EFE GMM 1

SESSION 2022

CAPLP CONCOURS EXTERNE ET CAFEP

Section: GÉNIE MÉCANIQUE

Option: MAINTENANCE DES SYSTÈMES MÉCANIQUES AUTOMATISÉS

EPREUVE ECRITE DISCIPLINAIRE

Durée: 5 heures

Calculatrice autorisée selon les modalités de la circulaire du 17 juin 2021 publiée au BOEN du 29 juillet 2021.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Il est demandé au candidat d'utiliser les documents réponses fournis. Il peut expliciter ses réponses sur la copie. L'ensemble des documents est à placer dans cette copie qui servira de « chemise » pour toute la composition.

Si vous repérez ce qui vous semble être une erreur d'énoncé, vous devez le signaler très lisiblement sur votre copie, en proposer la correction et poursuivre l'épreuve en conséquence. De même, si cela vous conduit à formuler une ou plusieurs hypothèses, vous devez la (ou les) mentionner explicitement.

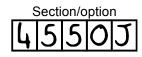
NB: Conformément au principe d'anonymat, votre copie ne doit comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé consiste notamment en la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de la signer ou de l'identifier.


INFORMATION AUX CANDIDATS

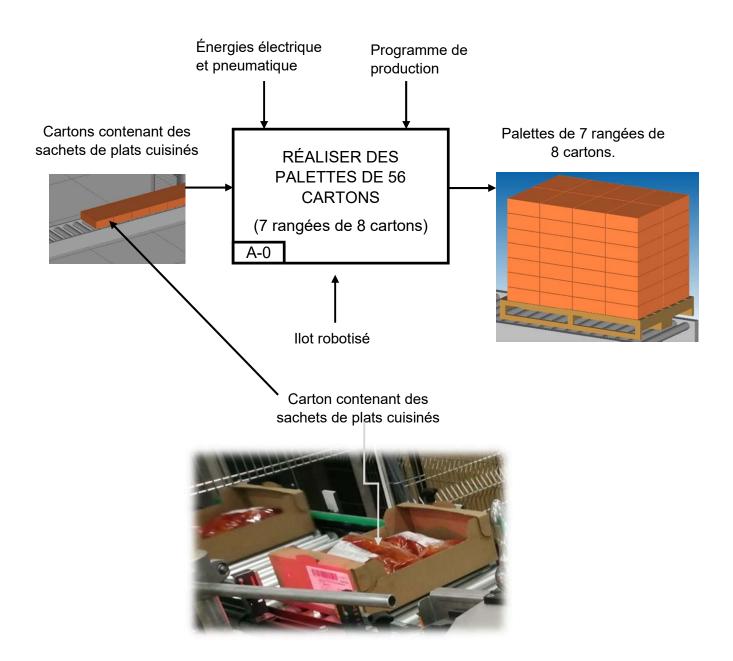
Vous trouverez ci-après les codes nécessaires vous permettant de compléter les rubriques figurant en en-tête de votre copie.

Ces codes doivent être reportés sur chacune des copies que vous remettrez.

► Concours externe du CAPLP de l'enseignement public :



► Concours externe du CAFEP/CAPLP de l'enseignement privé :



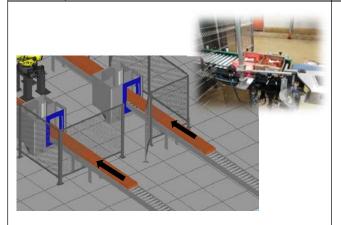
PRÉSENTATION DU SUPPORT D'ÉTUDE

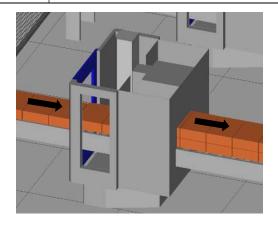
L'entreprise ESPRI RESTAURATION, implantée à ROEZE-SUR-SARTHE (72210), est spécialisée dans le secteur d'activité de la fabrication de plats préparés. Son effectif est compris entre 250 et 499 salariés.

L'étude porte sur un ilot robotisé de palettisation de cartons contenant des sachets de plats cuisinés. La configuration de production présentée est la réalisation de palettes de 7 rangées de 8 cartons.

Diagramme SADT A – 0

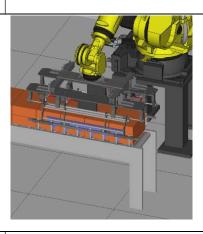
Dossier Présentation Page **DP1** sur **DP4**

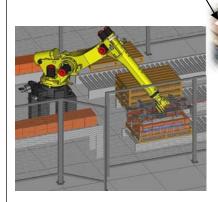

Process de palettisation (voir schéma global DP3)



Les cartons contenant les sachets de plats cuisinés arrivent sur 2 convoyeurs.

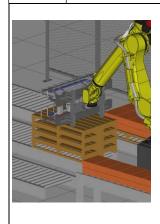
Un empileur réalise des colonnes de 2 cartons.



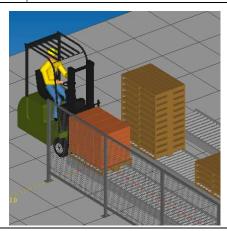

3

Le robot saisit 8 cartons (4 colonnes de 2).

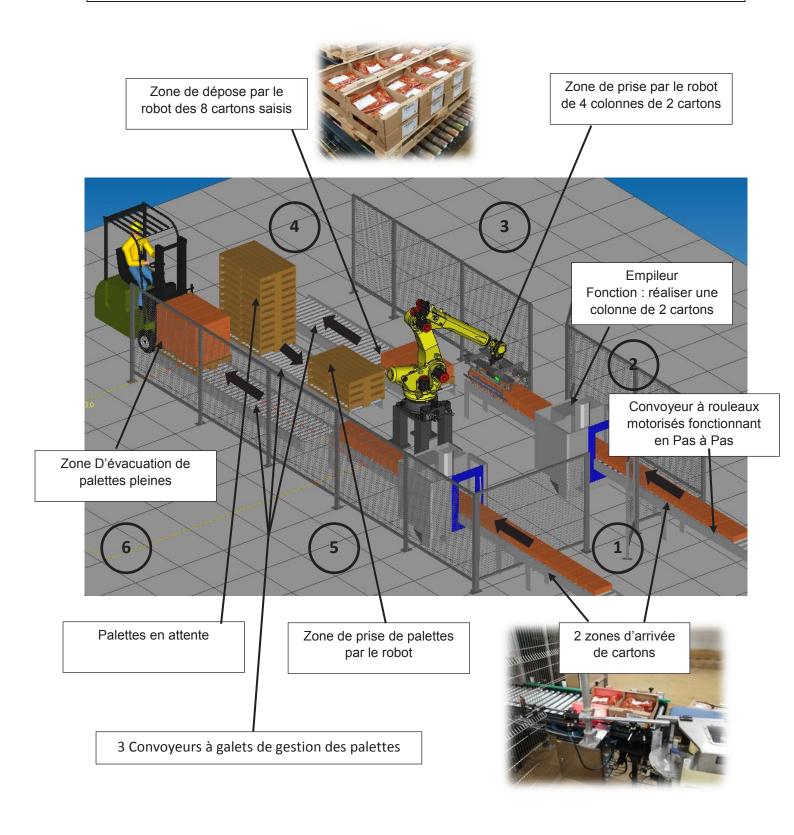
Le robot dépose les 8 cartons sur une palette à 2 reprises pour constituer une rangée.



5


Le robot dépose également des palettes vides à chaque poste de palettisation.

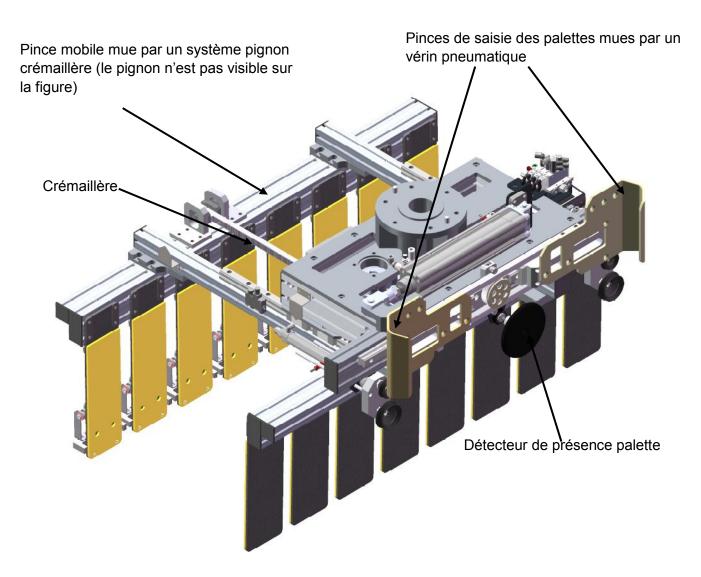
Une fois la palette pleine, elle est acheminée en bout de convoyeur pour être évacuée par un carriste.



Dossier Présentation Page **DP2** sur **DP4**

Schéma global du process

Dossier Présentation Page **DP3** sur **DP4**


Présentation du préhenseur du robot

Les cartons sont saisis par 2 pinces (une mobile et l'autre fixe).

Le préhenseur peut également saisir les palettes vides pour les mettre en position sur chaque ligne de palettisation.

Le préhenseur constitue le 7° axe du robot.

Dossier Présentation Page **DP4** sur **DP4**

1 SUJET 1ère PARTIE

Analyse de la disponibilité de l'ilot robotisé

DURÉE CONSEILLÉE: 1h00

Documents à consulter : DT1 et DT2 Réponses sur : DR1 et DR2

Problématique

Au bout d'un an de mise en service, le responsable maintenance souhaite faire une analyse de la disponibilité opérationnelle de l'ilot robotisé.

L'objectif de disponibilité opérationnelle est de 90%.

- **Q1.1** Calculer le temps d'ouverture annuel en heures de l'entreprise.
- **Q1.2** En déduire le temps requis annuel en heures, temps pendant lequel l'ilot est censé fonctionner pendant l'année.
- **Q1.3** Calculer la disponibilité opérationnelle de l'ilot robotisé pour l'année écoulée et conclure quant à sa valeur.
- **Q1.4** Pour chaque sous-ensemble représenter graphiquement un indicateur de fiabilité ou de non fiabilité.
- Q1.5 Préciser quels sont les sous-ensembles les plus pénalisants d'un point de vue de la fiabilité.
- **Q1.6** Citer deux actions génériques de maintenance pouvant être mises en œuvre pour améliorer la fiabilité d'un équipement.
- **Q1.7** Pour chaque sous-ensemble représenter graphiquement un indicateur de maintenabilité ou de non maintenabilité.
- **Q1.8** Préciser quels sont les sous-ensembles les plus pénalisants d'un point de vue de la maintenabilité.
- **Q1.9** Citer quatre outils génériques de maintenance pouvant être mis en œuvre pour améliorer la maintenabilité.

2 SUJET 2ème PARTIE

Analyse du réglage du serrage du préhenseur et contrôle de la charge embarquée

DURÉE CONSEILLÉE : 1h00 Les sous-parties 2.1 et 2.2 sont indépendantes

2.1- Analyse du réglage du serrage du préhenseur

Plusieurs arrêts de production sont survenus suite à une mauvaise saisie des cartons par le préhenseur du robot et, dans certains cas, un ou plusieurs cartons ont été éjectés lors de phases d'accélération du robot.

Le responsable de maintenance décide donc d'analyser le réglage du serrage du préhenseur sur les cartons et doit vérifier par une mesure de puissance électrique absorbée la conformité de ce serrage.

Q2.1.1 Étude statique de l'équilibre des 8 cartons dans le préhenseur

Documents à consulter : DT3	Réponses sur : DR3

Calculer l'effort presseur F_p du préhenseur nécessaire pour le maintien des 8 cartons.

Q2.1.2 Étude dynamique : accélération linéaire

Documents à consulter : DT3	Réponses sur : DR3

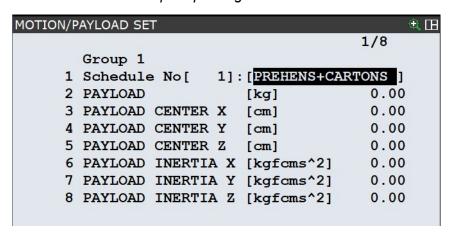
Après la saisie des cartons, le robot effectue une remontée verticale avec une accélération γ . En appliquant le théorème fondamental de la dynamique, calculer la nouvelle valeur de F_p

Q2.1.3 Calcul de la puissance absorbée pour assurer le maintien des cartons dans la pince

Documents à consulter : DT4	Réponses sur : DR3

2.1.3.1 On donne $F_p = 5600 \text{ N}$

Calculer le couple C_R à appliquer en sortie de réducteur au pignon 7 pour assurer l'effort de pression sur les cartons F_p .


- **2.1.3.2** Calculer le couple moteur C_M, sachant que le rendement du réducteur est de 0,93.
- **2.1.3.3** En déduire la puissance utile fournie par le moteur électrique sachant que la fréquence de rotation de ce moteur est de 1500 tr min⁻¹.
- **2.1.3.4** Déterminer la valeur de la puissance électrique absorbée que doit mesurer le technicien de maintenance sachant que le rendement du moteur est de 0,7.

Dossier sujet Page **DS2** sur **DS12**

2.2- Contrôle de la charge embarquée

Il s'agit de vérifier si les données inertielles déclarées dans le programme robot sont conformes. L'analyse concerne l'ensemble pince + charge de 8 cartons

Le payload déclaré dans le programme robot est une caractéristique importante car elle prend en compte les données inertielles des charges embarquées et ainsi permet d'adapter les vitesses et accélérations du robot pour prolonger sa durée de vie.

Payload à compléter par le technicien sur le teach pendant.

Q2.2.1 Calcul de la masse de l'ensemble "pince + charge" de 8 cartons.

Documents à consulter : DT5	Réponses sur : DR3

Calculer la masse de l'ensemble « pince + charge de 8 cartons

Q2.2.2 Calcul de la position du centre de gravité de l'ensemble "pince + charge" de 8 cartons.

Documents à consulter : DT5	Réponses sur : DR4

Déterminer les coordonnées (x,y,z) du centre de gravité de l'ensemble "pince + charge" de 8 cartons.

Q2.2.3 Unités des moments d'inertie. Réponses sur : DR4

Les moments d'inertie dans le payload sont exprimés en kgf.cm.s²

L'unité usuelle est le kg·m².

Sachant que 1 kgf = 9.81 kg m s⁻², démontrer que 1 kg m² = 10.19 kgf cm s².

Q2.2.4 Calcul des moments d'inertie de l'ensemble des 8 cartons

Documents à consulter : DT6	Réponses sur : DR4

Q2.2.4.1 Calculer la longueur b, la largeur c et la hauteur a d'un parallélépipède constitué de 8 cartons.

Q2.2.4.2 Calculer les moments d'inertie suivant x, y et z du parallélépipède constitué de 8 cartons par rapport à son centre de gravité G_c.

Q2.2.5 Calcul des moments d'inertie de l'ensemble "préhenseur + charge" de 8 cartons par rapport à son centre gravité G

Documents à consulter : DT6 et DT7	Réponses sur : DR4
	'

On considère que la position du centre de gravité G de l'ensemble "préhenseur + charge" de 8 cartons possède les coordonnées suivantes :

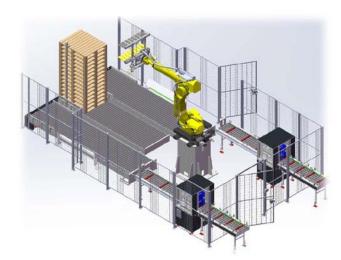
$$\overrightarrow{OG} = \begin{cases} 0 \ mm \\ 140 \ mm \\ 300 \ mm \end{cases}$$

Calculer les moments d'inertie de l'ensemble "préhenseur + charge" de 8 cartons par rapport à son centre de gravité G.

Q2.2.6 En déduire les valeurs des moments d'inertie de l'ensemble préhenseur + charge de 8 cartons à entrer dans le payload du robot avec les unités adéquates.

Dossier sujet Page **DS4** sur **DS12**

3 SUJET 3^{ème} PARTIE


Modification du pilotage variateur des convoyeurs à rouleaux de la ligne 1

DURÉE CONSEILLÉE: 1h00

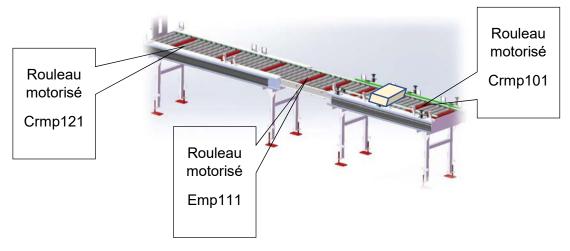
Le système possède deux lignes de convoyage « léger » pour transporter les colis. La ligne 1 est constituée de convoyeurs à rouleaux motorisés fonctionnant en Pas à Pas.

Le convoyage CRMP est réalisé en Pas à Pas avec les cartes Drive control INTERROLL. Lorsque le colis arrive en fin de Pas, il est directement envoyé sur le Pas suivant si celui-ci est libre. Si le Pas suivant est occupé, le colis s'arrête par détection sur le capteur en sortie de Pas.

Des capteurs reliés à l'automate Siemens S7-1200, détectent la position des colis.

Actuellement, Les convoyeurs à rouleaux ont une vitesse fixe. Le moteur est à l'intérieur du rouleau. Chaque moteur est piloté par un variateur.

Le service maintenance a besoin de pouvoir moduler cette vitesse lors des phases de réglage.


Cahier des charges de la modification des pas 1, 2, 3, 4 de la ligne 1

On désire obtenir trois vitesses différentes. La vitesse nominale Nn, une vitesse « moyenne » d'environ 55% de Nn, une vitesse « lente » d'environ 20% de Nn.

Ce contrôle doit être fait par des sorties automate supplémentaires.

Le choix de ces vitesses se fait sur l'IHM en mode maintenance.

Une modification du câblage des variateurs et des programmes automate et IHM est nécessaire.

3.1-Analyse de l'existant

Q3.1.1

Documents à consulter : DT11 à 17	Réponses sur : DR5

À partir des schémas dans le dossier technique, identifier de quelle façon est choisie la vitesse de rotation.

Q3.1.2

Documents à consulter : DT9 et DT14	Réponses sur : DR5

Donner la vitesse périphérique obtenue avec le réglage actuel.

Q3.1.3

Documents à consulter : DT3	Réponses sur : DR5

Cette vitesse est-elle compatible avec les impératifs de production (13 cartons à l'entrée du convoyeur) ? Justifier.

Rappel de la position des cartons sur le tapis :

Q3.1.4

Documents à consulter : DT9	Réponses sur : DR5

En supposant la vitesse périphérique égale à 0,65 m·s⁻¹, calculer la vitesse de rotation en tr·min⁻¹ des rouleaux.

Q3.1.5

Documents à consulter : DT17 et DT18	Réponses sur : DR5

Identifier la borne du variateur et la sortie de l'API qui permettent de donner l'ordre de marche.

Donner le repérage du câble reliant le variateur à l'API.

Ce câble possède 3 fils, à quoi servent les deux autres.

3.2-Modification des vitesses

Q3.2.1

Documents à consulter : DT15 à 19	Réponses sur : DR6

En utilisant la commande extérieure du variateur, proposer une solution pour obtenir les vitesses désirées. Le rack 2 module 13 de l'API est disponible.

Q3.2.2

Documents à consulter : DT16	Réponses sur : DR6 et DR7

Calculer la vitesse périphérique désirée dans le cahier des charges décrit page DS5.

Entourer les solutions retenues sur le DR6 pour obtenir ces vitesses.

Donner les valeurs réelles des vitesses périphériques des rouleaux obtenues avec les différents réglages.

Q3.2.3

Documents à consulter : DT15 et DT17	Réponses sur : DR7

Déterminer le nombre de sorties automate supplémentaires nécessaires pour modifier les vitesses des quatre variateurs.

Q3.2.4

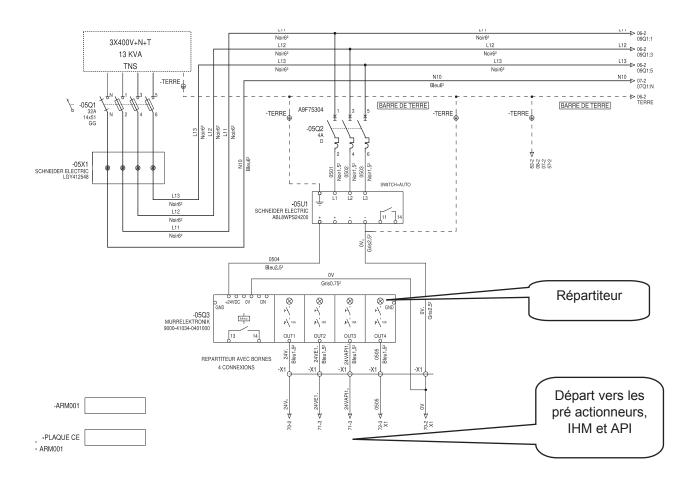
Documents à consulter :	Réponses sur : DR7 et DR8

Compléter le tableau des affectations des sorties API.

Compléter le schéma du câblage de l'automate pour les trois vitesses, sur le variateur du « pas 1 » afin qu'il puisse gérer les nouvelles vitesses.

4 SUJET 4ème PARTIE

Amélioration de la maintenabilité


DURÉE CONSEILLÉE: 30 min

Le répartiteur de courant Murrelektronik MICO CLASSIC 4.10 - 9000-41034-0401000 permet une surveillance des courants consommés : IHM, pré actionneurs et capteurs de l'automate qui gère l'installation.

En cas de déclenchement, il faut réenclencher le répartiteur manuellement. Cela nécessite une intervention dans l'armoire électrique.

Afin d'améliorer la maintenabilité du système, on vous demande de modifier l'installation pour que l'opérateur puisse procéder à distance à ce réarmement.

Dossier sujet Page **DS8** sur **DS12**

Cahier des charges de la modification :

Signaler le déclenchement à l'aide d'une colonne lumineuse à LED :

- cette balise, d'un diamètre de 30 mm, est verte fixe si le répartiteur ne détecte pas de défaut et doit clignoter en rouge s'il y a déclenchement d'une des voies ;
- pour faire clignoter cette balise, un module à programmation NFC est disponible ;
- référence du module : RENF22R2MMW ;
- intégration, sur le pupitre de contrôle, d'un bouton poussoir « réarmement », permettant de réarmer la voie déclenchée sans ouvrir l'armoire électrique.

Q4.1

Documents à consulter : DT24	Réponses sur : DR9

Choisir la balise et donner sa référence.

Q4.2

Documents à consulter : DT20 à DT21	Réponses sur : DR9

Définir le réglage du clignoteur.

Q4.3

Documents à consulter : DT22 et 23	Réponses sur : DR9

Décrire la procédure pour faire un reset externe sur le répartiteur.

Q4.4

Documents à consulter :	Réponses sur : DR10

Compléter le schéma de câblage de l'intervention.

5 SUJET 5^{ème} PARTIE

Optimisation du stock maintenance

DURÉE CONSEILLÉE: 1h00

Les vérins de soulèvement de la herse (réf : DSNU-40-400-PPV-A) ne sont pas référencés dans le stock maintenance de l'entreprise.

En revanche, un vérin de diamètre de piston légèrement inférieur (32 mm au lieu de 40 mm) et de même course (réf : DSNU-32-400-PPV-A) est lui disponible.

Il s'agit dans cette étude de vérifier l'opportunité de changer de vérin pour optimiser le stock maintenance.

5.1- Analyse de la solution existante

(Référence vérin : DSNU-40-400-PPV-A)

Documents à consulter : DT26 à DT28	Réponses sur : DR11

Q5.1.1 Étude du schéma pneumatique

Donner la fonction des composants pneumatiques de la chaine d'énergie liée au déplacement de la herse.

Q5.1.2 Calcul de la charge à soulever par chaque vérin

Les deux vérins sont sensés soulever la herse et deux cartons.

Calculer la charge en N à soulever par chaque vérin.

Q5.1.3 Calcul de l'effort maximum transmissible par chaque vérin

- **Q5.1.3.1** Calculer l'effort en N que peut transmettre chaque vérin.
- **Q5.1.3.2** Considérant que la charge maximale appliquée sur un vérin ne peut dépasser 70% de la force que le vérin peut fournir, vérifier cette hypothèse.

Q5.1.4 Calcul de la vitesse d'élévation de la herse

En prenant compte de la charge, calculer la vitesse de déplacement de la tige des vérins permettant l'élévation de la herse.

Exprimer cette vitesse en m·s⁻¹.

Dossier sujet Page **DS10** sur **DS12**

5.2- Changement de vérin

(Référence vérin : DSNU-32-400-PPV-A)

Documents à consulter : DT26 à DT28 Réponses sur : DR12

Q5.2.1 Calcul de l'effort maximum transmissible par chaque vérin

5.2.1.1 Calculer l'effort en N que peut transmettre chaque vérin.

5.2.1.2 Considérant que la charge maximum appliquée sur un vérin ne peut dépasser 70% de la force que le vérin peut fournir, vérifier cette hypothèse.

Q5.2.2 Calcul de la vitesse d'élévation de la herse

Calculer la vitesse de déplacement de la tige des vérins permettant l'élévation de la herse. Exprimer cette vitesse en m·s⁻¹.

Q5.2.3 Conclusion

Selon vous cette solution est-elle envisageable et y a-t-il un impact sur le temps de production ?

6 SUJET 6ème PARTIE

Modification du programme robot

DURÉE CONSEILLÉE: 30 min

Un changement de production avec un nombre de rangées et des tailles de cartons différents entraine une modification du programme robot.

Dans un premier temps, l'étude porte sur l'analyse du programme existant et, dans un deuxième temps, l'étude porte sur la modification du programme.

Le programme robot proposé décrit la réalisation de l'empilement de 48 cartons (3 rangées de 2x4 cartons).

6.1- Analyse du programme existant

Documents à consulter : DT35 et DT 36	Réponses sur : DR13

Q6.1.1 À partir du programme existant, décrire l'évolution du registre de position PR [1].

Ajouter un commentaire pour préciser l'action réalisée à chaque ligne de programme.

Q6.1.2 Préciser la fonction de la ligne de programme suivante :

6.2- Modification du programme existant

Documents à consulter : DT35 et DT 36	Réponses sur : DR13
	•

Les nouveaux cartons ont une hauteur de 80 mm au lieu de 110 mm et on désire réaliser une palette de 64 cartons.

Le robot saisit toujours les cartons par 2 rangées de 4.

- Q6.2.1 À partir du programme existant, préciser les repères des lignes à modifier.
- Q6.2.2 Proposer une modification des instructions de programme pour chaque ligne concernée.

Dossier sujet Page **DS12** sur **DS12**

Rythmes de travail de l'entreprise :

Le temps d'ouverture de l'entreprise est estimé à 46 semaines, déduction faite des congés et des jours fériés.

- Travail journalier

Horaires:

Lundi 08:00–12:45, 13:45–17:00 Mardi 08:00–12:30, 13:45–17:00 Mercredi 08:00–12:15, 13:45–17:00 Jeudi 08:00–12:15, 13:45–17:00 Vendredi 08:00–12:15, 14:00–17:00

Samedi Fermé Dimanche Fermé

- Le temps requis est estimé à 90% du temps d'ouverture
- Le taux d'engagement de l'ilot robotisé est de 100%

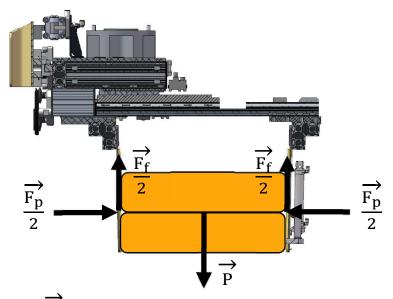
Décomposition des temps selon la norme NF E 60-182

	Tt Ter	nps total			
То	Temps d'ouv	erture			Fermeture de l'entreprise
Tr Temps requis			Maintenance préventive		
Tf Temps de fonction		Pannes Changement	Pauses Nettoyage Sous-charge		
Tn Temps net		Écarts de	de production Réglages		
Tu temps utile	Rebuts (non qualité)	cadence	Attente	Réunions	

TQ Taux de qualité	TP Taux de performance	DO Disponibilité opérationnelle	TC Taux de charge	TS Taux stratégique
Tu	Tn	Tf	Tr	To
Tn	Tf	Tr	To	Tt

Dossier technique Page **DT1** sur **DT30**

Historique annuel des pannes de l'ilot robotisé

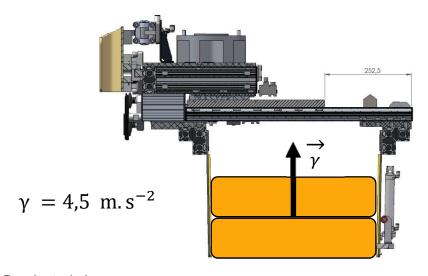

Mois	Sous ensemble	Nature de la panne	Nombre de pannes N ⁽¹⁾	Cumul temps d'arrêt N x MTTR ⁽²⁾ en heures
	Convoyeurs entrée	Bourrage cartons	5	17
Janvier	Robot	Réinitialisation	2	16
	Préhenseur robot	Mauvaise prise cartons	4	12
Février	Empileurs	Coincement cartons	3	15
Mars	Convoyeurs palettes	Arrêt palettes	5	14
	Préhenseur robot	Carton éjecté du préhenseur	5	15
	Empileurs	Non empilage	4	9
	Convoyeurs entrée	Mauvaise cadence	7	15
Avril	Préhenseur robot	Mauvaise prise cartons	3	9
	Convoyeurs entrée	Mauvaise cadence	8	13
Mai	Empileurs	Coincement cartons	6	17
	Préhenseur robot	Carton éjecté du préhenseur	3	9
Juin	Convoyeurs entrée	Bourrage cartons	6	15
Juillet	Empileurs	Pas d'empilage	7	16
	Préhenseur robot	Mauvaise prise cartons	6	15
Septembre	Robot	Calibrage	1	24
Octobre	Empileurs	Coincement cartons	5	17
Novembre	Préhenseur robot	Mauvaise prise cartons	4	13
Décembre	Préhenseur robot	Carton éjecté du préhenseur	4	9

Dossier technique Page **DT2** sur **DT30**

^{• (1)} N : nombre de pannes enregistrées par familles. Ce sera un indicateur de **non fiabilité.**

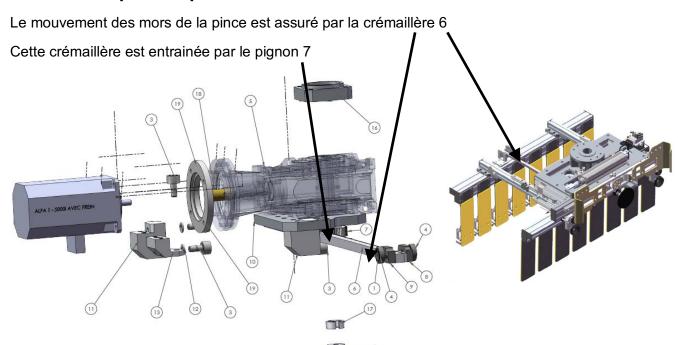
^{• (2)} MTTR : moyenne des temps d'arrêt. Ce sera un indicateur de non maintenabilité.

Etude statique des efforts sur un lot de 8 cartons saisis par le préhenseur


Coefficient de frottement de la garniture du préhenseur au contact des cartons $\mu_c=0.31$

Rappel: $\mu_{c} = \frac{\|\vec{F}_{f}\|}{\|\vec{F}_{p}\|} = \frac{F_{f}}{F_{p}}$

P: poids des 8 cartons


			Cader	ce produit			
Ligne	Туре	Part de production	For	mat carton (r	mm)	Poids max par carton (Kg)	Cadence cartons/minute
Ligne 1	Carton 110	92%	386	278	110	15	13,0

Étude dynamique : accélération linéaire

Dossier technique Page **DT3** sur **DT30**

Caractéristiques du préhenseur

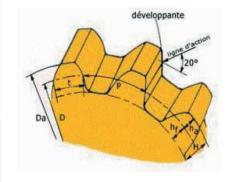
N°	Qté	Désignation	Numéro du plan	Code	Référence	Fournisseur	Masse
1	2	CIRCLIPS EXT Ø12	9999COM_ST D-1060	Défaut	F3-04-12	BARET	0,00
2	2	VIS TETE CHC M6x10	9999COM_ST D-1320 vis Chc	vis CHc M 6 X 10	CHC M6x10	EMILE MAURIN	0,01
3	5	GALET DE CAME SUR AXE Ø22 - FILETAGE M10x1 AVEC EMPREINTE POUR CLE TYPE BTR		Défaut	KR 22 PP	MICHAUD CHAILLY	0 ,04
4	2	ROULEMENT Ø12 int Ø28 ext largeur 8	9999COM_ST D-1310	Défaut	6001-2RS	MICHAUD CHAILLY	0,00
5	1	REDUCTEUR CPLE CONI. TF56B 1/50 80B14*20 + Ø20 + BRIDE FANUC ALPHA2 + BAGUE INT. Ø19- Ø10			TF56B 1/50 80B14*	TRAMEC FRANCE	
6	1	CREMAILLERE SERRAGE SVT PLAN - CREMAILLERE MODULE 1 SECTION 15x15	C858PRE_210 -317A	Défaut	CREMAILLERE MODULE 1 SECTION 15x15	LUFRA	1,22
7	1	ENGRENAGE CREMAILLERE	XXXXPREM99 9-110B	Défaut	Z=55-MODULE 1- LARG. DENTURE=15	LUFRA	0,04

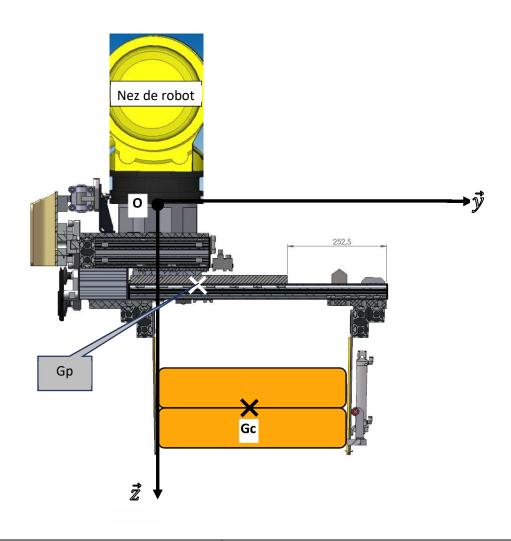
m : module
p : pas
z : nombre de dents
D : diamètre primitif
Da : diamètre de tête
t : épaisseur de la dent

h_a: saillie de la dent h_f: creux de la dent

h_f: creux de la dent H: hauteur totale

 $m = \frac{D}{z} = \frac{D.a}{z+2}$


D = m.z

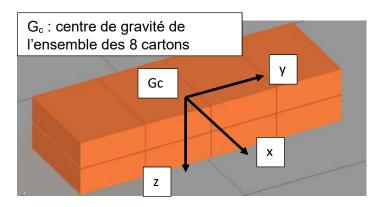

 $P = m.\pi = \frac{D.\pi}{z}$

Denture Normale:

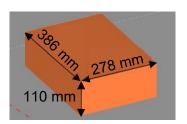
 $h_f = 1,25 \text{ x m}$ H = 2,25 x m

 $h_a = 1 \times m$

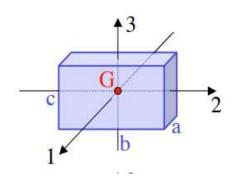
Masse du préhenseur : 284 kg G_p : centre de gravité du préhenseur Coordonnées dans le repère $(O, \vec{x}, \vec{y}, \vec{z})$	$\overrightarrow{OG_p} = \begin{cases} 0 \text{ mm} \\ 100 \text{ mm} \\ 200 \text{ mm} \end{cases}$
Masse d'un carton : 15 kg G_c : centre de gravité des 8 cartons Coordonnées dans le repère $(O, \vec{x}, \vec{y}, \vec{z})$	$\overrightarrow{OG_c} = \begin{cases} 0 \text{ mm} \\ 250 \text{ mm} \\ 540 \text{ mm} \end{cases}$


Si le solide est composé de plusieurs éléments constitutifs, le centre de gravité de l'ensemble s'obtient en déterminant le barycentre G des points G_i centres de gravité des solides individuels affectés de leurs masses respectives M_i . Soit, par rapport à une origine arbitraire O d'un référentiel d'inertie :

$$\overrightarrow{OG} = \frac{\sum_{i} Mi \overrightarrow{OGi}}{\sum_{i} Mi} = \frac{1}{M} \sum_{i} Mi \overrightarrow{OGi}$$


M étant la masse totale de l'ensemble, M est déterminée par la formule : $M = \sum_i Mi$

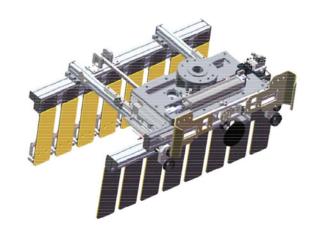
Dossier technique Page **DT5** sur **DT30**


Disposition des 8 cartons dans la pince

Dimensions d'un carton

Axes et moments d'inertie principaux par rapport au centre de masse G d'un parallélépipède de masse M de longueur b, de largeur c et de hauteur a (repère 1,2 et 3 pour x,y et z)

$$I_1 = \frac{1}{12}M(b^2 + c^2)$$


$$I_2 = \frac{1}{12}M(c^2 + a^2)$$

$$I_3 = \frac{1}{12}M(a^2 + b^2)$$

Moments d'inertie pince seule exprimés au centre de gravité de la pince Gp

$$Ix_{Gp} = 17,41 \text{ kg.m}^2$$

$$Iz_{Gp}=15,725 \text{ kg.m}^2$$

Théorème des axes parallèles

Il existe une relation entre les moments d'inertie par rapport à deux axes parallèles distants de d et dont l'un passe par le centre de masse : c'est le théorème de Huygens (Fig. 1).

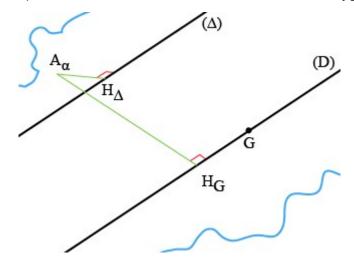


Fig. 1 : Théorème des axes parallèles

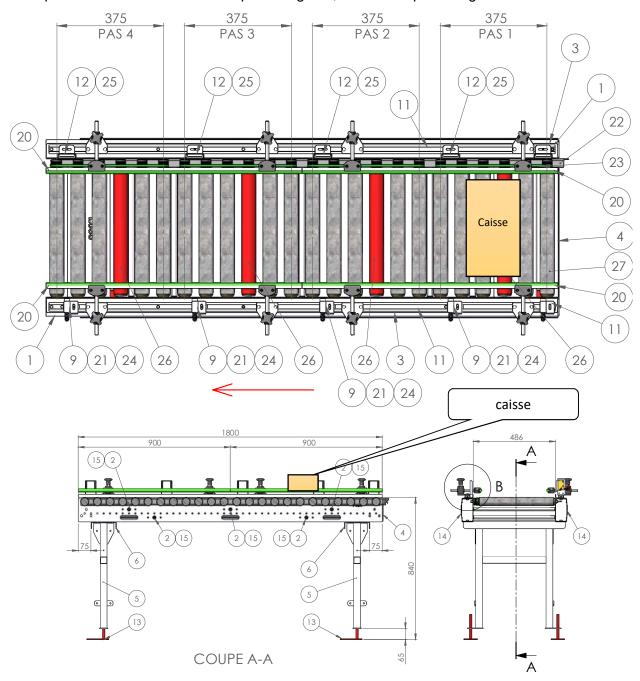
Théorème

Dans un solide de masse m, si deux axes sont parallèles et distants de d, dont l'un, (D), passe par le centre de masse G et le second est noté (Δ), leurs moments d'inertie respectifs sont reliés par la relation :

$$I_{/\Delta} = I_{/D} + m. d^2 = I_G + m. d^2$$

Cette modification correspond à une augmentation du moment d'inertie (par rapport à G) d'une grandeur constante.

Dossier technique Page **DT7** sur **DT30**


Implantation des rouleaux

Les lignes 1 et 2 étant identiques, la désignation des sous-ensembles est faite par des nombres multiples de 10.

Les sous-ensembles multiples de 10 représentent un sous ensemble présent sur les deux lignes ou commun à ces deux lignes.

L'ajout d'un 1 ou d'un 2 sur le dernier nombre permet de différencier le sous-ensemble sur la ligne 1 ou 2.

Exemple: CRMP100 => CRMP101 pour la ligne 1, CRMP102 pour la ligne 2.

Dossier technique Page **DT8** sur **DT30**

Nomenclature

N°	Qté	Désignation	Numéro du plan	Code	Référence	Fournisseur	Traitement	Type de fabrication	Masse
1	2	MEMBRURE TECHNIQUE CRMP Lg.1800	9999CRMP999-100G	P024		fx industrie	RAL FIXE	Chaudronnerie	8.38
2	5	ENTRETOISE CRMP LAIZE 450	9999CRMP999-101A	L045		fx industrie	RAL FIXE	Chaudronnerie	0,3
3	2	Rive CRMP Lg.1800	9999CRMP999-103D	024		fx industrie	RAL FIXE	Chaudronnerie	2.97
4	1	PLAQUE DE FERMETURE MEMBRURE LAIZE 450	9999CRMP999-104C	045		fx industrie	RAL FIXE	Chaudronnerie	1.35
5	2	PIEDS CRMP H 850 LAIZE 450	9999CRMP999-106E	H850-L450		fx industrie	RAL FIXE	Chaudronnerie	3,55
6	2	TRAVERSE CRMP LAIZE 450 (Lg. 604)	9999CRMP999-107B	L045		FX INDUSTRIE	RAL FIXE	Chaudronnerie	3.07
7	8	Lardon de support guide	9999CRMP999-115C	Défaut		FX INDUSTRIE	RAL FIXE	Chaudronnerie	0.07
8	8	Plaquette support guide	9999CRMP999-119B	Défaut		fx industrie	RAL FIXE	Chaudronnerie	0.16
9	5	Support cellule en barrage	9999CRMP999-120D	Défaut		FX INDUSTRIE	RAL FIXE	Chaudronnerie	0.11
10	10	Lardon Support cellule	9999CRMP999-121A	Défaut		fx industrie	RAL FIXE	Chaudronnerie	0.04
11	2	Coulisse CRMP Lg.1800	9999CRMP999-124B	024		fx industrie	RAL FIXE	Chaudronnerie	1.35
12	5	Support reflecteur	9999CRMP999-135B	Défaut		fx industrie	RAL FIXE	Chaudronnerie	0.13
13	4	PIEDS REGLABLE h=150	9999STD_999-059A	Défaut		FX INDUSTRIE	BRUT	Chaudronnerie	0,61
14	2	CACHE CONVOYEUR CRM LG 1680	9999COM_STD-1360	1680	LG 1680	ALLIPLAST	RAL 7037	Commerce	0,4
15	10	INSERT M8 POUR TUBE Ø20x1.5 REF : 1486505		Défaut	1486505	AMMERAAL BELTECH		Commerce	5.00
16	8	CORPS ORIENTABLE REF: 8120107		Défaut	8120107	AMMERAAL BELTECH		Commerce	0.04
17	8	AXE POUR ETAU SIMPLE 150 REF : 8220380		Défaut	8220380	AMMERAAL BELTECH		Commerce	0.13
18	8	TÊTE ORIENTABLE REF : 8120577		Défaut	8120577	AMMERAAL BELTECH		Commerce	0.02
19	8	ETAU SIMPLE REF: 8210155		Défaut	8210155	AMMERAAL BELTECH		Commerce	0.34
20	4	GUIDE VERT Lg.900	9999COM_STD-1360	0900	PZN20350L2 L=900	AMMERAAL BELTECH		Commerce	0.25
21	5	CELLULE MIROIR SIGNAL INVERSABLE		Connecteur 90°	05P202	IFM		Commerce	0.04
22	12	Cache courroie		Défaut	S-8863	INTERROLL		Commerce	0.02
23	20	COURROIE POLY-V pour entraxe rouleaux de 75mm	9999COM_STD-1104	Défaut	POLY-V entraxe 75	INTERROLL		Commerce	0.04
24	5	CORDON COUDES M12		Défaut	KD U-M12-4W-V1-100 (50130691)	LEUZE ELECTRONIC		Commerce	0.04
25	5	REFLECTEUR à visser 50x50	9999COM_STD-2020	Défaut	TKS50x50.1	LEUZE ELECTRONIC		Commerce	0.18
26	4	Rouleau Moteur Pour CRMP EC310 Poly-V L045 V39 M/min 24:1	9999CRMP999-108C	L045 V039		INTERROLL		Commerce usinée	0.92
27	20	Rouleau libre Pour CRMP L045 Serie 3500 Ø50 tête Poly-V	9999CRMP999-109B	L045		INTERROLL		Commerce usinée	7.26

Dossier technique Page **DT9** sur **DT30**

ROLLERDRIVE EC310

Description du produit

- Commutation électronique interne (Moteur sans balai)
- 9 rapports de réduction
- Vitesse de convoyage constante
- Récupération d'énergie lors du freinage (voir également p. 195)
- Freinage d'arrêt électronique (Zero-Motion-Hold) pour l'entraînement de convoyeurs en pente
- Ligne moteur avec connecteur enfichable 5 pôles, sans vissage fastidieux

Spécifications

Spécifications générales	
Puissance mécanique	32 W
Niveau de bruit max.	50 dB(A) (en fonction de l'application)
Capacité de charge statique possible	
Exécution côté transfert: Taraudage / Axe à ressort	1100 N
Exécution côté transfert: PolyVee avec taraudage / axe à ressort	
Tête pour courroie ronde avec taraudage / axe à ressort	350 N
Données électriques	
Tension nominale	24 V DC
Plage de tension temporaire admissible	18 jusqu'à 28 V DC
Intensité à vide	0,4 A
Intensité nominale	2,0 A
Intensité de démarrage max.	5,0 A
Ondulation de tension	< 3 %
Classe de protection	IP54
Dimensions	
Diamètre de tube / Epaisseur du tube	50 x 1,5 mm; 51 x 2 mm
Longueur utile max.	1500 mm
Conditions ambiantes	
Température ambiante en fonctionnement	0 jusqu'à +40 °C
Température ambiante du transport et de l'entreposage	-30 jusqu'à +75 °C
Humidité de l'air max.	85 %

Les tableaux récapitulatifs suivants présentent les variantes possibles.

Loo tabloaax rooapitalatilo ot	ivanto procentoni loc	, variaritoo poodibiot			
Rapport de réduction	Vitesse de convoyage max.	Couple nominal	Couple de démarrage	Moment de couple à l'arrêt	Variantes Rapports de
	m/s	Nm	Nm	Nm	réduction
9:1	1,75	0,45	1,10	0,36	
12:1	1,31	0,61	1,46	0,48	
16:1	0,98	0,81	1,95	0,64	
20:1	0,79	1,01	2,44	0,80	
24:1	0,65	1,21	2,92	0,96	
36:1	0,44	1,82	4,38	1,44	
48:1	0,33	2,42	5,85	1,92	
64:1	0,25	3,23	7,80	2,56	
96:1	0,16	4,84	11,69	3,84	

Matériau du tube	Acier inoxydable / Acier zingué / Acier chromé / Aluminium
Axe motorisé	11 mm, hex. et filetage M12 x 1
Axe motorisé - Matériau	Acier inoxydable
Revêtement de tube	Gaine PVC, 2 / 5 mm; Gaine PU 2 mm; Revêtement caoutchouc 2-5 mm; Eléments enfilables coniques
Longueur câble moteur	0,48 m

Autres variantes

Dossier technique

Variateur de vitesse drive control Interroll DriveControl 20 / DriveControl 54

Description du produit

La DriveControl 20/54 est prévue pour la commande de la vitesse et du sens de rotation du RollerDrive EC310.

- Freinage générateur : lors du freinage, le moteur du RollerDrive agit comme un générateur et renvoie l'énergie à la tension d'alimentation. La DriveControl est équipée d'un circuit de freinage à interruption périodique afin de limiter la tension CC coté connexion pour qu'elle reste à un niveau sûr.
- Diagnostic : les DEL renseignent sur l'état de fonctionnement de la DriveControl et du RollerDrive ainsi que sur la tension de service. Un signal d'erreur peut également être émis. Lorsque la vitesse d'un RollerDrive en rotation diminue brusquement, (par exemple en raison du retrait ou de la réduction du signal de démarrage sur la DriveControl). le RollerDrive continue brièvement de tourner (en fonction du poids des articles transportés à stopper) et fonctionne donc comme un générateur. La tension ainsi produite augmente la tension d'alimentation du RollerDrive. Cette tension accrue est en partie injectée dans le réseau CC (jusqu'à maximum 30 V) et en partie convertie en chaleur par une résistance du circuit d'interruption de freinage intégré à la DriveControl. L'énergie alimentée en retour est mise à la disposition d'autres appareils consommateurs. Plus la tension d'alimentation reste proche de 24 V. plus l'intervalle de tension de réiniection de la tension dans le réseau CC est grand.

Caractéristiques techniques

	DriveControl 20-54
Tension nominale	24 V CC
Plage de tension	19 à 26 V CC (protection contre inversion de polarité jusqu'à 30 V)
Consommation de courant	avec RollerDrive : jusqu'à 5 A sans RollerDrive : 0,5 A
Classe de protection	DriveControl 20 : IP20 DriveControl 54 : IP54
Refroidissement	Convection
Température de travail en fonctionnement	DriveControl 20 : de 0 °C à 40 °C (de 32 °F à 104 °F) DriveControl 54 : de -28 °C à 40 °C (de -18 °F à 104 °F)
Humidité relative	5 à 95 %, rosée/condensation non admissible
Altitude de montage max.	max. 1000 m (max. 3300 ft) Le montage dans des installations de hauteur supérieure à 1000 m (3300 ft) est en principe possible. Une baisse des valeurs de performance peut toutefois en résulter.

Signification des DEL

Les DEL renseignent sur l'état de fonctionnement de la DriveControl et du RollerDrive ainsi que sur la tension de service.

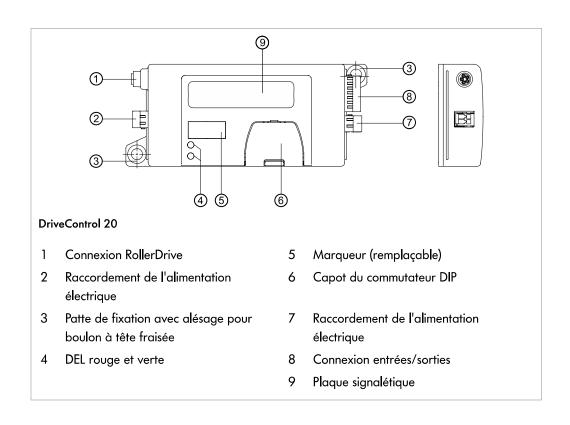
DEL verte	DEL rouge	Signification	Tension de service
Allumée	Éteinte	DriveControl prête à fonctionner	19 à 26 V
Clignote	Éteinte	RollerDrive tourne/est piloté	19 à 26 V
Éteinte	Allumée	Fusible défectueux dans la DriveControl	
Éteinte	Clignote lentement 1)	Tension de fonctionnement trop faible	en dessous de 18 V
Allumée/ Clignote	Clignote lentement 1)	ERREUR active sur RollerDrive ou RolleDrive non raccordé	19 à 26 V
Allumée/ Clignote	Clignote rapidement ²⁾	Extinction due à une surchauffe de la résistance du circuit d'interruption	

¹⁾ Clignotement lent de la DEL = 0,5 s allumée - 1,5 s éteinte

Dossier technique Page **DT11** sur **DT30**

 $^{^{2)}}$ Clignotement rapide de la DEL = 0,5 s allumée - 0,5 s éteinte

Réglage de la vitesse

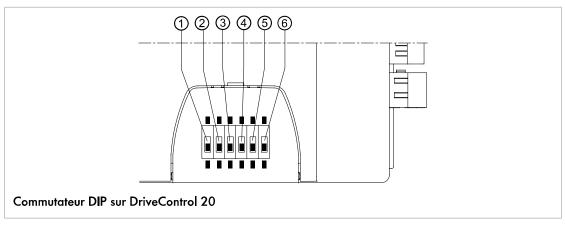

La vitesse du RollerDrive peut être réglée de deux manières à l'aide de la DriveControl :

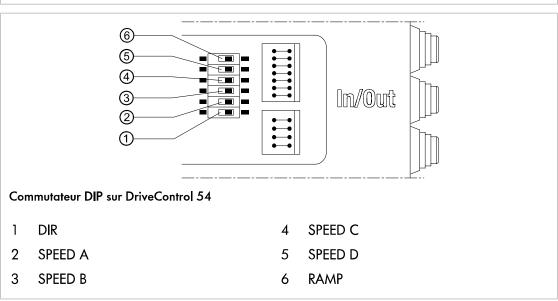
- interne via quatre commutateurs DIP, sur 15 niveaux, (est prioritaire et permet des réglages plus précis)
- externe via trois entrées numériques, sur 8 niveaux (les modifications de la vitesse sont aussi possibles en cours de fonctionnement, ce qui permet de presque réaliser une fonction de rampe avec le montage correspondant d'une PLC).

Le réglage de la vitesse est transformé par la DriveControl en tension de commande analogique qui est évaluée par le RollerDrive comme étant une valeur indicative théorique. Cette valeur indicative théorique est indépendante des engrenages du RollerDrive et de leurs diamètres.

Le comportement à l'accélération et au freinage du RollerDrive est déterminé par son propre couple d'inertie, le rapport de réduction utilisé, la vitesse de transport, le moment d'inertie des rouleaux de transport raccordés, le moyen de transfert sélectionné et la masse transportée.

Le commutateur DIP RAMP permet d'enclencher une rampe d'accélération/ de décélération. Les rampes sont de durée égale, à savoir 0,39 secondes. Leur durée n'est pas modifiable.


Dossier technique Page **DT12** sur **DT30**


Commutateurs DIP

Les commutateurs DIP permettent de sélectionner la vitesse et le sens de convoyage. À la livraison, les commutateurs DIP et RAMP sont réglés sur OFF et les commutateurs DIP SPEED A, B, C et D sont réglés sur ON.

Commutateurs DIP	ON	OFF
DIR	Sens de rotation de RollerDrive dans le sens horaire (observé depuis le câble de raccordement) *	Sens de rotation de RollerDrive dans le sens antihoraire (observé depuis le câble de raccordement) *
SPEED A, B, C, D	Réglage d	e la vitesse
RAMP	Rampe d'accélération e	t rampe de base actives

^{*} Le sens de rotation est inversé lorsque l'entrée DIR est active dans le circuit.

Dossier technique Page **DT13** sur **DT30**

Interroll DriveControl 20 / DriveControl 54

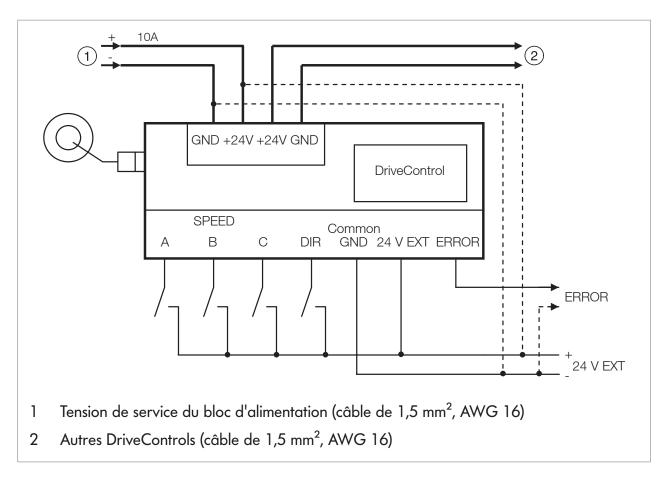
Mise en fonctionnement:

Modifier le réglage du potentiomètre sur le DriveControl (interne)

Condition: Les entrées externes SPEED A, B, C sont logiquement inactives.

- ▶ Régler la vitesse souhaitée à l'aide des commutateurs DIP (voir le tableau).
- ▶ Activer l'une des entrées SPEED A, B, C en logique pour démarrer le RollerDrive. Le RollerDrive tourne à la vitesse réglée.
- ▶ Pour stopper le RollerDrive, désactiver la logique de toutes les entrées SPEED A, B, C.

Posit	ion de	n des Vitesse lors du rapport de réduction										
	mutate eContro	urs DIP ol	sur la	m/s								
Α	В	С	D	9:1	12:1	16:1	20:1	24:1	36:1	48:1	64:1	96:1
on	on	on	on	1,75	1,31	0,98	0,78	0,65	0,44	0,33	0,25	0,16
on	on	on	off	1,63	1,22	0,92	0,73	0,61	0,41	0,31	0,23	0,15
on	on	off	on	1,51	1,13	0,85	0,68	0,57	0,38	0,28	0,21	0,14
on	on	off	off	1,39	1,04	0,78	0,62	0,52	0,35	0,26	0,20	0,13
on	off	on	on	1,27	0,95	0,72	0,57	0,48	0,32	0,24	0,18	0,12
on	off	on	off	1,15	0,86	0,65	0,52	0,43	0,29	0,22	0,16	0,11
on	off	off	on	1,03	0,78	0,58	0,47	0,39	0,26	0,19	0,15	0,10
on	off	off	off	0,92	0,69	0,52	0,41	0,34	0,23	0,17	0,13	0,09
off	on	on	on	0,80	0,60	0,45	0,36	0,30	0,20	0,15	0,11	0,07
off	on	on	off	0,68	0,51	0,38	0,31	0,25	0,17	0,13	0,10	0,06
off	on	off	on	0,56	0,42	0,32	0,25	0,21	0,14	0,11	0,08	0,05
off	on	off	off	0,44	0,33	0,25	0,19	0,17	0,11	0,08	0,06	0,04
off	off	on	on	0,32	0,24	0,18	0,15	0,12	0,08	0,06	0,05	0,03
off	off	on	off	0,21	0,15	0,12	0,09	0,08	0,05	0,04	0,03	0,02
off	off	off	on	0,09	0,07	0,05	0,04	0,03	0,02	0,02	0,01	0,01
off	off	off	off	En fonction des signaux sur les entrées SPEED A, B, C								


Position du commutateur DIP RAMP	du commutateur DIP RAMP					
ON	OFF					
Rampe d'accélération et de décélération de t =	Le RollerDrive accélère et freine aussi					
0,39 sec enclenchée. La durée se réfère à la	rapidement que possible en fonction de					
vitesse maximale. En cas de présélection d'une	l'application.					
vitesse inférieure, les rampes sont réduites de						
manière proportionnelle.						

Dossier technique Page **DT14** sur **DT30**

Schéma de câblage

Les signaux SPEED A, SPEED B, SPEED C, DIR et ERROR sont à séparation galvanique totale de la tension de service par un optocoupleur. Le signal de sortie ERROR a besoin d'une tension externe supplémentaire 24 V EXT. La connexion commune à la masse des signaux SPEED A, SPEED B, SPEED C, DIR et ERROR est COMMON GND.

Si la séparation galvanique n'est pas nécessaire, les connexions 24 V (tension d'alimentation) peuvent être raccordées à 24 V EXT(entrées/sorties) et GND (tension d'alimentation) à COMMON GND (entrées/sorties).

Les lignes représentées en pointillés ne sont utilisées que si la séparation galvanique entre les entrées/sorties et la tension de service n'est pas obligatoire.

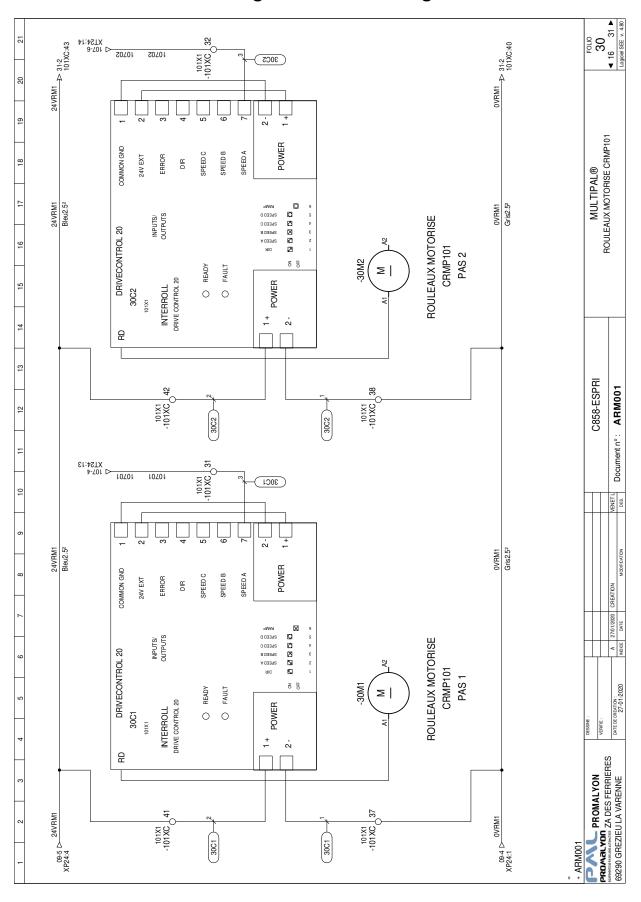
Dossier technique Page **DT15** sur **DT30**

Réglage de la vitesse via entrées numériques (externes)

Condition: Tous les commutateurs SPEED A, B, C, D sont sur OFF.

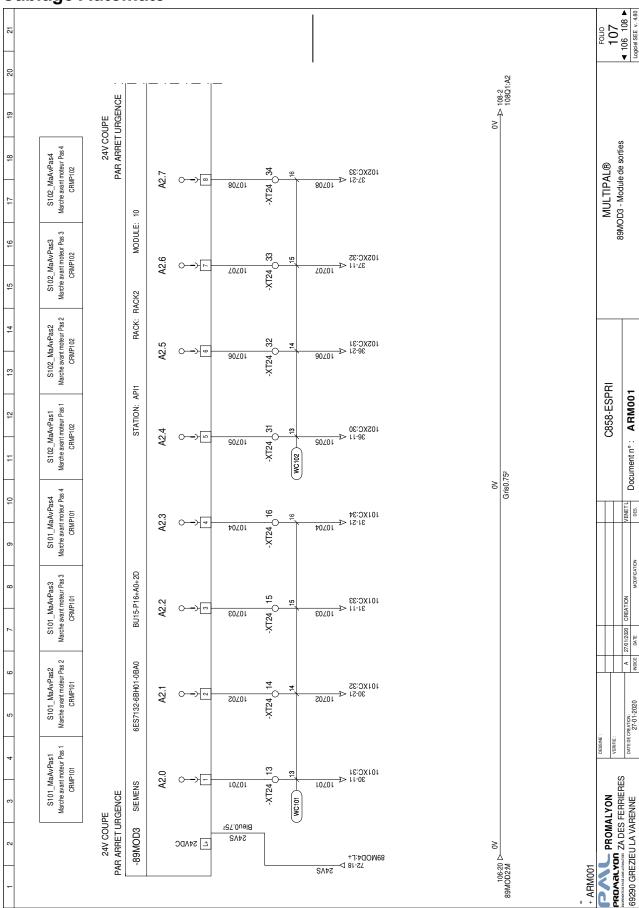
- Activer ou désactiver la logique des entrées externes SPEED A, B, C en fonction du tableau ci-dessous pour pouvoir démarrer le RollerDrive à la vitesse souhaitée.
- Pour modifier la vitesse, modifier de manière correspondante les signaux sur les entrées SPEED A, B, C.
- ▶ Pour stopper le RollerDrive, désactiver la logique de toutes les entrées SPEED A, B, C.

Le réglage de vitesse interne est prioritaire. Si pendant le réglage de vitesse externe d'un ou de plusieurs des commutateurs internes DIP SPEED A, B, C, D sur ON, le RollerDrive tourne à cette vitesse réglée en interne, indépendamment des signaux des entrées externes. Lorsque tous les commutateurs internes SPEED A, B, C, D ont été mis sur OFF, le RollerDrive tourne à nouveau à la vitesse paramétrée par les entrées externes.

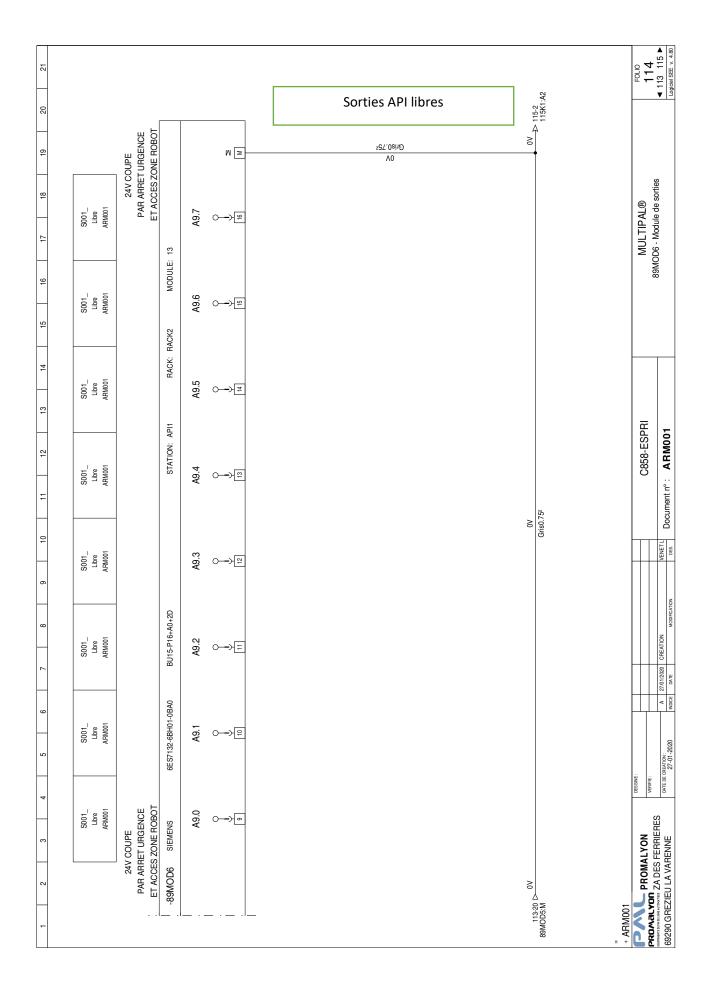

Entre	ées SPE	ED sur la	Vitess	e lors d	lu rapp	ort de re	éductio	n			
Driv	eContro	ol	m/s								
Α	В	С	9:1	12:1	16:1	20:1	24:1	36:1	48:1	64:1	96:1
Н	Н	Н	1,75	1,31	0,98	0,78	0,65	0,44	0,33	0,25	0,16
Н	Н	L	1,47	1,10	0,83	0,66	0,55	0,37	0,28	0,21	0,14
Н	L	Н	1,19	0,89	0,67	0,53	0,45	0,30	0,22	0,17	0,11
Н	L	L	0,92	0,69	0,52	0,41	0,34	0,23	0,17	0,13	0,09
L	Н	Н	0,64	0,48	0,36	0,29	0,24	0,16	0,12	0,09	0,06
L	Н	L	0,36	0,27	0,20	0,17	0,14	0,09	0,07	0,05	0,03
L	L	Н	0,09	0,07	0,05	0,04	0,03	0,02	0,02	0,01	0,01
L	L	L	0	0	0	0	0	0	0	0	0

Accélération en cas d'utilisation de commutateurs DIP pour la rampe d'accélération et de freinage :

Diamètre des rouleaux	Démultiplication	Accélération m/s²
50	9:1	4,52
50	12:1	3,39
50	16:1	2,54
50	20:1	2,03
50	24:1	1,70
50	36:1	1,13
50	48:1	0,85
50	64:1	0,64
50	96:1	0,42
60	16:1	3,05

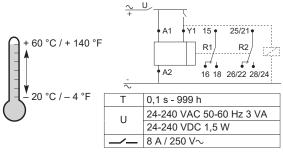

Dossier technique Page **DT16** sur **DT30**

Extrait du schéma de câblage des variateurs ligne 1



Dossier technique Page **DT17** sur **DT30**

Câblage Automate


Dossier technique Page **DT18** sur **DT30**

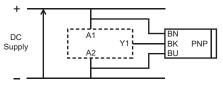
Module clignoteur : RENF22R2MMW

RENF22R2MM\v/ a

Cable / Câblez / Verdrahtung / Realice las conexiones / Realizzate il cablaggio / 接线

• Alimentation (U)

OFF


- 1x Contact de permutation **Y1** Commande de redéclenchement/pause
- Période de temporisation т
- Commande instantanée OFF / fonction « TIMED » sélectionnée (R2 et R1 INST. CONT. synchronisés avec la fonction sélectionnée)
- Commande instantanée ON / fonction « INST » ON O sélectionnée (R2 activé/désactivé en INST. CONT. synchronisation avec l'alimentation)

ON Sous tension OFF ON Hors tension OFF ON Commande d'entrée Y1 activée ON Commande d'entrée Y1 désactivée ON Sortie relais fermée OFF ON Sortie relais ouverte

Page DT20 sur DT30

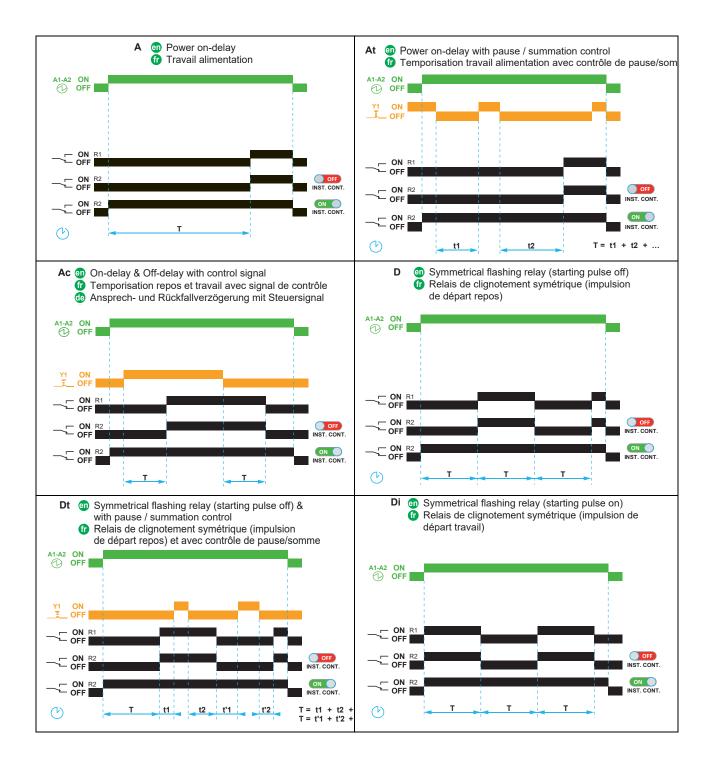
- 1 Voyant (vert) de connexion 2 Voyant (orange) de la sortie 2 3 Voyant (orange) de la sortie 1 Voyant (vert) d'alimentation 5 Emplacement de l'antenne NFC
- Remarque:
- La fonction par défaut de ce produit est la fonction A (temporisation travail alimentation) et T = 3 s.
- Pour utiliser ce produit, vous devez disposer d'un téléphone Android doté de la fonctionnalité NFC et de l'OS Android version 4.4 au minimum.
- L'application peut être téléchargée au choix comme suit :
- Orientez l'antenne NFC du téléphone portable vers celle du produit pour accéder au Google Play Store.
- Accédez au Google Play Store et recherchez « Zelio NFC ».
- Utilisez le code QR ci-dessous.

Sensor wiring diagram Schéma de câblage du détecteur Verdrahtungsplan des Detektors Diagrama de cableado del detector Schema di cablaggio del rilevatore 计划的布线的探测器

Setting Page

Página de

🕧 Pagina di


🐠 设置页面

configuración

configurazione

Dossier technique

(†) Une fois l'application Zelio NFC installée sur votre téléphone portable, vous pouvez consulter et régler les paramètres, diagnostiquer l'état du produit et verrouiller/déverrouiller les réglages. L'application fournit tous les schémas des fonctions de temporisation, les schémas de câblage ainsi qu'une aide.