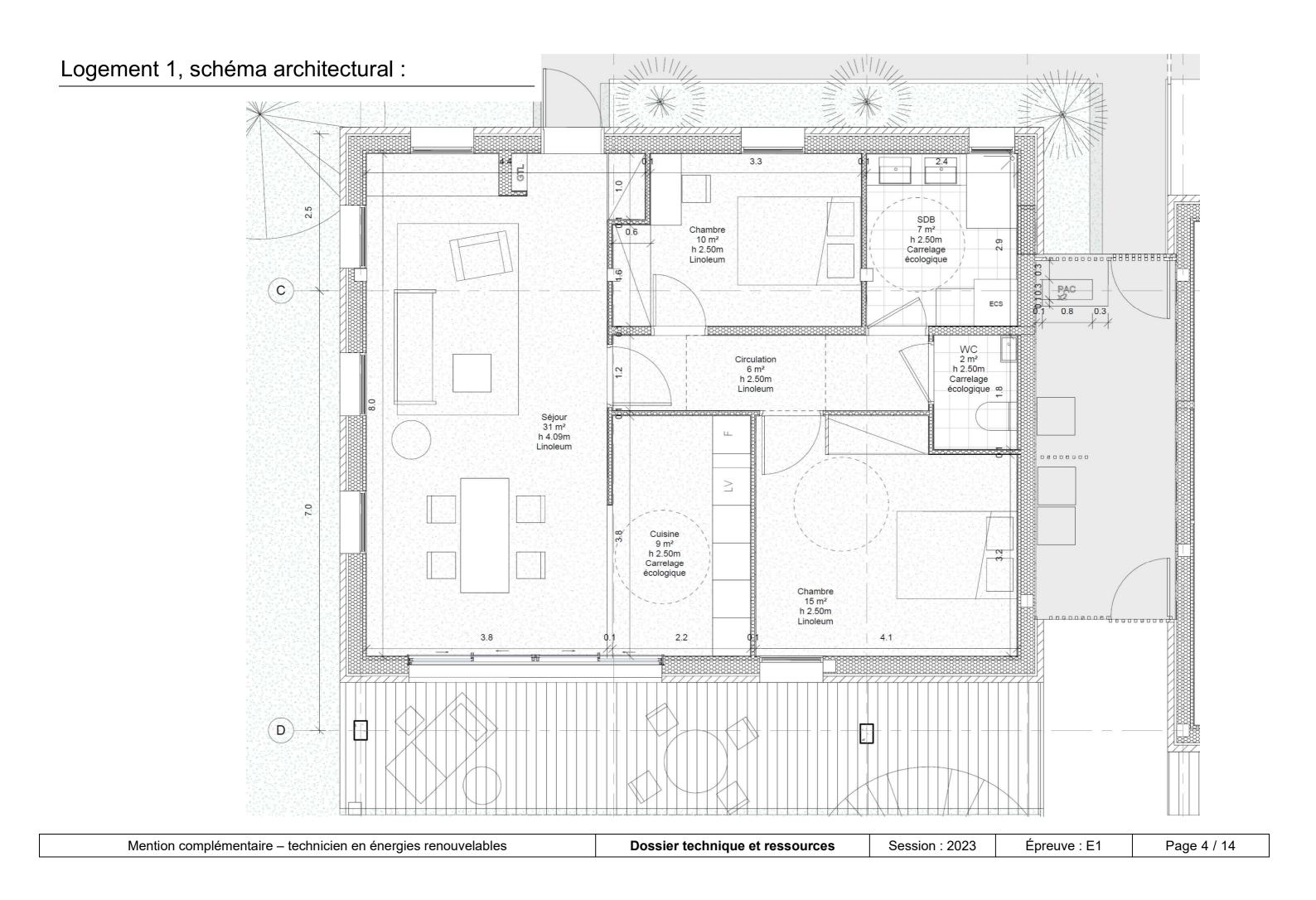
Chauffage et production d'Eau Chaude Sanitaire (ECS) :

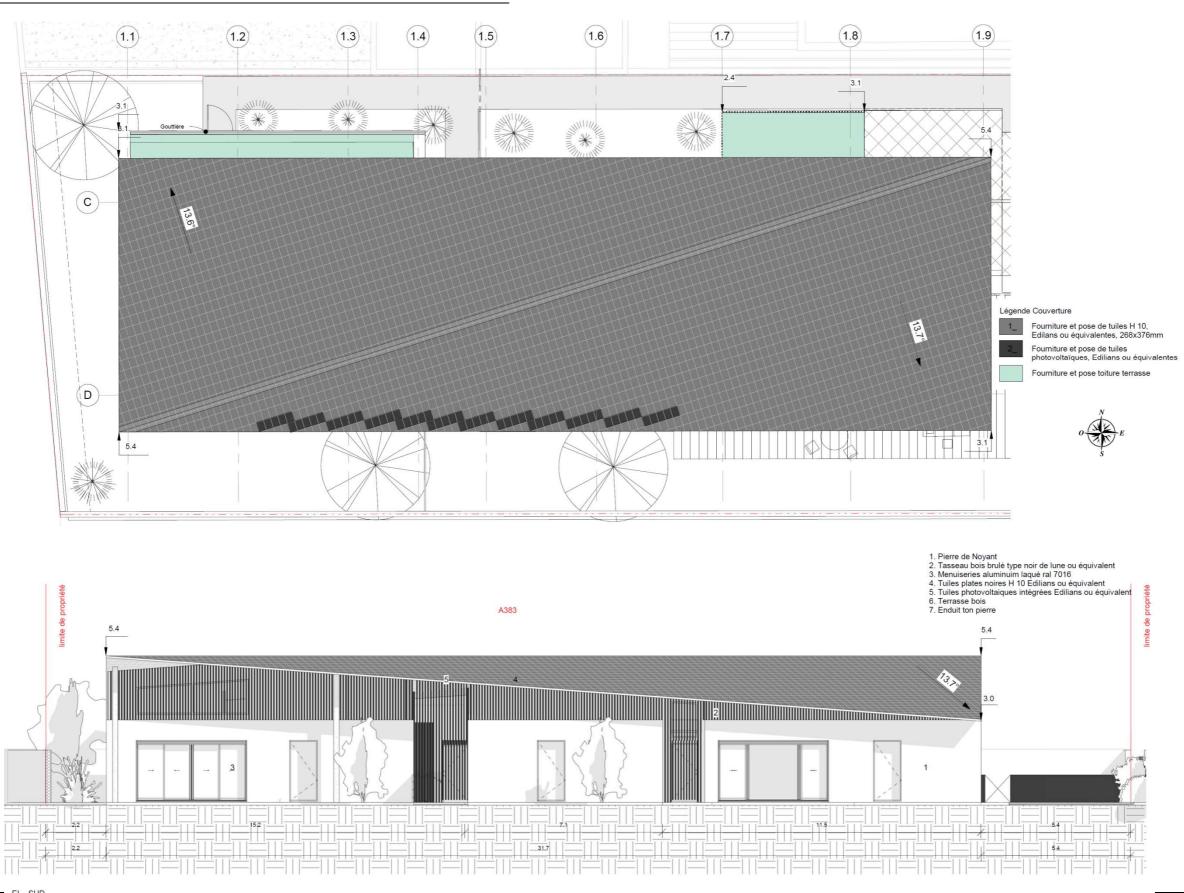
- pompe à chaleur double usage (une par logement) type Atlantic Alfea Extensa Duo. La puissance calorifique requise (+7 °C / 45 °C) est de 5 kW;
- l'émission de chaleur se fait par radiateurs basse température équipés de robinets thermostatiques certifiés. La variation temporelle des robinets thermostatiques est de 0,20 K;
- les salles de bain seront équipées de sèches serviettes électriques. Coef. d'aptitude < 0,1.

Récupérateur de chaleur sur eaux grises :

- type KP1 Milliwatt Obox;
- Ctrans = 0,91;
- efficacité = 71%.


Ventilation:


- ventilation double flux autoréglable ;
- une centrale de traitement d'air par logement, de marque Aldes, modèle Inspir Air Home \$240.


Photovoltaïque :

- mise en place de 6 tuiles photovoltaïques et d'un micro onduleur par logement ;
- les capteurs seront de marque Imerys/Edilians ou techniquement équivalents, type tuile :
 - puissance crête nominale d'une tuile photovoltaïque : 75 W ;
 - dimension d'une tuile photovoltaïque : $(L \times W \times H)$: $1430 \times 45 \times 410$ mm ;
 - 2 X 8 cellules par module, cellules monocristallines 156x156 mm;
 - inclinaison minimale des tuiles : 11°;
 - raccordement des tuiles photovoltaïques par câble solaire anti-UV double isolation 2,5 mm², connectique MC4 ou équivalent avec rallonge éventuelle en fin de chaîne. raccordement à la terre : 6 mm² ;
 - 1 onduleur de type YC600 de marque APS ou équivalent par chaine. Il sera installé en toiture à proximité des tuiles photovoltaïques ;
 - l'alimentation s'effectuera depuis un disjoncteur différentiel 30 mA installé dans la GTL, raccordement par câble de la série U1000R2V 3G2.5mm².

Page 2 / 14

Mention complémentaire technicien en énergies renouvelables	2306-MC4 TER E1	Session : 2023	Dossier technique et ressources
Épreuve E1	Durée : 4 H	Coefficient : 4	Page 5 / 14

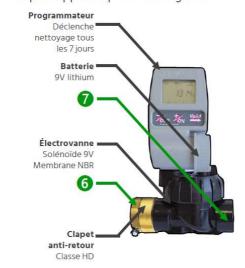
Récupérateur de chaleur sur eaux grises

OBOX

documentation technique

PRÉSENTATION

Obox est un système d'échange thermique autonettoyant.


Il est utilisé pour récupérer la chaleur des eaux grises (toutes eaux usées sauf WC) d'une maison ou d'un appartement et transfère la chaleur vers l'eau froide qui alimente le chauffeeau et/ou le mitigeur de douche.

Obox est fourni en deux parties :

- 1. Un boitier contenant l'échangeur thermique
- 2. Un système de nettoyage programmé autonome évacue les débris et dépôts apportés par les eaux grises
- 1 entrée eau sanitaire F 3/4" laiton chromé écrou libre
- 2 sortie eau préchauffée F 3/4" laiton chromé écrou libre
- 3 entrée nettoyage F 3/4" laiton chromé écrou libre
- 4 entrée eau grise ø 40 mm femelle PVC à coller
- 5 sortie eau grise ø 40 mm femelle PVC à coller
- 6 entrée bloc nettoyage M 3/4" laiton
- 7 sortie bloc nettoyage F 1" plastique

Le mode « nettoyage » d'Obox a lieu tous les 7 jours, à une date et un horaire fixé en usine, pendant 15 à 60 s.

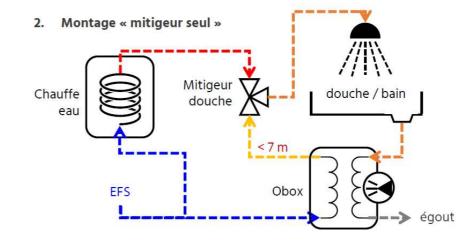
La consommation d'eau liée au nettoyage varie avec la pression disponible sur le réseau d'eau sanitaire et se situe généralement autour de 0,8 m³, soit 0,2 % de la consommation totale d'eau du logement.

Type d'eau traitée : Obox peut traiter de l'eau grise résidentielle, c'est-à-dire issue de douches, bains, lavabos, éviers, lave-vaisselle ou lave-linge. Obox ne doit pas recevoir les eaux usées des WC (eaux noires). Il est possible d'y envoyer les eaux usées de lave-vaisselle, lave-linge, ou cuisine mais la plus value énergétique ne compense que très rarement le surcoût et le supplément de débris / dépôt.

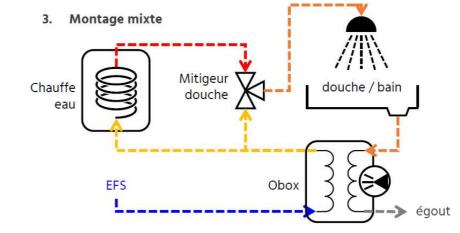
CARACTÉRISTIQUES GÉNÉRALES

Dimensions	418 × 321 × 242 mm
Masse	10,1 kg
Température nominale¹ eau préchauffée	29,9 °C
Puissance récupérée nominale ¹	9,6 kW
Pression d'épreuve	7 bar
Pertes de charge à 12 L/min	0,11 bar
Débit max récupération eaux usées	14 L/min
Débit max évacuation eaux usées	60 L/min
Garantie	5 ans

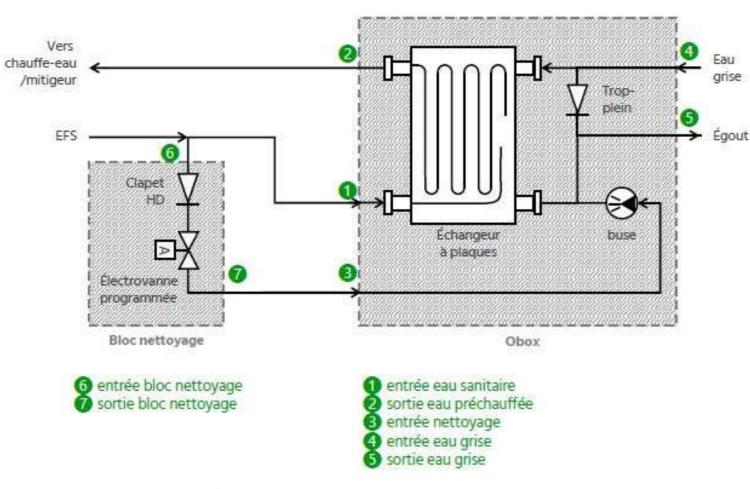
¹ Fonctionnement nominal: eau froide entrant à 12,8 °C à 8 L/min, eau usée entrant à 37 °C à 8 L/min, testé en juin 2013 par le CSTB selon la méthodologie RECADO.


INSTALLATION: RACCORDEMENT EAU SANITAIRE

Obox préchauffe l'eau qui alimente le chauffe-eau et/ou le mitigeur de la douche grâce à la chaleur récupérée des eaux grises évacuées (douches, bains, lave-vaisselle, lave-linge, évier, lavabo...).


Il existe trois types de raccordement de l'eau préchauffée:

- Moins de raccordement hydraulique
- © Pas besoin de mitigeur thermostatique
- Possibilité de raccorder plusieurs douches éloignées
- © Efficacité réduite (54% contre 71%)

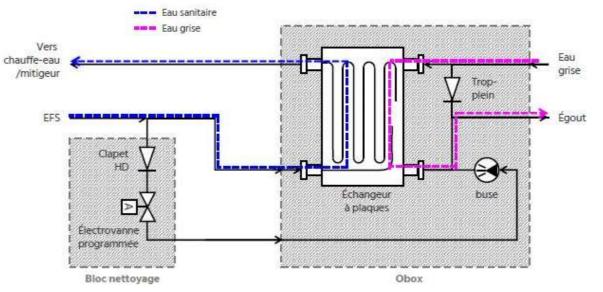

- © Raccordement hydraulique minimum
- Efficacité réduite (57% contre 71%)
- Besoin d'un mitigeur thermostatique
 Maximum 7 m de capalisation entre
- Maximum 7 m de canalisation entre Obox et le mitigeur de douche

- © Efficacité maximale (71%)
- Besoin d'un mitigeur thermostatique
- Maximum 7 m de canalisation entre
 Obox et le mitigeur de douche

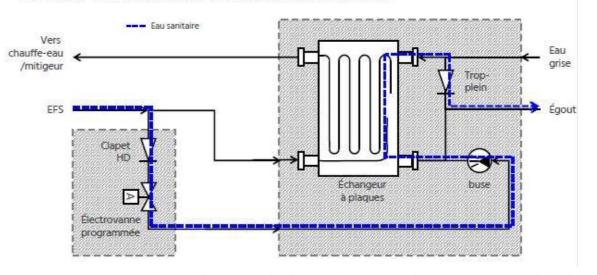
CARACTÉRISTIQUES HYDRAULIQUES

Le schéma hydraulique d'Obox est le suivant :

Type d'eau traitée: Obox peut traiter de l'eau grise résidentielle, c'est-à-dire issue de douches, bains, lavabos, éviers, lave-vaisselle ou lave-linge. Obox ne doit pas recevoir les eaux usées des WC (eaux noires). Il est possible d'y envoyer les eaux usées de lave-vaisselle, lave-linge, ou cuisine mais la plus value énergétique ne compense que très rarement le surcoût et le supplément de débris / dépôt.


Obox peut recevoir des déboucheurs chimiques alcalins (soude, lessive de soude, NaOH). Ne pas Introduire d'acide ou pastille de chlore dans Obox – cela endommagerait l'échangeur thermique.

Le bloc nettoyage fourni fonctionne sur une batterie 9V carrée d'une autonomie supérieure à 5 ans. Prévoir le remplacement au bout de 5 ans.

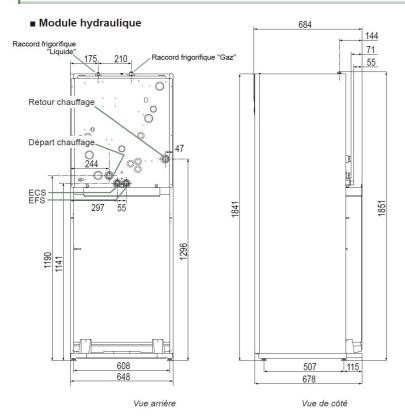

FONCTIONNEMENT : RÉCUPÉRATION DE CHALEUR

Obox préchauffe l'eau qui alimente le chauffe-eau et/ou le mitigeur de la douche grâce à la chaleur récupérée des eaux grises évacuées (douches, bains, lave-vaisselle, lave-linge, évier, lavabo...). Le schéma hydraulique est le suivant :

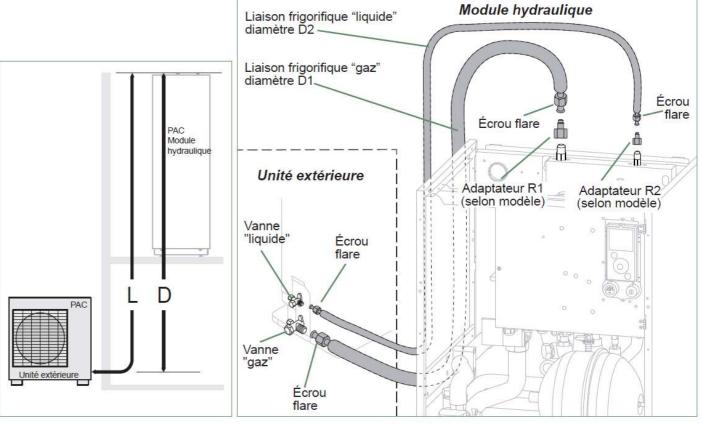
FONCTIONNEMENT: NETTOYAGE AUTOMATIQUE

Obox maintient ses performances d'échange thermique grâce à un nettoyage automatisé hebdomadaire. De l'eau sous pression du réseau est injectée dans le circuit eau grise de l'échangeur thermique, à contre-courant de l'écoulement « récupération de chaleur ». Le schéma hydraulique est le suivant :

Le mode « nettoyage » d'Obox a lieu tous les 7 jours, à une date et un horaire fixé en usine, pendant 15 à 60 s.


La consommation d'eau liée au nettoyage varie avec la pression disponible sur le réseau d'eau sanitaire et se situe généralement autour de 0,8 m³, soit 0,2 % de la consommation totale d'eau du logement.

Il n'est pas nécessaire de prévoir de filtration en amont d'Obox. Le nettoyage automatique est suffisant. Ce nettoyage est autonome et ne nécessite pas d'intervention humaine. Les utilisateurs n'ont pas besoin de modifier leurs habitudes de douche/bain ou leur usage de l'eau dans le logement : les températures et écoulement sont identiques. Seule une chute de pression peut être perçue ; cette chute de pression n'affecte que faiblement les débits disponibles aux autres points de puisage si les canalisations respectent les DTU en vigueur.


Pompe à Chaleur double usage

▶ Caractéristiques générales

Dénomination modèle	Alféa Extensa Duo A.I.	5	6	8	10
Performances nominales chauffage (T° extérieu	re / T° départ)				
Puissance calorifique					
+7°C / +35°C - Plancher chauffant	kW	4.50	6.00	7.50	10.00
-7°C / +35°C - Plancher chauffant	kW	4.10	4.60	5.70	7.40
+7°C / +45°C - Radiateur BT	kW	4.50	5.10	6.20	8.27
-7°C / +45°C - Radiateur BT	kW	4.10	4.45	5.05	7.40
+7°C / +55°C - Radiateur	kW	4.50	4.50	5.00	7.00
-7°C / +55°C - Radiateur	kW	3.70	3.85	5.20	7.00
Puissance absorbée					
+7°C / +35°C - Plancher chauffant	kW	1.00	1.41	1.84	2.49
-7°C / +35°C - Plancher chauffant	kW	1.47	1.74	2.23	2.97
+7°C / +45°C - Radiateur BT	kW	1.31	1.50	1.87	2.53
-7°C / +45°C - Radiateur BT	kW	1.86	2.04	2.47	3.70
+7°C / +55°C - Radiateur	kW	1.79	1.79	1.94	2.86
-7°C / +55°C - Radiateur	kW	2.20	2.33	3.34	4.15
Coefficient de performance (COP)	(+7°C / + 35°C)	4.52	4.26	4.08	4.02
Caractéristiques électriques					
Tension électrique (50 Hz)	V		23	30	
Courant maximal appareil	A	11	12.5	17.5	18.5
Intensité nominale	Α	4.5	6.3	8.1	10.9
Courant maximal appoint électrique Chauffage	A		13.05	/ 26.1	
Puissance appoint électrique Chauffage	kW	3 (6 kW en option)			
Puissance réelle absorbée Circulateur	W		2	4	
Puissance maximale absorbée Unité extérieure	W	2530	2875	4025	4255
Puissance appoint électrique ECS	W 1500		00		

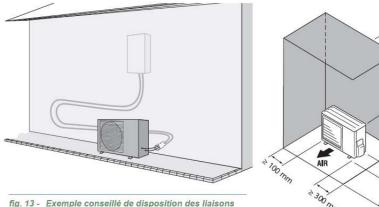
Raccordement des liaisons frigorifiques (diamètres et longueurs permises) – (fig 20)

PAC modèle		Alféa Extensa Duo A.I. 5, 6		Alféa Extensa Duo A.I. 8		Alféa Extensa Duo A.I. 10	
		gaz	liquide	gaz	liquide	gaz	liquide
Raccords unité extérieure		1/2"	1/4"	5/8"	1/4"	5/8"	3/8"
	Diamètre	(D1) 1/2"	(D2) 1/4"	(D1) 5/8"	(D2) 1/4"	(D1) 5/8"	(D2) 3/8"
Liaisons Longueur minimale (L)		5		5		5	
frigorifiques Longueur maximale** (L)	3	0	3	80	3	0	
	Dénivelé maximal** (D)	20		20		20	
Adaptateur (re måle-femelle	éduction)	(R1) 1/2" - 5/8"	(R2) 1/4" - 3/8"	sans	(R2) 1/4" - 3/8"	sa	ns
Raccords module hydraulique 5/		5/8"	3/8"	5/8"	3/8"	5/8"	3/8"

^{** :} En tenant compte de la charge complémentaire éventuelle

Pose des liaisons et implantation

▶ Pose des liaisons frigorifiques


Manipuler les tuyaux et effectuer leur traversée (dalle ou murs) avec les bouchons de protection en place ou après brasure.

Respecter les diamètres des tuyauteries (fig. 20). Respecter les distances maxi et mini entre le module hydraulique et l'unité extérieure (fig. 20), la garantie des performances et de la durée de vie du

La longueur minimale des liaisons frigorifiques est de 5 m pour un fonctionnement correct.

La garantie de l'appareil serait exclue en cas d'utilisation de l'appareil avec des liaisons frigorifiques inférieures à 5 m (tolérance +/-10%).

Épreuve : E1 Page 8 / 14 Mention complémentaire – technicien en énergies renouvelables Dossier technique et ressources Session: 2023

Raccordements électriques :

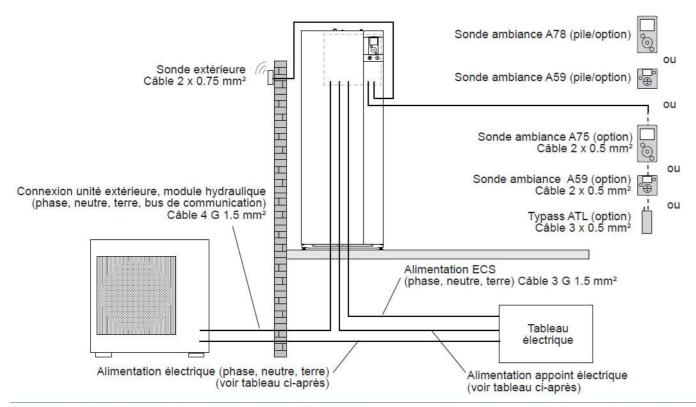


fig. 37 - Schéma d'ensemble des raccordements électriques pour une installation simple (1 circuit de chauffe)

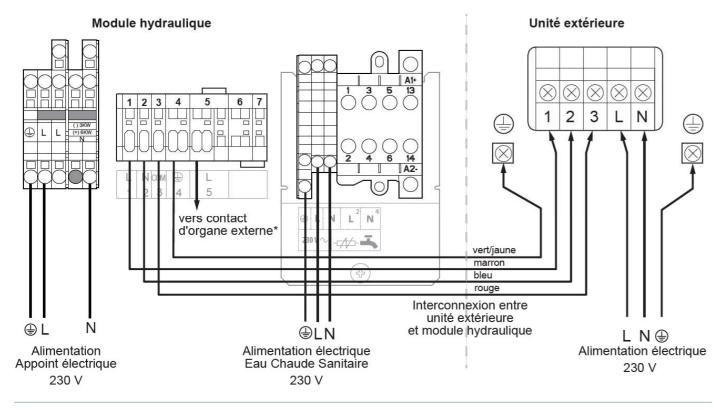


fig. 41 - Raccordement aux borniers et relais de puissance

▶ Section de câble et calibre de protection

Les sections de câble sont données à titre indicatif et ne dispensent pas l'installateur de vérifier que ces sections correspondent aux besoins et répondent aux normes en vigueur.

· Alimentation de l'unité extérieure

Pompe à chaleur (PAC)		Alimentation électrique 230 V - 50 Hz		
Modèle	Puissance maxi absorbée	Câble de raccordement (1) (phase, neutre, terre)	Calibre disjoncteur courbe C	
Alféa Extensa Duo A.I. 5	2530 W	3 G 1.5 mm²	16 A	
Alféa Extensa Duo A.I. 6	2875 W	3 G 1.5 IIIII-	10 A	
Alféa Extensa Duo A.I. 8	4025 W		20.4	
Alféa Extensa Duo A.I. 10	4255 W	3 G 2.5 mm²	20 A	

Interconnexion entre unité extérieure et module hydraulique

Le module hydraulique est alimenté par l'unité extérieure, pour cela on utilise un câble 4 G 1.5 mm² (phase, neutre, terre, bus de communication).

Alimentation ECS

La partie ECS est alimenté directement par un câble 3 G 1.5 mm² (phase, neutre, terre). Protection par disjoncteur (16 A courbe C).

· Alimentation de l'appoint électrique

Le module hydraulique comporte un appoint électrique installé dans le ballon échangeur.

Pompe à chaleur	Appoints électriques		Alimentation des ap	points électriques
Modèle	Puissance	Intensité nominale	Câble de raccordement (1) (phase, neutre, terre)	Calibre disjoncteur courbe C
Alféa Extensa Duo A.I. 5, 6, 8 et 10	3 kW	13 A	3 G 1.5 mm²	16 A
Alféa Extensa Duo A.I. 5, 6, 8 et 10 avec kit Relais Appoint 6 kW	2 x 3 kW	26.1 A	3 G 6 mm²	32 A

⁽¹⁾ Câble type 60245 IEC 57 ou 60245 IEC 88.

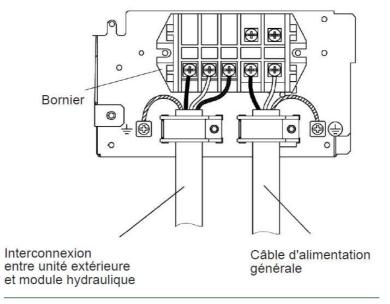


fig. 38 - Connexions au bornier de l'unité extérieure

▶ Sonde extérieure

La sonde extérieure est nécessaire au bon fonctionnement de la PAC.

Consulter les instructions de montage sur l'emballage de la sonde.

Placer la sonde sur la façade la plus défavorisée, en général la façade nord ou nord-ouest.

Elle ne doit en aucun cas être exposée au soleil matinal. Elle sera installée de manière à être facilement accessible mais au minimum à 2.5 m du sol.

Il faut impérativement éviter les sources de chaleur comme les cheminées, les parties supérieures des portes et des fenêtres, la proximité des bouches d'extraction, les dessous de balcons et d'avant-toits, qui isoleraient la sonde des variations de la température de l'air extérieur.

 Raccorder la sonde extérieure au connecteur X84 (bornes M et B9) de la carte de régulation de la PAC.

➤ Sonde d'ambiance (option)

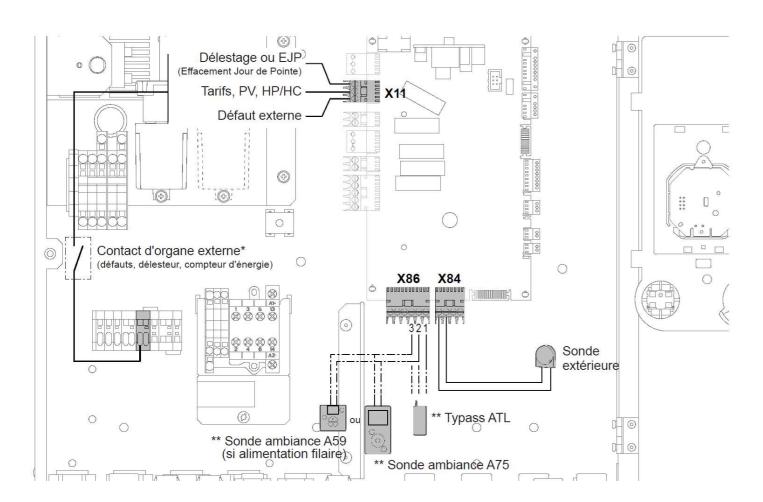
La sonde d'ambiance est facultative.

Consulter les instructions de montage sur l'emballage de la sonde.

La sonde doit être installée dans la zone de séjour, sur une cloison bien dégagée. Elle sera installée de manière à être facilement accessible.

Éviter les sources de chaleur directe (cheminée, téléviseur, plans de cuisson, soleil) et les zones de courant d'air frais (ventilation, porte).

Les défauts d'étanchéité à l'air des constructions se traduisent souvent par un soufflage d'air froid par les gaines électriques. Colmater les gaines électriques si un courant d'air froid arrive au dos de la sonde d'ambiance.


▼ Installation d'une sonde d'ambiance

Sonde d'ambiance A59

 Raccorder l'alimentation de la sonde sur le connecteur X86 de la carte de régulation PAC à l'aide du connecteur fourni (bornes 2 et 3).

Sonde ambiance A75

 Raccorder l'alimentation de la sonde sur le connecteur X86 de la carte de régulation PAC à l'aide du connecteur fourni (bornes 2 et 3).

Schéma architectural de la salle de bain

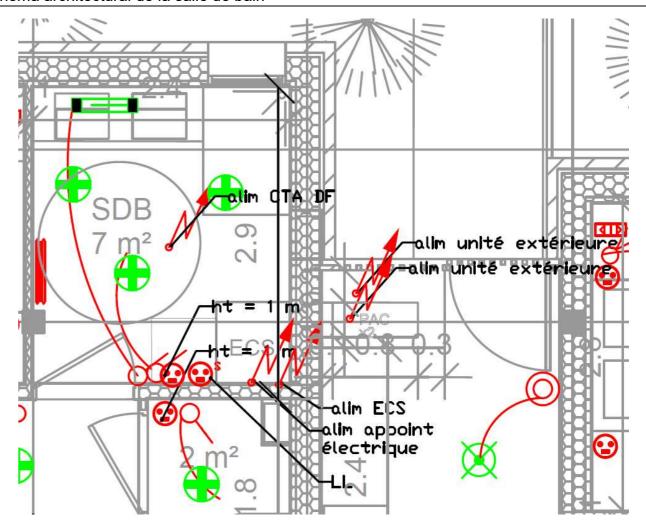
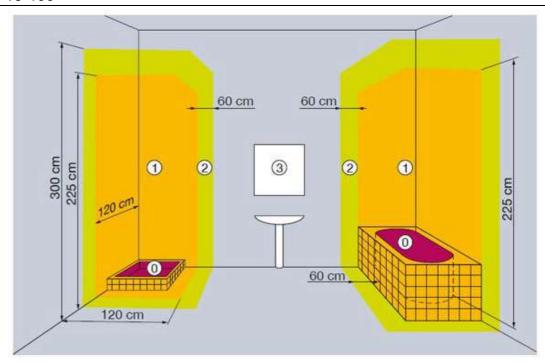
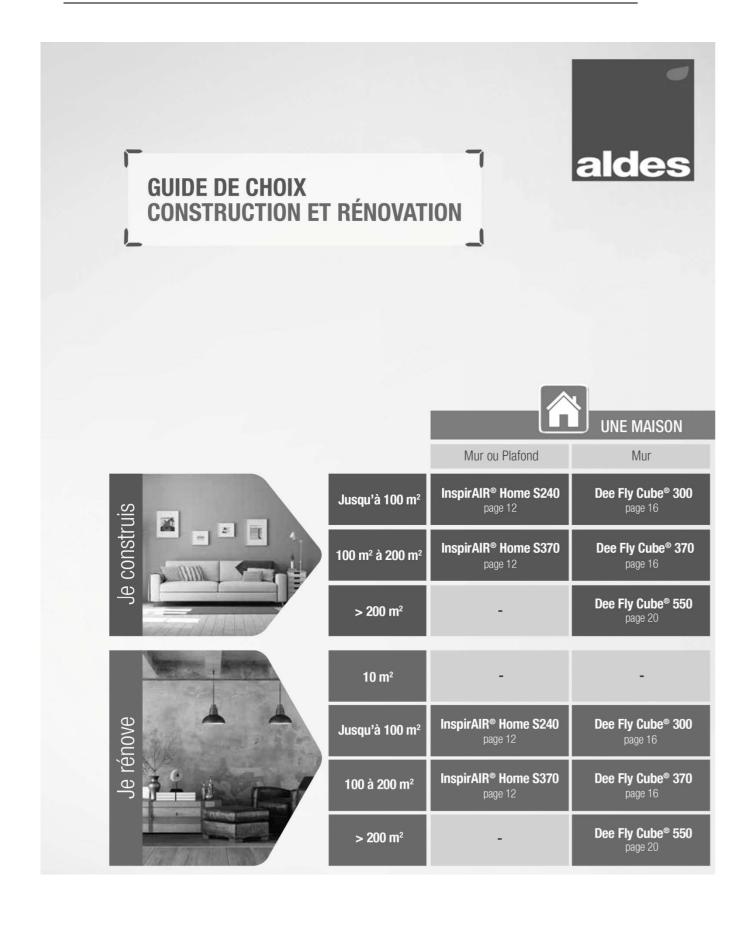
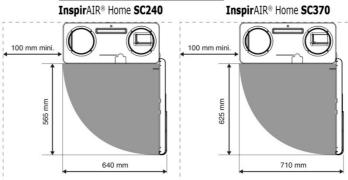
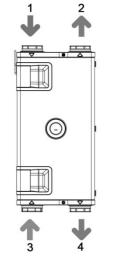




Schéma des volumes de sécurité dans un local contenant une baignoire ou une douche selon la norme NFC 15-100


PURIFICATION D'AIR RÉSIDENTIELLE



MISE EN ŒUVRE

- Produit fixé verticalement au mur ou horizontalement au pla-fond, montage à plat au sol interdit.
- Berceau de fixation livré avec version InspirAIR® Home SC
- Prévoir sur le réseau d'évacuation d'eau de l'habitation, un tuyau en PVC D32 pour le raccordement des condensats.

DÉGAGEMENT À PRÉVOIR POUR ACCÉDER À L'ÉCHANGEUR

1 Air neuf (extérieur) 2 Air rejeté (extérieur)

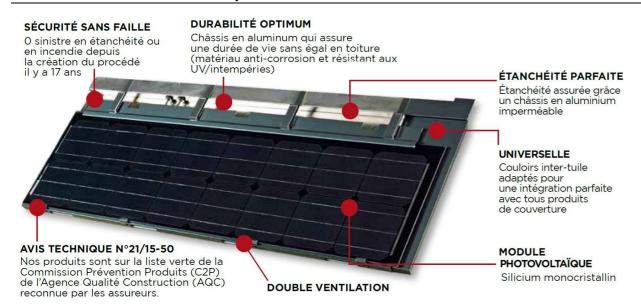
3 Air extrait (intérieur) 4 Air insufflé (intérieur)

ALDES - Gamme de gaines pour VMC

Simple peau standard

Désignation	Code / Référence
Algaine Ø 80 - dévidoir de 10m	1109116
Algaine Ø 80 - dévidoir de 15m	1109116
Algaine Ø 80 - dévidoir de 20m	1109116
Algaine Ø 80 - dévidoir de 25m	1109117
Algaine Ø 125 - dévidoir de 5m	1109117
Algaine Ø 125 - dévidoir de 10m	1109117
Algaine Ø 125 - dévidoir de 15m	1109117
Algaine Ø 125 - dévidoir de 20m	1109117

Double peau épaisseur 25	mm
Désignation	Code / Référence
Algaine isolée 25 mm Ø 80 - dévidoir de 10m	11091184
Algaine isolée 25 mm Ø 80 - dévidoir de 15m	11091185
Algaine isolée 25 mm Ø 80 - dévidoir de 20m	11091186
Algaine isolée 25 mm Ø 80 - dévidoir de 25m	11091187
Algaine isolée 25 mm Ø 125 - dévidoir de 5m	11091188
Algaine isolée 25 mm Ø 125 - dévidoir de 10m	11091189
Algaine isolée 25 mm Ø 125 - dévidoir de 15m	11091190
Algaine isolée 25 mm Ø 125 - dévidoir de 20m	11091191


Simple peau fibrée

Désignation	Code / Référence
Algaine FV Ø 80 - dévidoir de 10m	11091176
Algaine FV Ø 80 - dévidoir de 15m	11091177
Algaine FV Ø 80 - dévidoir de 20m	11091178
Algaine FV Ø 80 - dévidoir de 25m	11091179
Algaine FV Ø 125 - dévidoir de 5m	11091180
Algaine FV Ø 125 - dévidoir de 10m	11091183
Algaine FV Ø 125 - dévidoir de 15m	11091182
Algaine FV Ø 125 - dévidoir de 20m	11091183

Double peau épaisseur 50mm

Désignation	Code / Référence
Algaine isolée 50 mm Ø 80 - dévidoir de 10m	11091192
Algaine isolée 50 mm Ø 80 - dévidoir de 15m	11091193
Algaine isolée 50 mm Ø 80 - dévidoir de 20m	11091194
Algaine isolée 50 mm Ø 80 - dévidoir de 25m	11091195
Algaine isolée 50 mm Ø 125 - dévidoir de 5m	11091196
Algaine isolée 50 mm Ø 125 - dévidoir de 10m	11091197
Algaine isolée 50 mm Ø 125 - dévidoir de 15m	11091198
Algaine isolée 50 mm Ø 125 - dévidoir de 20m	11091199

Tuiles Photovoltaïques

Conditions de montage, orientation optimale :

Inc Orientatio	linaison (pente) n		15° (27%)	30° (58%)	45° (100%)	60° (173%)	75° (373%)	90°	23 1 1 1 1 20
112.5°	Est	90%	88%	88%	79%	71%	62%	52%	
SE SE IS	Sud Est	9117/2	95%	96%	93%	87%	77%	65%	65
	§∽ Sud	90%	97%	100%	98%	92%	83%	70%	50
2000 000 000 000 000 000 000 000 000 00	Sud Ouest	90%	95%	96%	93%	87%	77%	65%	0 70 65
	Ouest	90%	88%	85%	79%	71%	62%	52%	5

Performances électriques :

Les performances électriques des modules ont été déterminées par flash test et ramenées ensuite aux conditions STC (Standard Test Conditions : éclairement de 1 000 W/m² et répartition spectrale solaire de référence selon la norme CEI 60904-3 avec une température de cellule de 25 °C).

Module	CAP-IS-75- M-16	CAP-IS-50- M-10	
P _{mpp} (W)	75	50	
U _{co} (V)	10,4	6,61	
U _{mpp} (V)	8,74	5,59	
Icc (A)	9,31	9,41	
I _{mpp} (A)	9,00	9,05	
Courant inverse maximum (A)	20		

Avec:

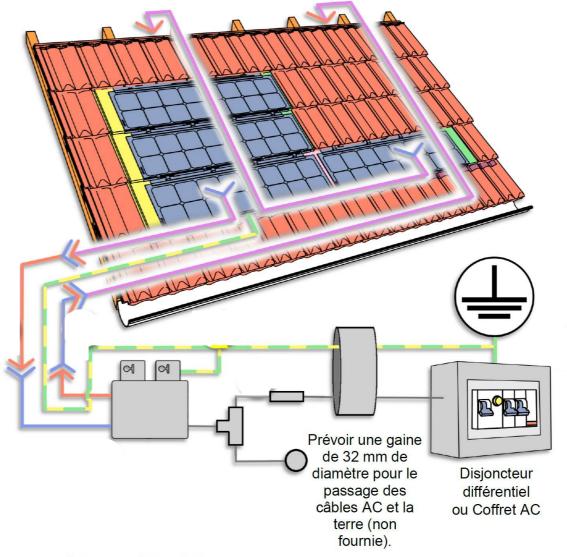
.....

 $P_{mpp}\,$: Puissance au point de puissance

maximum

Uoc : Tension en circuit ouvert.

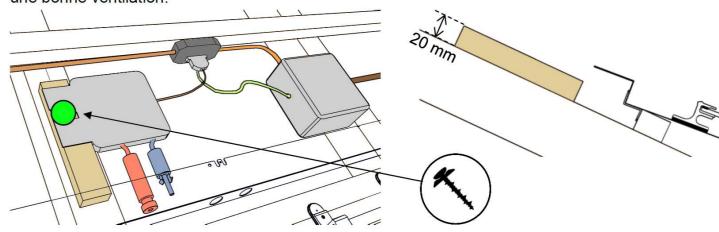
 \mathbf{U}_{mpp} : Tension nominale au point de puissance


aximum.

Icc : Courant de court-circuit.

 I_{mpp} : Courant nominal au point de puissance

maximum


Câblage Appareillages:

Le micro-onduleur peut être fixé sur :

- les liteaux de support de couverture.
- la charpente.
- les rails sous modules photovoltaïques.

Ménager une lame d'air libre de 1,5 cm minimum autour du micro-onduleur afin de garantir une bonne ventilation.

Fiche Technique | Micro-onduleur YC600

Région **EMEA** Modèle YC600-EU

Données d'antrés (DC)

Données d'entrée (DC)	
Puissance du module recommandée (STC)	250Wc-375Wc /modules PV de 60 et 72- cellules
Plage de Tension MPPT	22V-45V
Plage de tension de fonctionnement	16V-55V
Tension d'entrée DC maximum	55V
Courant d'entrée DC maximum Données de sortie (AC)	12A x 2
Puissance de sortie maximale	600 VA
Tension de sortie nominale	230V
Courant de sortie nominale	2.39A
Nombre Maximum d'unités par branche de 20A	7 /14 modules
Fréquence nominale	50Hz
Facteur de Puissance (Adjustable)	0.7 avance0.7 retard
Taux de Distorsion Harmonique (THDI) Rendement	<3%
Rendement maximum	95.5%
Rendement MPPT Nominal	99.5%
Consommation électrique de nuit	20mW

Enphase Micro-onduleurs et monitoring

IQ7-60-2-FR Enphase IQ 7 Micro™, +350Wc puissance d'entrée.

IQ7PLUS-72-2-FR Enphase IQ 7 Micro™, +440Wc puissance d'entrée.

IQ7X-96-2-INT Enphase IQ 7 Micro™, +460Wc puissance d'entrée.

Micro Onduleur EnPhase IQ 7

Enphase Micro-onduleurs IQ 7, IQ 7+, et IQ 7X

DONNÉES D'ENTRÉE (DC)	IQ7-60-2-INT	IQ7PLUS-72-2-INT	IQ7X-96-2-INT
Puissance de module recommandée (STC) ¹	235 W - 350 W + 1	235 W - 440 W + 1	320 W - 460 W + 1
Compatibilité module voir outil en ligne 2	60 cellules uniquement	60 & 72 cellules	96 cellules
Tension d'entrée DC max	48 V	60 V	79.5 V
Plage de tension MPP	27 V - 37 V	27 V - 45 V	53 V - 64 V
Plage de tension de fonctionnement	16 V - 48 V	16 V - 60 V	25 V - 79.5 V
Tension de départ min/max.	22 V / 48 V	22 V / 60 V	33 V / 79.5 V
Courant de court-circuit DC max	15 A	15 A	10 A
Port DC de classe de surtension	II	II	II
Réalimentation port DC avec une seule défaillance Configuration en réseau PV	0 A Protection latérale AC nécessitant max 20A par circuit de dériv		0 A rivation.
DONNÉES DE SORTIE (AC)	IQ 7	IQ 7+	IQ 7X
Puissance de sortie max.	250 VA	295 VA	320 VA
Puissance de sortie nominale max.	240 VA	290 VA	315 VA
Tension/Plage de tension nominale (L-N)²	230 V / 184-276 V	230 V / 184-276 V	230 V / 184-276 V
Courant de sortie maximum	1.04 A	1.26 A	1.37 A
Fréquence nominale	50 Hz	50 Hz	50 Hz
Plage de fréquence	45 - 55 Hz	45 - 55 Hz	45 - 55 Hz
Nombre maximum d'unités par branche de 20 A ³	15 (Ph + N) 45 (3Ph + N)	12 (Ph + N) 36 (3Ph+N)	11 (Ph + N) 33 (3Ph + N)
Nombre maximum d'unités par câble	15 (Ph+N), 24 (3Ph+N)	12 (Ph+N), 21 (3Ph+N)	11 (Ph + N), 21 (3Ph + N)
RENDEMENT	@230 V	@230 V	@230 V
Rendement EN 50530 (UE)	96.5 %	96.5 %	96.5 %
DONNÉES MÉCANIQUES			
Plage de témpérature ambiante de fonctionnement	-40°C à +65°C	-40°C à +65°C	-40°C à +60°C
Indice de protection IP	Extérieur - IP67		
Type de connecteur DC	MC4 ou Amphenol H4 UTX	nécessite un adaptateur Q-DCC-	5)

Cables et accessoires Enphase Q

Enphase Q Cable™

2.5mm², monophasé, espacement connecteurs 1,3 m. 240 connecteurs par carton & 1 connecteur mâle et femelle.

Enphase Q Cable™

2.5mm², monophasé, espacement connecteurs 2,0 m. 240 connecteurs par carton & 1 connecteur mâle et femelle.

Enphase Q Cable™

2.5mm², triphasé, espacement connecteurs 1,3 m. 200 connecteurs par carton & 1 connecteur mâle et femelle.

Q-TERM-R-10

Enphase Q Embout de terminaison. Pour installation monophasé.

Q-TERM-3P-10

Enphase Q Embout de terminaison. Pour installation triphasé.

Q-DCC-2-INT

Enphase IQ Adaptateur DC MC4 de remplacement Adaptateur DC MC4 (tension max 100 VDC).

Mention complémentaire – technicien en énergies renouvelables

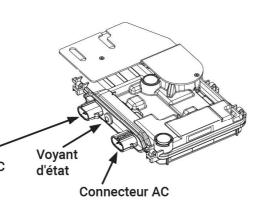
Dossier technique et ressources

Session: 2023

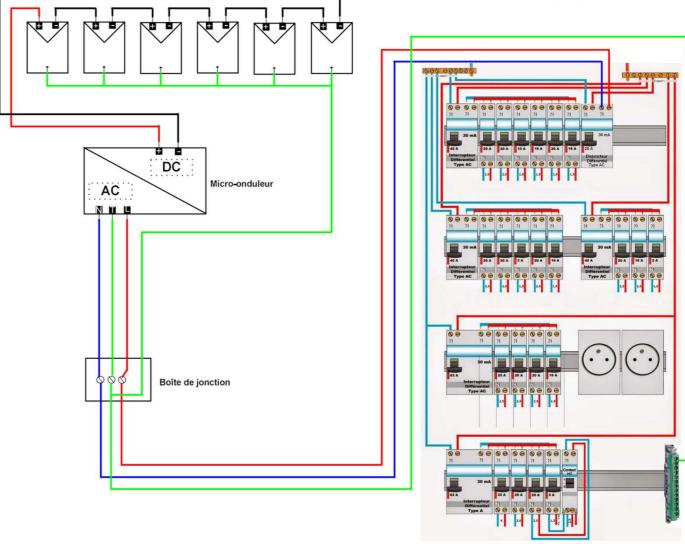
Épreuve : E1

Page 13 / 14

Connexion des modules PV


DANGER! Risque d'électrocution. Les conducteurs DC de ce système photovoltaïque ne sont pas mis à la terre et risquent d'être sous tension.

- 1) Connectez les câbles de sortie DC de chaque module PV aux connecteurs d'entrée DC du micro-onduleur correspondant.
- Vérifiez le voyant du côté du connecteur du micro-onduleur. Le voyant clignote six fois lors de la mise sous tension DC.
 Connecteur DC



- 1) Fermez le disjoncteur principal de connexion réseau. Votre système va commencer à produire de l'électricité **après un temps** d'attente de 5 minutes.
- 2) Vérifiez le voyant sur le côté du connecteur du micro-onduleur :

Voyant	Indique			
Vert clignotant	Conditions de fonctionnement normales. Le réseau AC est normal et la communication avec l'Envoy-S est établie.			
Orange clignotant	Le réseau AC est normal, mais la communication avec l'Envoy-S n'est pas établie.			
Rouge clignotant	Le réseau AC est soit absent, soit en dehors des plages limites de fonctionnement.			
Rouge fixe	Présence d'une condition « Résistance DC faible, système hors tension » active. Pour réinitialiser, reportez-vous au <i>Manuel d'installation</i>			

