BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2022

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable

ARCHITECTURE ET CONSTRUCTION

Durée de l'épreuve : 4 heures

Eléments de CORRECTION

22-2D2IDACME1C 1/16

Complexe aquatique de la Communauté de Communes de la Vallée de la Bruche

Boiséo

source google

0	Presentation de l'étude et questionnement	pages	3 a 1	13
0	Documents techniques DT1 à DT11	pages	14 à	19
0	Documents réponses DR1 à DR2	pages	20 à	21

22-2D2IDACME1C 2/16

Partie 1 : Pourquoi le savoir-nager est-il un enjeu sociétal préoccupant ?

Question 1.1

Les « pics » sont aisément identifiables. Ils interviennent lors des week-ends.

- premier week-end de juillet ;
- deuxième week-end de juillet ;
- week-end du 14 juillet ;
- premier week-end août ;
- week-end du 15 août ;
- troisième week-end août ;

L'année 2018 est une année de canicule.

Question 1.2

D'après l'exigence 1.7.2, **3 265** scolaires fréquentent les écoles et les collèges de la CCVB.

Question 1.3

D'après l'exigence 1.7.1.2.1 « Affluence », Boiséo doit accueillir jusqu'à 700 personnes maximum.

Le centre aquatique se situe donc dans la catégorie 3.

Question 1.4

aspect social:

- Nager santé ID1.1
- Accessibilité ID1.3
- Gestion de la sécurité ID1.8

aspect économique :

- Développement économique ID1.7
- o Implanté Local ID1.2
- Gestion de l'énergie ID1.5

aspect environnemental:

- Enveloppe ID1.4
- Gestion de l'énergie ID1.5
- Respecter les normes sanitaires ID1.6

Question 1.5

Pour conclure, la courbe montre qu'il y a **une relation évidente entre la chaleur et le nombre de noyades**. Les enfants recherchent des plans d'eau pour se rafraichir et s'ils ne savent pas nager, les risques de noyade augmentent. Conséquences du réchauffement climatique, les canicules estivales risquent d'augmenter ; il est donc temps d'agir...

La construction d'un complexe aquatique à proximité des établissements scolaires de la vallée, permet de mieux former les élèves à la natation et ainsi éviter les noyades.

22-2D2IDACME1C 3/16

Partie 2 : comment faciliter l'accès des bassins aux personnes à mobilité réduite (P.M.R.) ?

Question 2.1

Chaque place est signalée par le pictogramme représentant une personne en fauteuil roulant ; l'ensemble est complété par un panneau interdiction de stationner sauf handicapés.

Question 2.2

Il y a en tout 120 places de stationnement pour VL

 $120 \times 2 / 100 = 2,4$ il faut donc 3 places

Question 2.3

Mesures des places : longueur : 28 mm largeur : 19 mm

En tenant compte de l'échelle, on obtient les dimensions réelles : 5040 mm × 3420 mm

Question 2.4

Les exigences sont respectées, que ce soit pour la signalétique (pictogramme + panneau interdiction de stationner sauf handicapés), pour le nombre de place de stationnement PMR ou pour leurs dimensions (exigences de 5 m × 3,30 m).

Question 2.5

Zone 3:

Niveau inférieur = 325,18 m

Niveau supérieur = 325,62 m

Longueur L = 8.64 m

Hauteur à franchir h = 365,62 - 325,18 = 0,44 m

Pourcentage de pente = Hauteur à franchir / Longueur de rampe

= 0.44 / 9.16 = 0.048 soit 4.8%

Zone 4:

Cette zone est horizontale et correspond sensiblement à un carré de 2 m de côté.

D'après la réglementation « des paliers de repos doivent être disposés tous les 10 mètres dès lors que la pente est supérieure ou égale à 4 % ».

Comme le chemin entre la zone 2 et le parvis est supérieure à 10 m, et que la pente est de 4,6 %, il est logique de prévoir un palier à mi-distance.

Ce palier doit au minimum respecter une forme rectangulaire de 1,20m ×1,40m

La réglementation est donc respectée.

22-2D2IDACME1C 4/16

Question 2.6

Longueur du pédiluve : 4,29 m

Périmètre d'une roue L= $\pi \times \emptyset = \pi \times 610 \text{ mm} = 1915 \text{ mm} \approx 1,92 \text{ m}$

4,29 / 1,92 = 2,23 tours la longueur est donc validée.

Partie 3 : comment protéger les usagers contre les éléments climatiques ?

Question 3.1

Reprendre une partie des charges de l'auvent (poids propre et charges climatiques).

Question 3.2

Le poteau est soumis à de la compression simple.

Question 3.3

 $F = 34,76 \text{ m}^2 \times [1,35 \times 0,28 \text{ kN.m}^{-2} + 1,5 \times 0,45 \text{ kN.m}^{-2}] = 36,6 \text{ kN}$

Question 3.4

Contrainte normale : $37\,000\,\text{N}/2\,703\,\text{mm}^2 = 13,7\,\text{N.mm}^{-2}$ (ou MPa)

Cela reste largement inférieur à Re = 235 N.mm⁻²

 $235 \text{ N.mm}^{-2} / 13,7 \text{ N.mm}^{-2} = 17,1$

Coef de sécurité = 17,1

Le poteau est largement dimensionné.

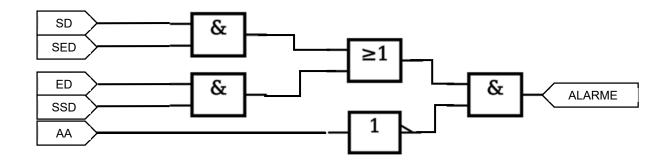
22-2D2IDACME1C 5/16

Partie 4 : Comment contrôler l'accès à la piscine « Boiséo » ?

Configuration du réseau informatique :

Question 4.1

Voir le DR1 - toutes les adresses sont possibles sauf celles données, broadcast et réseau


Question 4.2

256 - 8 - 2 = 246

Question 4.3

Voir le DR1

Question 4.4

Partie 5 : Comment estimer les possibilités de récupération d'énergie solaire sur le toit de la piscine « Boiséo » et gérer le chauffage des bassins ?

Question 5.1

 $S_t = S_{terrasse1} + S_{terrasse2}$

AN: $S_t = (10,48 . 23,79) + (8,25 . 15,07) -> S_t = 373 m2$

Question 5.2

si on considère un apport d'énergie moyen sur l'année. Ce choix serait adapté pour le dimensionnement de panneaux thermiques.

 $I = 3,05 \text{ kW.h/m}^2/j$

Question 5.3

 $W_{tq} = I . S_t$

 $AN : W_{tq} = 3 . 350 -> W_{tq} = 1050 kW.h/j$

Question 5.4

 $W_{psth} = W_{tq} \cdot \eta$

 $AN: W_{psth} = 800 \text{ kW.h/j}$

Question 5.5 Voir DR2

22-2D2IDACME1C

6/16

Partie 6 : Comment optimiser la gestion des énergies pour le chauffage de l'eau des bassins, de l'eau chaude sanitaire et des locaux ?

Question 6.1

Les 3 sources d'énergie sont :

Soleil: renouvelable, primaire

Gaz: non-renouvelable, primaire

Electricité : mix énergétique (renouvelable ou non), secondaire

Question 6.2

La source d'énergie prioritaire est le soleil car c'est renouvelable et gratuit

Question 6.3

Pmax = 45 + 75 + 700 = 820 kW

Question 6.4

Pch = 300 - 45 - 75 = 180 kW

PMarge = 700 - 180 = 520 kW

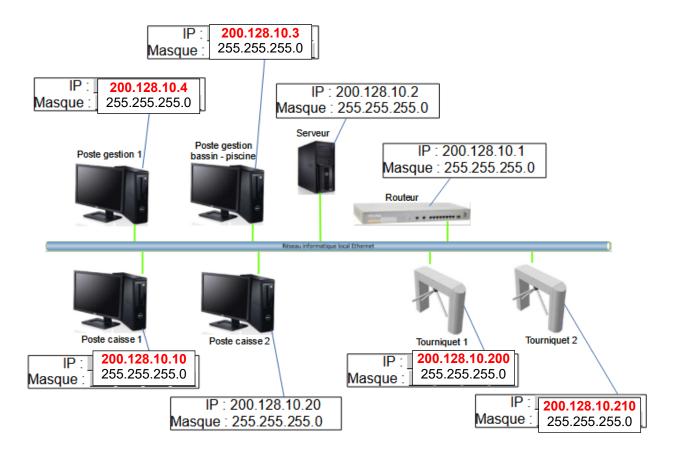
Question 6.5

W = 16 . 660 000 . 4185 = 44 193 600 000 J

Soit 44 193 600 000 / 3 600 000 = 12 276 kWh

Question 6.6

W = P.t


 $T = 12\ 276\ /\ 500 = 24,552\ heures\ soit\ environ\ 1\ jour$

Il faut cette puissance de chaudière pour pouvoir chauffer l'eau des bassins en cas de remplissage avec de l'eau froide. A chaque remplissage il faudra 1 jour pour amener l'eau des bassins à bonne température.

22-2D2IDACME1C 7/16

DOCUMENT RÉPONSES DR1 : réseau informatique et contrôle d'accès

Question 4.1 : **Proposer** dans les parties grisées des adresses IP des clients du réseau informatique local de la piscine « Boiséo ».

Question 4.3 : A partir de l'équation logique de l'alarme, **compléter** les parties grisées de sa table de vérité partielle.

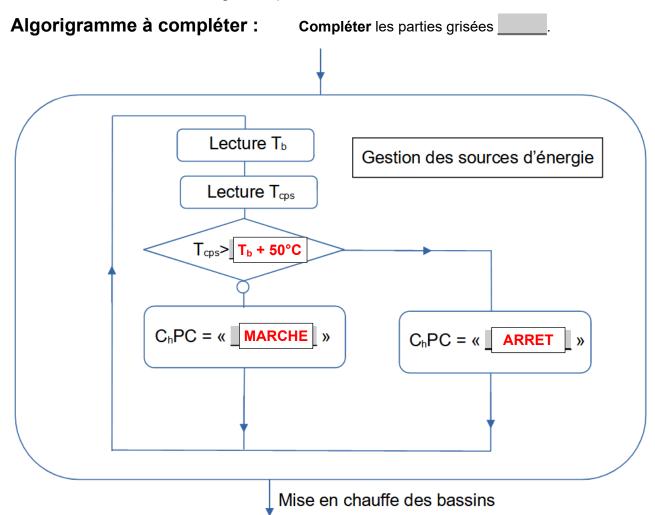
$$ALARME = ((SD.SED) + (ED.SSD)).\overline{AA}$$

SD	SED	ED	SSD	AA	ALARME
0	0	0	0	0	0
1	0	0	0	0	0
1	1	0	0	0	1
0	0	1	1	0	1
0	0	0	0	1	0
1	0	0	0	1	0
1	1	0	0	1	0
0	0	1	1	1	0

22-2D2IDACME1C 8/16

DOCUMENT RÉPONSES DR2 : gestion des sources d'énergies

L'énergie thermique provenant des panneaux solaires thermiques est utilisée en permanence. Pour maintenir la température à une valeur constante, la pompe à chaleur vient compléter cet apport d'énergie de la manière suivante :


- Si la température du liquide caloporteur des panneaux solaires thermiques est inférieure ou égale à celle de l'eau des bassins + 50°C, la pompe à chaleur est à l'état « MARCHE » pour compléter l'apport d'énergie.
- Si la température du liquide caloporteur des panneaux solaires thermiques est supérieure à celle de l'eau des bassins + 50°C, la pompe à chaleur est à l'état « ARRET ».

Remarque : le chauffage au gaz (chaudière à condensation), n'est utilisé que pour la mise en chauffe initiale des bassins.

Avec : T_b = Température de l'eau des bassins en °C

T_{cps} = Température du liquide caloporteur des panneaux solaires thermiques

C_hPC = Chauffage Pompe à Chaleur

22-2D2IDACME1C 9/16

Architecture et construction

Complexe aquatique BOISÉO

Eléments de correction

Source « Google »

22-2D2IDACME1C 10/16

Partie A : comment réaliser la superstructure du bâtiment ?

Question A.1

Procédé de mur à coffrage intégré

- Rapidité de mise en œuvre
- Impact des aléas de chantier bien moindre
- Travaux de ragréage limités

Question A.2

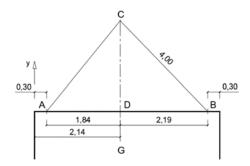
On procède en calculant le cdg du plein – le cdg du vide (le plus simple).

Surface : 12,481 m²

 $X_G = 2,145 \text{ m}$

 $Y_G = 1,558 \text{ m}$

Question A.3


Masse $12,50\times0,12\times2500 = 3750 \text{ kg}$

Elingue 2 brins référence 13 - II - AWI - HSWI - VLWI (CMU : 5,95 T)

Question A.4

Le centre de gravité doit se trouver sur la verticale passant par le crochet.

Question A.5

$$AC^2 = AD^2 + DC^2$$
 $BC^2 = BD^2 + DC^2$

$$AC = [1.84^2 + 4.00^2 - 2.19^2]^{0.5}$$

$$AC = 3.82 \text{ m}$$

Possibilité de raisonner en trigo / faire une figure à une échelle donnée.

Partie B : comment choisir le revêtement de sol ?

22-2D2IDACME1C 11/16

Question B.1

U : usure au trafic ; P : poinçonnement ; E : comportement à l'eau et l'humidité ; C : tenue aux agents chimiques et tâchants

Hall: classement demandé: U4 P3 E2 C1 (SP17 circulations pieds chaussés)

Vestiaires: U3 P3 E2 C2 (SP21)

Question B.2

Le modèle Aloxe est classé U3 P3 E3 C2.

Il convient pour les vestiaires mais pas pour le hall (U3 < U4 exigé).

Tous les autres modèles (Mercurey, Chinon, Savigny) conviennent : U4 P4 E3 C2.

Question B.3

Pour pouvoir comparer des produits, il faut qu'ils aient la même unité fonctionnelle : « couvrir et décorer 1 m² de sol ...pendant 50 ans ».

Question B.4

Le Novoceram est meilleur dans les 3 catégories proposées.

Globalement Novoceram est moins impactant et est à recommander.

22-2D2IDACME1C 12/16

Partie C : comment assurer la résistance mécanique du bassin santé ?

Question C.1

Portée de la dalle (suivant la coupe AA) : petite portée = 10,02 m

Épaisseur = portée /10 = 10 / 10 soit 1 m.

Épaisseur énorme ! Problèmes qui peuvent être évoqués : difficulté à faire un coffrage assez résistant ; grand cout lié à la quantité de béton ... ; impact du poids propre dans la flexion de la dalle ...

Évaluation à moduler selon l'argumentation.

Question C.2

Nouvelle portée entre nus : 5,44 m

Un fond pas assez rigide risque de générer des déformations importantes incompatibles avec du carrelage voire avec l'étanchéité, ce qui engendre des fuites rendant le bassin hors d'usage.

Question C.3

Charge d'exploitation : poids de l'eau (et des baigneurs)

Charges permanentes : poids des éléments en béton, de l'étanchéité et du carrelage

Question C.4

Le PFS fournit 3 équations alors qu'il y a 4 inconnues de liaison : Ax et Ay, By et Cy.

Comme il y a une inconnue en trop, la poutre est hyperstatique.

Question C.5

Voir DRS1 Si Mfz(x) > 0, alors la zone tendue se trouve en partie basse (et inversement : si Mfz(x) < 0, alors la zone tendue se trouve en partie haute).

Question C.6

Voir DRS1 Les ancrages ne sont pas demandés!

22-2D2IDACME1C 13/16

Partie D: comment assurer un bon confort visuel dans les vestiaires?

Question D.1

FLJ est déterminé avec un ciel couvert normalisé ; il est indispensable d'avoir des conditions définies pour comparer des résultats, mais on ne peut donc pas tenir compte de la variabilité dans le temps de l'éclairement naturel.

Évaluation à moduler selon l'argumentation.

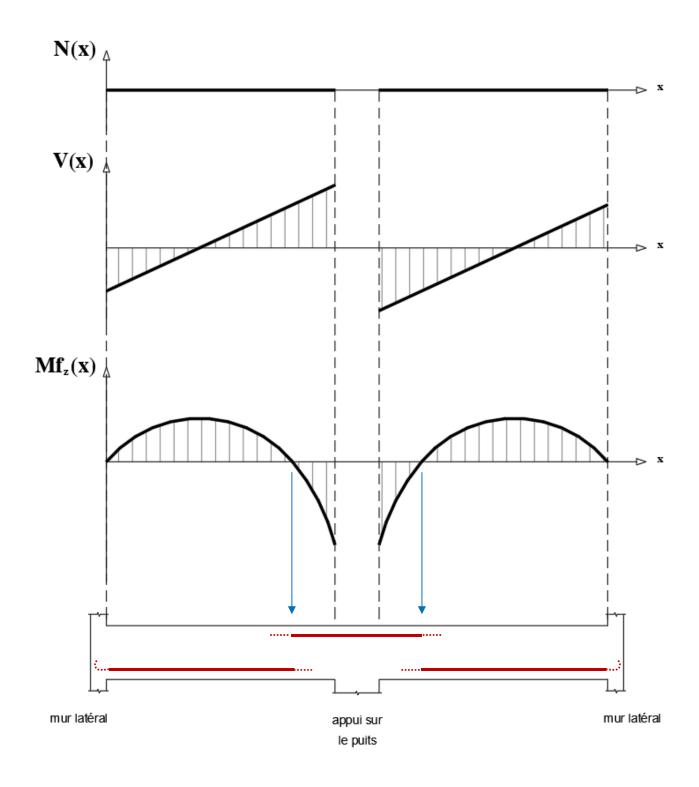
Question D.2

TL = D65 = 61 % SGL = 2,3 × 1,5 / 61 = 0,0565 ou 5,65%

Question D.3

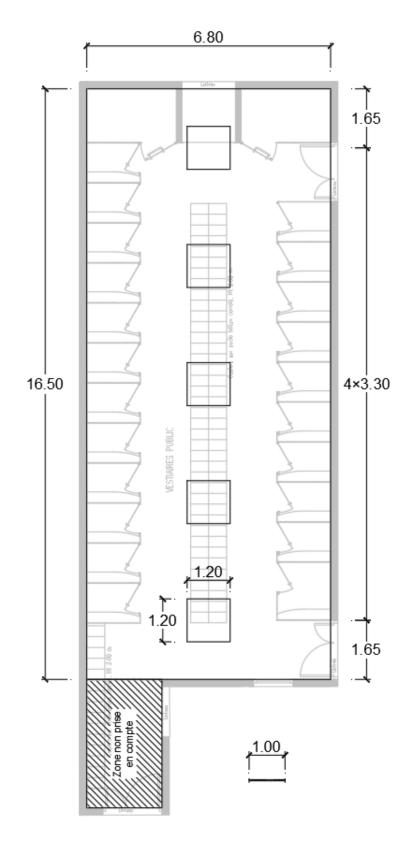
Surface des vestiaires : $16,50 \times 6,80 = 112,2 \text{ m}^2$

Surface géométrique de lumière : 112,2 × 0,0565 = 6,34 m²


Il semble préférable d'utiliser les tailles 85×85 (0,73m²), 100×100 (1,00m²) ou 120×120 (1,44m²).

II en faut respectivement 9 (6,57m²), 7 (7,00m²) ou 5 (7,20m²)

Soit on les répartit sur une ligne au-dessus des casiers, ce qui correspond au nombre impair, soit on les dispose symétriquement par rapport à celle-ci, mais alors il en faut un de plus que juste nécessaire.


Évaluation à moduler selon l'argumentation et le réalisme de la proposition.

22-2D2IDACME1C 14/16

22-2D2IDACME1C 15/16

Exemple de proposition

Cotes en m

22-2D2IDACME1C 16/16