
Note d'information sur l'Épreuve de Spécialité Sciences de l'Ingénieur Session 2022 - DROM-COM Nouvelle-Calédonie 1 Hydrolienne URABAILA

Extrait du sujet et modification à apporter

Une erreur s'est glissée dans l'énoncé page 4.

La production d'énergie électrique à partir du nucléaire rejette 4 g de CO₂ par kWh (et non 66).

Producteurs d'énergie	Emissions GES	
	(en g eq CO ₂ par kWh)	
Charbon	1050	
Fuel	664	
Gaz	443	
Nucléaire	X	4
Panneaux photovoltaïques	32	
Hydrolien	14	
Eolien	9	

tableau 1 - Impact environnemental

 $^{(1)}$ TWh = 10^{12} Wh

Deux cas de production énergétique sont envisagés :

- cas 1 mix énergétique (20 % panneaux photovoltaïques + 10 % hydrolien) + 70 % nucléaire;
- cas 2 100 % nucléaire.

Question 3 Ca

Calculer pour les deux cas, les émissions en tonnes eq CO₂ par an des énergies primaires utilisées.

Comparer les deux cas et en déduire le gain (en %) d'émission de CO₂.

Extrait de la correction et modification à apporter

Deux cas de production énergétique sont envisagés :

- cas 1 mix énergétique (20 % panneaux photovoltaïques + 10 % hydrolien) + 70 % nucléaire ;
- cas 2 100 % nucléaire.

Question 3 Calculer pour les deux cas, les émissions en tonnes eq CO₂ par an des énergies primaires utilisées.

Comparer les deux cas et en déduire le gain (en %) d'émission de CO₂.

Cas 1 - mix énergétique (20% panneaux photovoltaïques + 10% hydrolien) + 70% nucléaire

Pour les panneaux : $M_{CO2} = 32*3.10^8 = 9,6.10^3$ tonnes eq CO2/an $[32*(20/100)*1,5.10^9]/10^6$

Pour l'hydrolien : $M_{CO2} = 14*1,5.10^8 = 2,1.10^3$ tonnes eq CO2/an $[14*(10/100)*1,5.10^9]/10^6$

Pour le nucléaire : $M_{CO2} = 36^{\circ}0,7^{\circ}1,5$. $10^{9} = 6.93.10^{4}$ tonnes eq CO2/an $4^{\circ}(70/100)^{\circ}1,5.10^{\circ}1/10^{6}$

M_{TotalCO2} = 8 → 10⁴ tonnes eq CO2

 $M_{CO2} = 66 + 5 \cdot 10^9 = 9 \cdot 10^4 \text{ tonnes eq CO2} [4*(100/100)*1,5.10^9]/10^6$

Gain = $\frac{9,9}{9,9}$ = 1852 % $\frac{62,3}{62,3}$

Le cas 2 (100 % nucléaire) est moins impactant que le cas 1 (mix énergétique)

Ressources relatives à la rectification apportée

Analyse du cycle de vie du kWh nucléaire d'EDF:

Description du calcul sur le blog de Sylvestre Huet (Le Monde.fr) :

Article sur le site Révolution énergétique :

