BACCALAURÉAT PROFESSIONNEL AÉRONAUTIQUE OPTION : SYSTÈMES

ÉPREUVE E2(U2) – EXPLOITATION DE LA DOCUMENTATION TECHNIQUE

CORRIGÉ

BARÈME DE TEMPS

	TEMPS CONSEILLÉ		
Dossier Technique	Lecture	30 min	
Sujet	Lecture	20 min	
	Partie 1	Règlementation et sécurité	30 min
	Partie 2	Étude du circuit de démarrage	60 min
	Partie 3	Étude du démarreur à air	90 min
Relecture	•		10 min

Session

MISE EN SITUATION

Un problème informatique au niveau des guichets d'enregistrement a retardé l'embarquement des passagers de 30 minutes. Pour assurer son horaire de décollage, sous la pression de la compagnie aérienne, l'équipage débute la checklist de démarrage moteurs.

Le démarrage du moteur 1 échoue pour une raison inconnue. En application de la procédure de démarrage, l'équipage entreprend alors une ventilation sèche du moteur 1 afin d'évacuer une éventuelle accumulation de carburant dans la chambre de combustion. Au bout d'une minute, le pilote coupe le démarreur pour interrompre la ventilation moteurs, après avoir confirmé l'absence d'écoulement de carburant auprès du mécanicien au sol. Il relance la séquence de démarrage du moteur 1 alors que l'indicateur de régime N2 indique 15%. Celui-ci commence à monter en rotation, puis le régime chute brutalement.

Au même moment, au sol, le mécanicien de piste observe une quantité importante d'étincelles qui sort du moteur.

Vous allez étudier le circuit de démarrage afin d'identifier l'origine du problème.

PARTIE 1

Règlementation et sécurité

Le mécanicien désigné pour effectuer le dépannage de l'appareil va intervenir directement sur le parking, cette opération relevant d'une maintenance en ligne.

Question 1 : Cocher le cadre réglementaire dans lequel le technicien doit se trouver. Part 145 X Part 147 □ Part 21 □ Question 2 : Préciser le type et la catégorie de licence que doit détenir le mécanicien habilité à signer

B1-1	B1 accepté

CORRIGÉ

démarrage.				ement du cir	cuit de	
IPC □ TSM □	SRM TCM		AMM AWM	X		
Question 4 : Avant technique (DT 2/13).						
Qui car.le.S/N.de.l'a	•					
Question 5 : Avant laquelle (DT 3/13).	de lancer les réact					
Réponse	Be careful that t	he vicinity of the	engine is free fro	om any objec	t witch can	e
angiagested or dama						
	S'assurer qu'il n'y a					
T ragération u les endo	ommager.	en			franç	ais
•						
Question 6 : Conce		n au sol, citer le	s zones dangere			
	ernant le mécanicier onctionnement des r Avoid danger a	n au sol, citer le éacteurs (DT 3/1 reas in front and	s zones dangere 3). rear of engine du	euses où il d	doit éviter de	e s
Question 6 : Conce trouver pendant le fo Réponse	ernant le mécanicier onctionnement des r Avoid danger a	n au sol, citer le éacteurs (DT 3/1 reas in front and	s zones dangere 3). rear of engine du	euses où il d uring ground	doit éviter de running	e se
Question 6 : Conce trouver pendant le fo Réponse	ernant le mécanicier onctionnement des r Avoid danger a	n au sol, citer le éacteurs (DT 3/1 reas in front and	s zones dangere 3). rear of engine du	euses où il d uring ground	doit éviter de running	e se
Question 6 : Conce trouver pendant le fo Réponse anglations	ernant le mécanicier onctionnement des r Avoid danger a	n au sol, citer le éacteurs (DT 3/1 reas in front and	s zones dangere 3). rear of engine du	euses où il d uring ground	doit éviter de running	e se

l'APRS.

CODE: C2206-AER B U2 1

Question 7 : Citer les	s équipements de	protection indivi	duelle que le mé	écanicien doit porte	er.
Réponse	Ear and eye pr	rotective equipm	ent must be wor	n by personnel	en
anglais :					
Traduction en frança auditive.	is:Le persoi	nnel doit porter o	des équipements		uelle et
		PARTIE	2		
	Étuc	de du circuit de	démarrage		
L'échec du 1er déma Lors du second déma Vous allez étudier le shooting ».	arrage, le régime l	N2 du corps HP	atteint 20% puis	chute rapidement	
Question 8 : D'aprè turboréacteurs.	s vos connaissar	nces, citer trois	types de déma	rreurs utilisés pou	ur lancer les
	Electrique				
	Turbodémarreu	r			
	Démarreur à air				
Question 9 : Identifie		-		en air du démarre	
groupe de piste					
un.autre.réacte	ur déjà démarré				
Question 10 : Déterr	niner les caractéri	stiques du turbo	réacteur équipa	nt cet avion.	
Nombre de corps	2	No	ombre de flux	2	

" HOUDIG SHOULING "	à suivre pour assur		•	er la branche principale du
1 []	2 🛚		3 🗆
D'après le « trouble valve.	shooting », le méca	nicien doit m	naintenant contrôler le fo	nctionnement de la starte
Question 12 : Releversesort (DT 5/13).	ver le diamètre de la	membrane	de la « starter valve » et	la valeur du tarage de sor
Diamètre d de la m	embrane :	80 mm	Force du ressort :	510 N
Question 13 : Calcu	ـــــــ uler, en Psi, la press	sion minimale	ı e permettant l'ouverture	de la membrane.
	_			4 = 0,005024.m²
Force ressort :: 5	510.N			
				de l'indicateur double de
l'overhead panel. El	le est de 35 Psi.			
Question 14 : D'ap	orès votre calcul de		ttendue à la question 19 en air de la starter valve	
Question 14 : D'ap	orès votre calcul de			
Question 14 : D'ap mécanicien, déterm	orès votre calcul de iner si la pression d'	alimentation	en air de la starter valve	e est suffisante.
Valeur attendue 14,72 Psi	vrès votre calcul de iner si la pression d' valeur mesurée 35 Psi	alimentation La pression	en air de la starter valve Conséquence n est suffisante : oui 🛚	e est suffisante.
Question 14 : D'ap mécanicien, déterm Valeur attendue 14,72 Psi Le mécanicien réal	vrès votre calcul de iner si la pression d' valeur mesurée 35 Psi	alimentation La pression	en air de la starter valve Conséquence n est suffisante : oui 🛚	e est suffisante.
Question 14 : D'ap mécanicien, déterm Valeur attendue 14,72 Psi Le mécanicien réal correctement. Il doit à présent con	valeur mesurée 35 Psi ise une ouverture - trôler son fonctionne	La pression - fermeture ement électri	en air de la starter valve Conséquence n est suffisante : oui manuelle de la « starte que.	e est suffisante. ce non □ r valve ». Elle fonctionne
Question 14 : D'ap mécanicien, déterm Valeur attendue 14,72 Psi Le mécanicien réal correctement. Il doit à présent con	valeur mesurée 35 Psi ise une ouverture - trôler son fonctionne	La pression - fermeture ement électri	en air de la starter valve Conséquence n est suffisante : oui manuelle de la « starte que.	e est suffisante.
Question 14 : D'apmécanicien, déterm Valeur attendue 14,72 Psi Le mécanicien réal correctement. Il doit à présent con Pour cela, il va appli	valeur mesurée 35 Psi trôler son fonctionne iquer la procédure de schéma électrique	La pression - fermeture ement électri écrite en pag	en air de la starter valve Conséquence n est suffisante : oui manuelle de la « starte que. ge 401 de la section 80-1	e est suffisante. ce non r valve ». Elle fonctionne 13-02 de l'AMM (DT 5/13)
Question 14 : D'ap mécanicien, déterm Valeur attendue 14,72 Psi Le mécanicien réal correctement. Il doit à présent con Pour cela, il va appli Question 15 : Sur le composant et son ré	valeur mesurée 35 Psi trôler son fonctionne iquer la procédure de schéma électrique ble.	La pression - fermeture ement électri écrite en pag	Conséquence n est suffisante : oui manuelle de la « starte que. ge 401 de la section 80-1 entifier le composant 51	e est suffisante. ce non □ r valve ». Elle fonctionne

valve » du moteur 1.

305PP

Question 17 : Nommer l'élément 1KG. Expliquer son rôle.

Un breaker. Il protège le circuit sur lequel il est raccordé, d'une surintensité.

Question 16 : Nommer le code FIN de la barre bus permettant l'alimentation électrique de la « starter

Question 18 : Nommer l'appareil utilisé pour effectuer la tache (1) de la carte de travail (DT 5/13).

Un ohmmètre (ou un multimètre réglé sur la fonction ohmmètre)

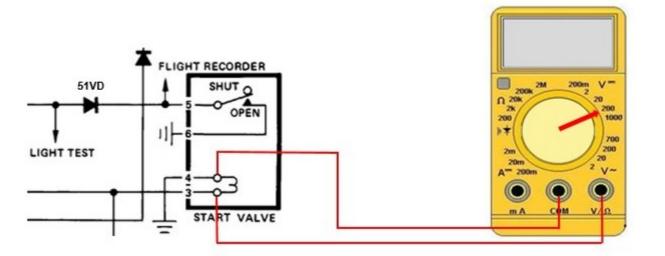
Question 19 : Quelle précaution doit-on prendre avant d'effectuer une mesure de continuité sur un élément ?

S'assurer que l'élément est hors circuit.

Question 20: Nommer la valeur ainsi que le type de la tension alimentant la bobine de la starter valve (DT 6/13).

28 V continu 🛚

28 V alternatif □


115 V continu □

115 V alternatif □

Question 21 : Calculer la valeur du courant traversant la bobine de la starter valve suivant la tension relevée précédemment (question 20) sachant que sa résistance est de 10 ohms.

CORRIGÉ

Question 22: Sur le schéma ci-dessous, câbler l'appareil de mesure sur le circuit pour vérifier la tension d'alimentation de la bobine. Indiquer par une flèche (sur le multimètre) le calibre adapté à la mesure, suivant la carte de travail au DT 5/13.

Le technicien a appliqué la carte de travail 80-13-02 concernant les essais de la « starter valve ».

Voici les résultats obtenus par le mécanicien lors de son application de la procédure de test :

- Tâche (1) : 9 ohms
- Tâche (2): overload
- Tâche (3): 0
- Tâche (8): le voyant **ARM** s'éteint et le voyant **OPEN** flashe
- Tâche (9): 28 VDC
- Tâche (10) : le voyant **OPEN** arrête de flasher et s'allume

Question 23 : Conclure sur le fonctionnement électrique de la « starter valve ».

Fonctionnement de la starter valve :

correct X

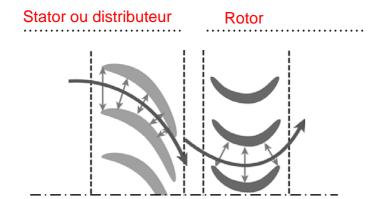
incorrect \Box

Session

Question 24 : D'après le « trouble shooting » (DT 8/13) et l'ensemble des réponses apportées en partie 2, identifier l'élément en panne.

Le démarreur (starter)

PARTIE 3

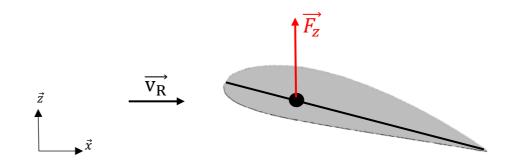

Étude du démarreur à air

Vous allez étudier le fonctionnement du démarreur à air afin de comprendre les causes de la panne.

Question 25 : Définir le rôle du démarreur à air.

Transformer un débit d'air en un couple suffisant au démarrage du réacteur.

Question 26 : Sur le schéma ci-dessous, nommer les 2 éléments constituants la turbine.


Question 27: Sur le schéma ci-dessus, on constate que la section des aubes du 1er élément (à gauche) est convergente. Décrire les variations de pression et de vitesse dans un conduit ayant cette forme. Nommer le principe décrivant ce phénomène.

CORRIGÉ

Question 28: Les aubes de turbines fonctionnent sur le même principe physique que les ailes des aéronefs. Nommer la force responsable de la sustentation.

La portance

Question 29: Sur le schéma ci-dessous, matérialiser cette force $\overline{F_7}$.

Question 30 : D'après la mise en situation et la procédure de démarrage (DT 3/13 paragraphe B), la panne semble due à une erreur humaine :

> Oui 🛚 Non □

Question 31 : Si oui, citer la partie de la procédure de démarrage que le pilote n'a pas respecté.

0 – 5 minutes **ON** – Disengage starter and allow N2 speed to go to zero before re-engaging

Question 32: Parmi les facteurs affectant les performances, cocher ceux concernés par cette situation.

Forme / santé Pression des horaires et heures limites X Stress

П

Sommeil et fatigue

Abus d'alcool, de médicaments, de drogue

Pour approfondir son investigation, le mécanicien dépose le démarreur à air afin de comprendre le dysfonctionnement.

Question 33 : A l'aide du plan d'ensemble (DT 9/13) et de la nomenclature (DT 10/13), repérer sur le document réponse 1 (**page 11/12 de ce document**) l'éclaté en remplissant les cases manquantes.

Voir DR1

Après avoir compris les différents éléments qui composent le démarreur à air, le technicien décide alors de démonter le système. Il constate que ce dernier est composé d'un double train épicycloïdal.

Question 34: Parmi les propositions suivantes, cocher la fonction d'un train épicycloïdal.

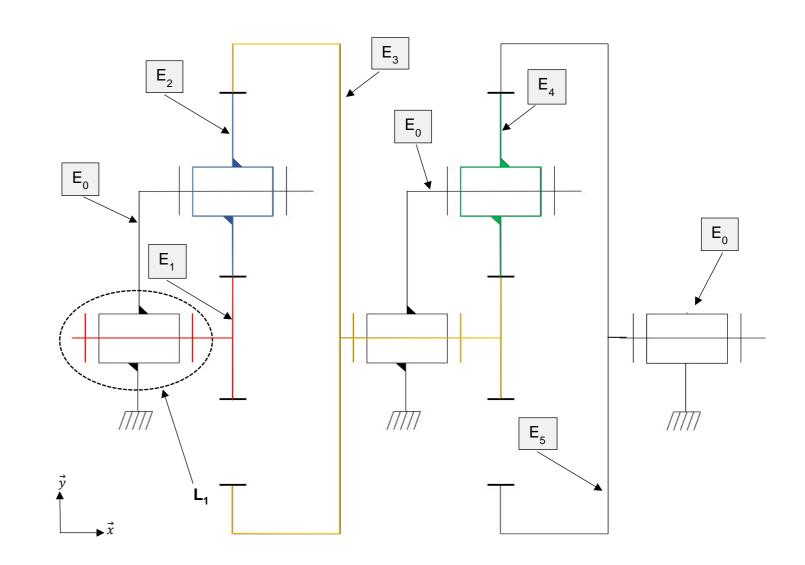
- ☐ Augmenter la vitesse de rotation nominale, augmenter le couple nominal
- Diminuer la vitesse de rotation nominale, augmenter le couple nominal avec un faible encombrement
- ☐ Diminuer la vitesse de rotation nominale, diminuer le couple nominal

Question 35: A l'aide du dossier technique 9/13 et 10/13, identifier ci-dessous les pièces qui composent les sous-ensembles des classes d'équivalence E₁; E₂; E₃; E₄ du schéma cinématique ci-contre (les roulements et joints sont exclus).

```
E_0 {1, 2, 4, 5, 6, 7, 8, 14, 15, 16, 23, 25, 27, 28, 36,40, 45}
```

 $E_1 \{ 3, ...18, ...19, ...22. \}$

E₂ {..17..}


E₃ {. 21..}

E₄ {..24.}

E₅ {26;30,31,32,33,34,35,38,41,42,43}

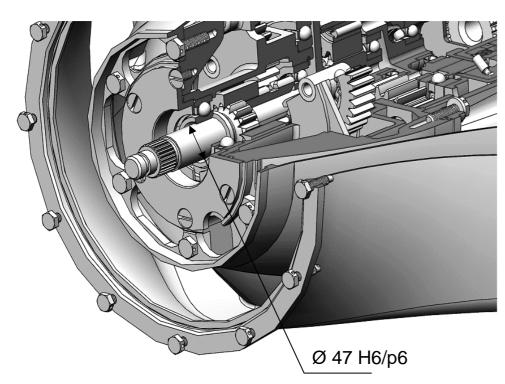
Question 36 : Surligner les sous-ensembles cinématiques (E_1 , E_2 , E_3 , E_4) en coloriant le schéma cicontre (plan O, \vec{x}, \vec{y} ,).

E₁: ROUGE E₂: BLEU E₃: JAUNE E₄: VERT

Question 37 : Caractériser la liaison L₁ sur le schéma ci-dessus en remplissant le tableau ci-dessous.

Liaison	Degré de liberté		Axe	Nom de la liaison	
Liaisuii	Translation	Rotation	Axe	Nom de la llaison	
E ₁ /E ₀	0	1	\vec{x}	PIVOT	

Le mécanicien souhaite vérifier la conformité du montage des roulements rep 10 sur l'arbre planétaire rep 18

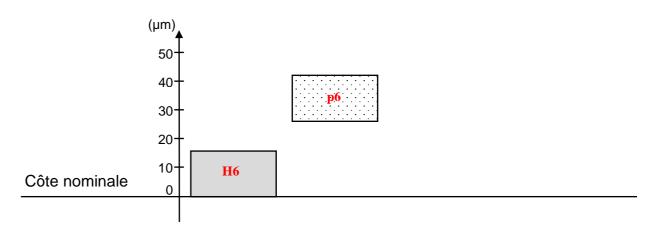

Question 38 : Cocher le type de roulement repéré 10 sur le dessin d'ensemble DT (9/13).

Butée à billes à double effort,	[
Roulement à billes à contact radial	[
Roulement à rouleaux coniques	[
Roulement à billes à contact axial	[

Question 39 : Cocher la règle de montage des roulements repérés 10 par rapport à l'arbre planétaire rep 18 sur le dessin d'ensemble.

Arbre tournant / logement fixe	\triangleright
Arbre tournant / logement tournant	
Arbre fixe / logement fixe	
Arbre fixe / logement tournant	

De par son expérience le technicien sait que les bagues intérieures des roulements doivent être montées serrées sur l'arbre. Il veut vérifier cette condition de serrage entre l'arbre et l'alésage du roulement. Un ajustement ϕ 47 H6/p6 est côté ci-dessous.



CORRIGÉ

Question 40: A partir du DT 11/13, compléter le tableau ci-dessous pour les repères 10 et 18.

	ALÉSAGE	ARBRE
Côte nominale (mm) 47		47
Ecart supérieur (mm)	0,016	0,042
Ecart Inférieur (mm)	0	0,026
IT (mm)	0,016	0,016
Cote Maxi. (mm)	47,016	47,042
Cote mini (mm)	47	47,026

Question 41 : Sur le schéma ci-dessous, positionner l'intervalle de tolérance de l'arbre.

Question ajustement	•	itre réponse à	a la question	41 et le DT 11/13, e	n déduire l	a nature de cet
Glis	sant					
Seri	·é	\boxtimes				
Ince	ertain					
Question	43 : Vérifier la n	ature de cet a	ijustement par	le calcul (voir formul	aire).	
Jeu	Alesage m	naxi – Arbre _{mini}				maxi =
	47,016 –	47,026 = - 0,0	1 mm			
Jeu	Alesage min	i – Arbre _{maxi}	mini			=
	_					
Question est -il corre		e de la bague	intérieure du	roulement sur l'arbre	attendu pa	ar le mécanicien
OUI	\boxtimes		NON			
l'assembla il effectue calculer l'e L'étude se	ge entre le port un schéma arc ffort entre le po	e-satellites en hitectural du rte-satellites e s satellites rep	un de ses sa 1 ^{er} étage de r et le satellite. 17. Les liaiso	e l'axe repéré 46 su tellites du premier éta éduction (page 12/12 ns sont supposées pa	age du rédu 2 de ce do	icteur, pour cela cument) afin de
de la Stati	•	on dire des a		ce document et le Pl iques extérieures ap	` .	
Solide sou	mis à 2 forces mis à 3 forces mis à 4 forces	□ ⊠ □	Les fo	rces sont perpendicu rces sont parallèles rces sont concourant		
BACCALA	URÉAT PROFESS	IONNEL AÉI	RONAUTIQUE	ÉDDEIIVE E2 (112) _ E	VDI OITATIO	NIDE I A DOCUME

CORRIGÉ

Question 46: Effectuer le Bilan des Actions Mécaniques (B.A.M.E) en remplissant le tableau cidessous. Signaler les inconnues par des points d'interrogations.

Action	Point	Direction	Sens	Norme (N)
18/17	С			2000
21/17	В		?	?
46/17	Α	?	?	?

Question 47 : Déterminer graphiquement la direction de l'action au point A sur le schéma architectural du 1^{er} étage de réduction (page 12/12 de ce document).

Voir page 12/12

Question 48 : À la page 12/12 de ce document, tracer le dynamique des forces appliquées sur le satellite 17.

Voir page 12/12

Question 49 : Déterminer les valeurs des actions de $\overline{B_{21/17}}$ et de $\overline{A_{46/17}}$ en remplissant le tableau situé page 12/12 de ce document.

Voir page 12/12

Pour vérifier la rupture entre le porte-satellite et le satellite, nous allons étudier la résistance mécanique de l'axe 46 nécessaire à l'assemblage du porte satellite rep 16 et d'un des satellites rep 17. Un essai de résistance mécanique a été simulé et reporté sur le DT (11/13).

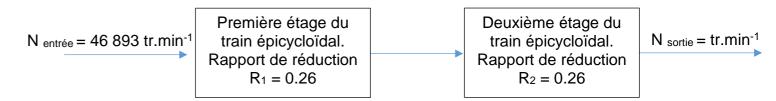
Question 50: L'axe 46 est fabriqué en X2 Cr Ni Mo 13-12-2.

Relever la désignation de cet alliage à l'aide de l'extrait du guide du dessinateur industriel situé en page 12/13 du dossier technique.

Acier fortement allié avec un taux de carbone de 0,02%, 13% de chrome, 12% de nickel et 2% de

molybdène			

BACCALAUREAT PROFESSIONNEL AERONAUTIQUE ÉPREUVE E2 (U2) – EXPLOITATION DE LA DOCUMENTATION TECHNIQUE CODE : C2206-AER B U2 1 CORRIGE Durée : 4 h Coef. : 4 Session 2022 PAGE 8	
--	--


Question 51 : D'après la composition de cet alliage (DT 12/13), déterminer s'il possède des propriétés

anticorrosives. Justifier votre réponse.						
Oui, c'est un acier inoxydable car il contient 13% de chrome						
Question 52 : A l' bonne réponse	'aide du DT11	1/13, détermi	ner le ty	pe de contrainte que su	ıbit l'axe 46 er	n cochant la
Cisaillement		Traction		Compression		
Question 53 : À partir du DT 11/13, relever la valeur de la limite élastique au glissement (Reg) en MPa						
du matériau ainsi que la valeur de la contrainte maximale $ au$ subie par l'axe 46.						
R _{eg} =245 MPa						
$\tau = \dots 48 \text{ MPa}$						
Question 54: L'axe 46 a-t-il rompu?						
OUI		NON	N	\boxtimes		
Après l'étude de l'axe rep 46, le technicien Désire calculer le couple de sortie C_s du turbo démarreur.						

Le technicien va étudier le double réducteur a train épicycloïdal et constate que les portes satellites (PS) et les satellites sont en position bloqués. Après avoir mesuré avec un tachymètre, il constate que la vitesse de sortie N_{entrée} du réducteur est de 46 893 tr.min⁻¹.

Dès lors le technicien trace un schéma pour mieux comprendre la situation. Dans un premier temps, il va calculer la vitesse angulaire de sortie ω_s en rad.s⁻¹.

CORRIGÉ

Question 55 : Sachant que la vitesse de rotation d'entrée du démarreur à air est de 46 893 tr.min⁻¹, A l'aide du formulaire et du schéma ci-dessus, calculer le rapport de transmission globale R_a du double train épicycloïdal.

Question 56 : Calculer la vitesse de rotation de sortie N_{sortie} du système. En déduire ω_s , vitesse angulaire en rad.s⁻¹.

 $N_{\text{sortie}} = 0.0676 \times 46.893$ $N_{\text{sortie}} \approx 3170 \text{ tr. min}^{-1}$ $2\pi \times 3170$

Dans un second temps, technicien souhaite calculer le couple de sortie C_s , il prend connaissance de la puissance de sortie du démarreur P_s , celle-ci s'élève à 700 kW.

Question 57: A partir des données ci-dessus, calculer le couple de sortie C_s . On considère que la vitesse de rotation $\omega_s = 330$ rad.s⁻¹. Voir formulaire.

```
\begin{array}{c} P_{s} = C_{s} \times \omega_{s} \\ C_{s} = \frac{P_{s}}{\omega_{s}} \\ C_{s} = \frac{700\ 000}{330} \\ C_{s} \approx .2121,2 \ N.m \end{array}
```

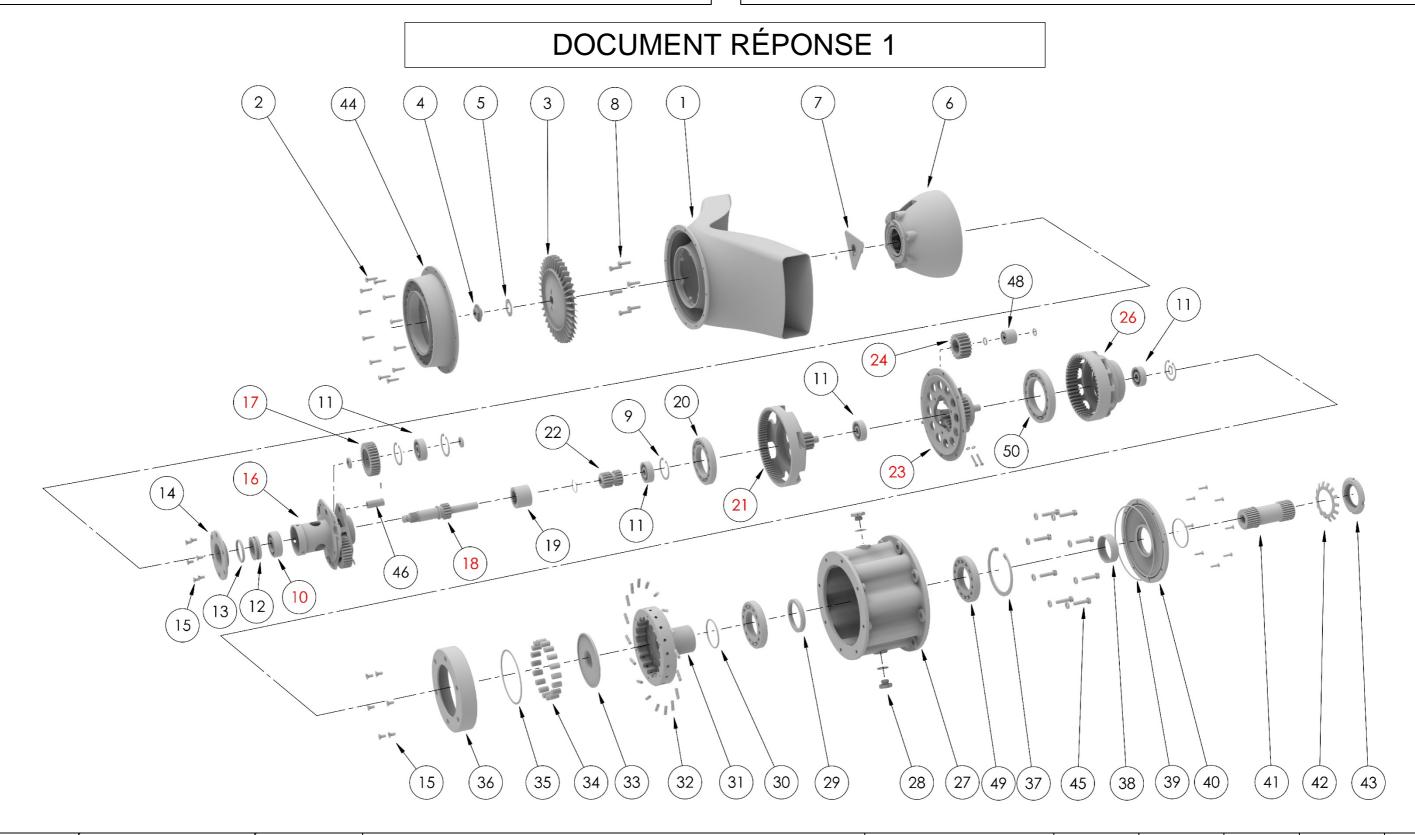
Le mécanicien, prend connaissance que le pilote, suite à son échec de démarrage, a relancé le turbo démarreur. Ce dernier était toujours en rotation. Dès lors, le mécanicien sait que cette manœuvre a engendré un violent à-coup sur l'arbre de sortie et par conséquent multiplié par 2 le couple de sortie \mathcal{C}_s .

Question 58 : Par rapport au constat du mécanicien et en prenant la valeur de C_s = 2120 Nm, calculer la valeur réelle du couple de sortie $C_{s\ r\acute{e}el}$ appliquée sur l'arbre de sortie.

 $C_{sr\'eel} = 2 \times C_S$ $C_{sr\'eel} = 2 \times 2120$ $C_{sr\'eel} = 4240 \ N.m$

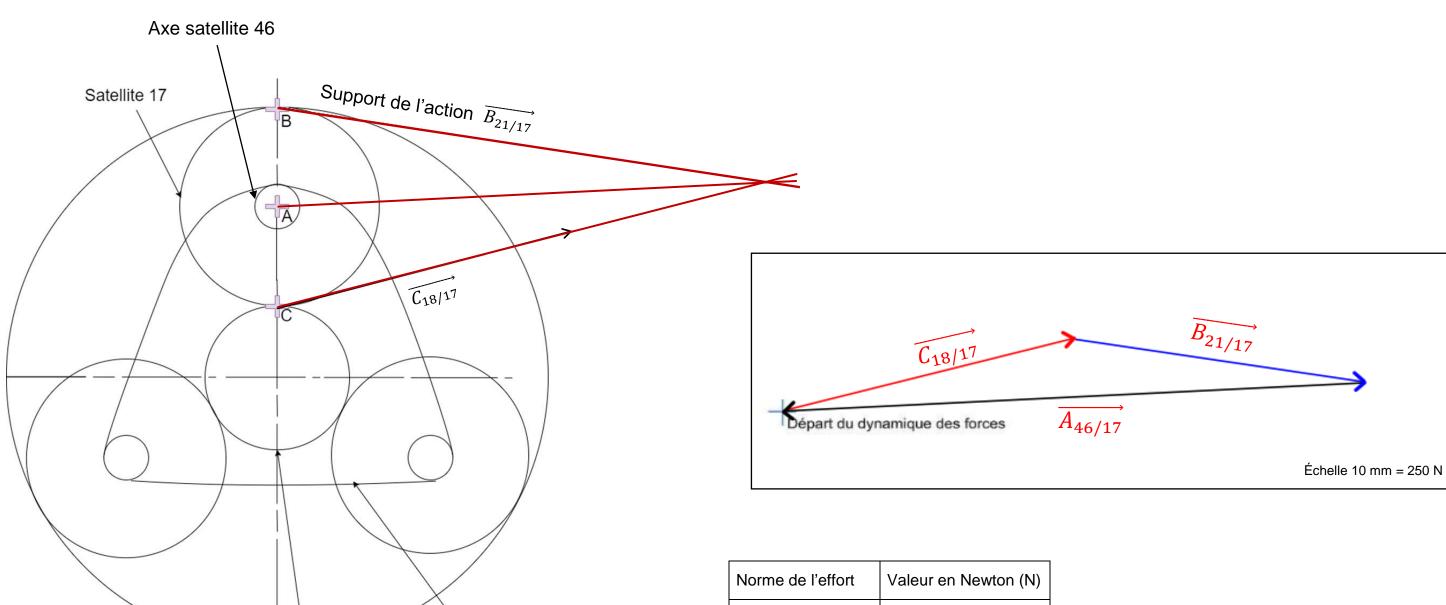
Relever sur le DT 7/13 la valeur du couple maximal (en Nm) de l'arbre de sortie transmise au turboréacteur.

Couple maximal de l'arbre de sortie


3275 Nm

Conclusion: en comparant la valeur du couple maximal de l'arbre de sortie transmise au turboréacteur avec la valeur réelle du couple $C_{s\ r\acute{e}el}$ calculée précédemment, l'arbre de sortie a-t-il rompu ?

OUI


 \times

NON

CORRIGÉ

Schéma architectural du 1^{er} étage de réduction

Norme de l'effort	Valeur en Newton (N)
$\ \overrightarrow{C_{18/17}}\ $	2000 N
$\ \overrightarrow{B_{21/17}}\ $	1940 (± 100 N)
$\ \overrightarrow{A_{46/17}}\ $	3850 (± 150 N)

Porte-satellites 16

Arbre planétaire 18

Couronne 21