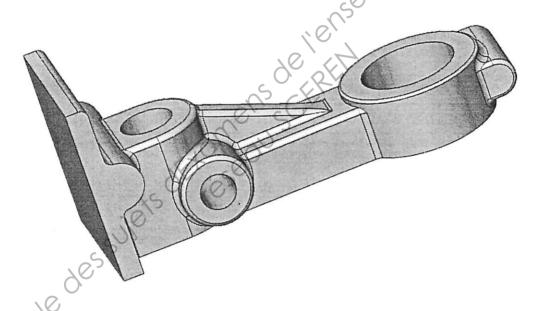


Ce document a été numérisé par le <u>CRDP</u> de <u>Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel session 2011

BREVET DE TECHNICIEN SUPÉRIEUR FONDERIE

SESSION 2011


Durée: 8h00

Coefficient 3

ÉPREUVE E4 – INDUSTRIALISATION Sous épreuve U42 - PRÉPARATION DU TRAVAIL

Aucun document personnel autorisé, calculatrice autorisée

POUPÉE DE TOUR À BOIS

Constitution du dossier :

Le document réponse DR1 sera à remettre avec vos copies, l'ensemble sera anonymé.

BREVET DE TECHNICIEN SUPÉRIEUR **FONDERIE**

SESSION 2011

Durée: 8h00

Coefficient 3

ÉPREUVE E4 – INDUSTRIALISATION

Sous épreuve U 42 - PRÉPARATION DU TRAVAIL

Documents fournis:

- 1 feuille « DONNÉES TECHNIQUES »

page 2/7

- 4 feuilles « SUJET »

pages 3/7 à 6/7

- 1 feuille « BARÈME »

page 7/7

- 1 plan format A2 de la pièce brute de fonderie Documents à rendre : ets détérmine de la rendre : ets de la rendre : e

DR 1/1

- Le plan format A2 de la pièce brute de fonderie (échelle 1) **DR** 1/1
- Feuilles de copie anonymées

Matériel fourni par le centre d'examen :

1 Poste informatique + lecteur de CD équipé avec :

- Logiciel de DAO- CAO, modeleur volumique exact.
- Logiciel de simulation Thermodynamique
- Logiciel de lecture de fichiers vidéo type .avi
- 1 dossier informatique « CANDIDAT » sur CD ROM, contenant :
 - un dossier informatique intitulé « Simulation »
 - La maquette numérique de la pièce (différents formats de CAO)
 - 2 masselottes paramétrables (différents formats de CAO)

DONNÉES TECHNIQUES pour l'étude de moulage

1) Cahier des charges

Le plan repéré DR 1/1 représente une poupée de tour à bois destinée à être montée sur des tours à bois vendus en grandes surfaces.

La fonderie devra répondre aux commandes de 240 pièces par mois et pour 2 années consécutives. Ces commandes sont et peuvent être renouvelables.

- Matière de la pièce : EN - GJS 400 - 15

- Masse de la pièce brute : 1,225 kg

- Épaisseur de référence : 8 mm

- Tolérance dimensionnelle : A 00-510 CT8

2) Matériels principaux utilisés par la fonderie pour cette pièce

- Chantier de moulage « air -impact » sur sable silico argileux synthétique :
- Dimensions des châssis 400 x 480 H 150
- Jeu de plaques modèles doubles montées sur table rotative avec serrage alternatif du dessous et du dessus
- Chantier de noyautage sur procédé polyuréthane type ASHLAND comprenant :
- 2 machines H5, 1 machine H12 et 1 machine H 24
- 3 cuves d'enduction pour passage à la couche (trempé et/ou pulvérisation)

SUJET – TRAVAIL DEMANDÉ

1ère PARTIE : Étude de moulage

<u>Question 1</u>: **Représenter** sur le plan repéré DR 1/1, le moule remmoulé et prêt à la coulée avec :

- Plan de joint et indications des différentes parties ;
- Noyaux numérotés dans l'ordre de remmoulage, avec les portées et les jeux cotés ;
- Dispositifs de remplissage et d'alimentation cotés dans 2 vues minimum;
- Toutes les indications nécessaires au remmoulage correct des noyaux (Repères, supports, collage...)

<u>Question 2</u>: Justifier sur votre copie (avec croquis si nécessaire) le choix retenu pour la position du plan de joint et de la pièce (chute, source ou mixte).

NOTA: Aucune modification de forme de la pièce brute n'est autorisée

2^{ième} PARTIE: Simulation numérique

Sur poste informatique:

- Démarrer le poste et le dossier « CANDIDAT \ Simulation »
- Visionner les résultats de remplissage et de refroidissement.

La simulation présente les zones à risques de la pièce.

<u>Nota</u>: Quelques images sont disponibles sur le document DT 1/6 en cas de problème informatique.

A partir de la simulation, ou du document DT1/6, sur feuille de copie

Question 3: Identifier ces risques et leurs positions et indiquer les causes et les remèdes possibles.

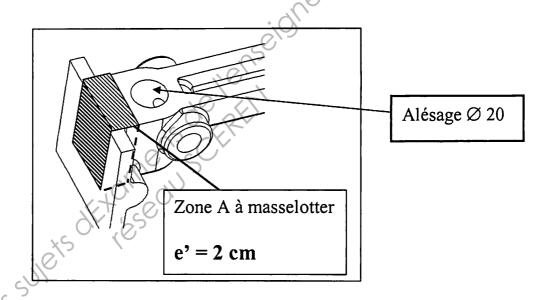
Question 4: Parmi les propositions suivantes, **indiquer** et **expliquer** celles qui pourraient réduire voire supprimer ces risques. **Justifier** vos réponses.

- Réduire le diamètre des noyaux
- Réaliser les noyaux en sable en chromite (sable + refroidissant)
- Placer des refroidisseurs.

Question 5: Justifier la position de la masselotte sur la zone A.

3^{ième} PARTIE : Étude des dispositifs d'alimentation et de remplissage

Nota: On retiendra finalement la solution d'une masselotte par pièce pour la zone A.


A l'aide des documents Ressources DT 2/6 à DT4/6.

Sur feuille de copie

BTS FONDERIE

Question 6 : Déterminer et justifier le nombre de pièces par moule.

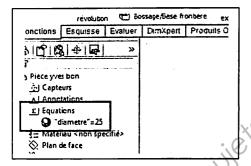
Question 7 : Déterminer la position (« en bout », « sur chant » ou « à plat »). Déterminer les dimensions de la masselotte nécessaire à une pièce.

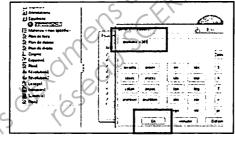
Motessionnel

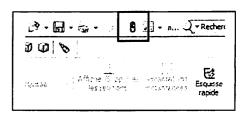
Question 8 : **Déterminer** les dimensions du dispositif de remplissage nécessaire au remplissage de la grappe définie sachant que l'on impose une masselotte par pièce

- possibilité de couler ou non par la masselotte
- pas de masselotte commune à 2 pièces

4^{ième} PARTIE : Étude du masselottage


Vous trouverez dans le dossier « CANDIDAT » les DAO de la pièce fournie et de deux masselottes paramétrables (sous formats CAO compatibles avec le logiciel)


Sur poste informatique, à l'aide des outils logiciels à votre disposition


Question 9 : Dimensionner et dessiner la masselotte associée à la pièce

Procédure:

- rofessionnel • Ouvrir le fichier de la masselotte choisie (« en charge » ou « à talon »)
- Paramétrer la masselotte en prenant le diamètre que vous aurez calculé à la question précédente.
- O Double clic sur l'onglet « équations » dans l'arborescence de construction
- o Faire apparaître le diamètre paramétrable.
- O Clic droit sur le diamètre puis clic gauche sur « Editer une équation »
- O Définir la nouvelle valeur puis valider par « OK ».
- Reconstruire la masselotte en cliquant sur le feu bicolore.

- Insérer la masselotte dans l'arbre de construction de la pièce
- Créer un assemblage avec la pièce.

PARTIE : Étude du Noyautage

Sur poste informatique, à l'aide des outils informatiques à votre disposition

Question 10: Concevoir la boite à noyaux nécessaire à l'obtention de l'alésage \infty 20.

6^{ième} PARTIE: Gestion de production

Nota: On admettra pour cette question 4 pièces par moule

L'entreprise souhaite réaliser cette semaine sa production mensuelle de 240 pièces afin de livrer les pièces en un seul transport.

On vous fournit ci-dessous le tableau actuel des charges horaires globales (<u>sans votre</u> <u>fabrication</u>) des secteurs « noyautage » et « moulage ».

	Lundi	Mardi	mercredi	Jeudi	Vendredi
Noyautage	40	42	39	41	41
Moulage	27	25	245	27	26

Charges horaires globales = nombre d'heures travaillées par l'ensemble des personnes disponibles : *Exemple 6 personnes travaillant 7 heures* = 42 heures

A l'aide des documents Ressource DT 5/6 et D 6 / 6.

Question 11 : Calculer les taux de charges journaliers des 2 secteurs.

Question 12 : Calculer les temps minimums nécessaires à la fabrication des noyaux et des moules.

Question 13: **Proposer** un planning de réalisation pour les deux secteurs au regard des charges actuelles en interdisant les heures supplémentaires.

<u>Question 14</u>: **Construire** le nouveau tableau des charges horaires globales incluant votre fabrication.

BAREME

		Critères d'évaluation	Pts
	Choix	- Choix et justification sur copie du plan de joint et de la	40
age	techniques	position de la pièce. (Faisabilité générale)	
de moulage		- Aspect économique (nombre de noyaux)	10
de n	Tracé sur plan	- Tracé du plan de joint	5
	format A2	- Tracé du dispositif d'alimentation	5
Étude	repéré R 1/1	- Tracé du dispositif de remplissage	20
		- Cotation, indications usuelles et soin	10
ion	Sur poste	- Démarrage du poste et lecture des résultats	10
Simulation	Informatique	25 CERE	
Sim	Sur copie	- Questions 3 x 5 =	15
et n		- Choix du nombre de pièces par moule	5
age atio	Sur copie	- Calcul des dimensions du dispositif d'alimentation	15
oliss		Calcul des dimensions du dispositif de remplissage	15
Remplissage e Alimentation	ne Jes		
Q	Sur PC	- Paramétrage et assemblage de la masselotte	5
DAO		- Conception de la boite à noyaux	15
	Sur copie	- Construction du graphe type « GANTT »	30
		TOTAL:	200

BREVET DE TECHNICIEN SUPÉRIEUR FONDERIE

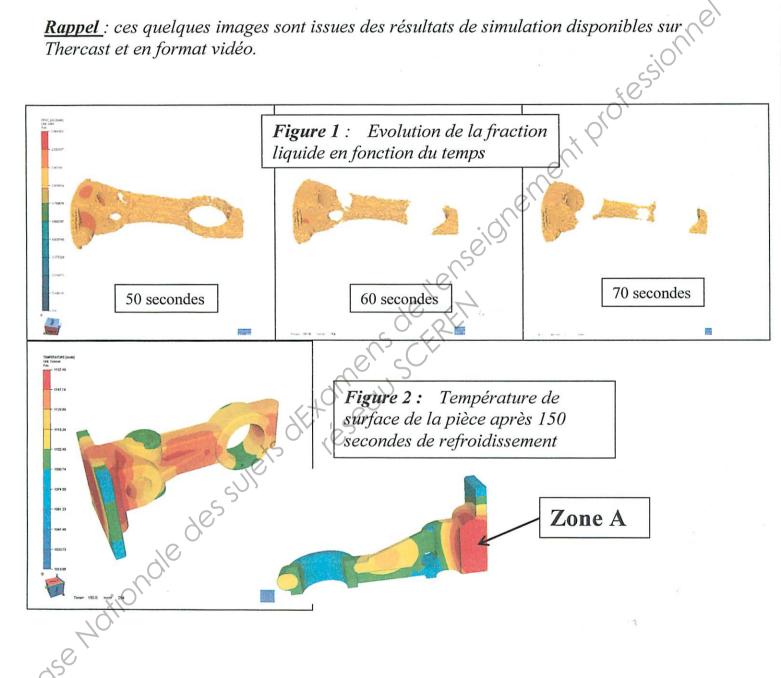
SESSION 2011

Durée: 8h00

Coefficient 3

ÉPREUVE E4 – INDUSTRIALISATION

Sous épreuve U42 - PRÉPARATION DU TRAVAIL


Documents fournis:

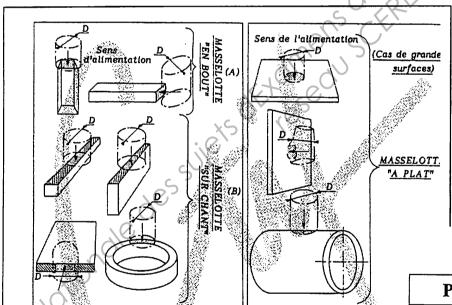
- 6 feuilles « RESSOURCES »

DT 1/6 à DT 6/6

- o Ressource pour la simulation
- o Ressource pour le système de remplissage (2 pages)
- o Ressource pour le remplissage
- o ressource pour la gestion de production (2 pages)

RESSOURCES pour la simulation

RESSOURCES pour le dispositif d'alimentation (1/2)

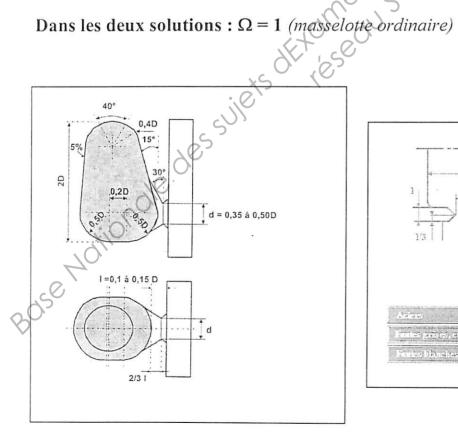

NOTA: On partira sur un masselottage traditionnel sans manchons ni couvertes. Les refroidisseurs ne sont pas tolérés.

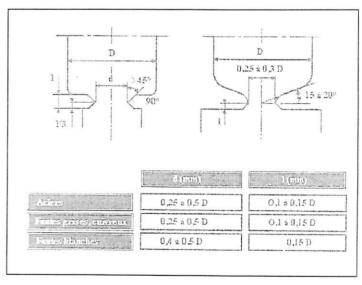
Rappel des données pièce:

- Matière EN – GJS 400-15
- Zone à masselotter: e' = 2 cm (avec e' pièce = 2 . M . ω)

- Masselottes ordinaires sans manchons ni couvertes Ω = 1

Données techniques :


Pour les fontes GS:


Position	J
En bout	0,94 à 1,07
Sur chant	1,29
A plat	1,54

RESSOURCES pour le dispositif d'alimentation (2/2)

Masselottes cylindriques						
Elancement α	Diamètre D	Hauteur H	Module M	Volume V		
1,5	2,33.Ω.J.e'	1,5 . D	3.D 14	1,18.D³		
2	2,25.Ω.J.e'	2 . D	2.D	(1,57.D ³		

Masselottes cylindro-sphériques					
Elancement α	Diamètre D	Hauteur H	Module M	Volume V	
1,5	2,25.Ω.J.e'	1,5 . D	2.0	1,05.D ³	
2	2,18.Ω.J.e'	2 . D	11.D 48	1,44.D ³	

RESSOURCES pour le dispositif de remplissage

- Matière EN GJS 400-15
- Epaisseur de référence 8 mm
- Masse de la pièce brute : 1,225 kg

 $Sd = \frac{V}{Tr.\sqrt{2.g.H}.\eta}$

Sd = Section minimale de la descente (dm²) V = Volume total de la grappe à remplir (dm³)

Tr = Temps de remplissage de la grappe (s) g = gravité = 98 dm.s⁻²

H = hauteur métallostatique (dm)

 η = rendement

On admettra $\eta = 0.55$

Coulée en chute - source

$$H = \left(\frac{H_{i} + \sqrt{H_{i} \cdot H_{f}}}{(1+a)\sqrt{H_{i}} + (1-a)\sqrt{H_{f}}}\right)^{2}$$

Coulée en chute

H=H=H

a = proportion du volume total en source et 1 - a = proportion du volume total en chute

Coulée en source

 $H = \left(\frac{\sqrt{H_i} + \sqrt{H_f}}{2}\right)$

Alliage	Profil des sections	Echelonnement (H _I en dm)			Remarques	
20	du canal	S _d S _d	S _C S₀	S _A S _d		
oxydable	dégressif	1 1 1	0,95 1 √H,	>1,1 1 √H;	Hi < 500 mm et Tr < 15 s H, ≤ 100 mm H, > 100 mm	
Faiblement oxydable	dėgressif	1 1	0,95 1 √H,/2	>1,1 1 √H,/2	Hi < 500 mm et Tr < 15 s H _i ≤ 200 mm H _i > 200 mm	
	uniforme	1	1 2	1	Nombre d'attaques ≤ 3 Nombre d'attaques > 4	
Non oxydable	dégressif	1 1 1	0,95 1 √ H ,	>1,1 1 √H	H,≤ 100 mm H,> 100 mm	

Temps d'apparition du liquidus (Tl) :

Surchauffe en °c	50	100	150	200
Tl en secondes	0,9	3,5	8	14

BTS FONDERIE

RESSOURCES pour la gestion de production

(1/2)

Estimation des temps de réalisation et des taux de rebuts et/ou arrêts basée ent professionnel sur commande antérieure.

1) Noyautage

a) Données relatives au cycle

- 2 noyaux par boîte
- Chaque noyau est passé à la couche
- Le cycle de noyautage est lancé lorsque les 2 noyaux précédents sont enduits
- Taux de rebuts global (dont arrêts mécaniques) : 4 %

TEMPS DE RÉALISATION				
Mise en place des outillages dans la noyauteuse	10 mn			
Cycle de noyautage (fermeture – tir – gazage – déboitage)	25 sec / cycle			
Enduction à la couche (ébavurage – enduction – dépose sur plateau)	30 sec / noyau			
Stockage (transferts + séchage)	1 heure minium			

b) Gestion de production

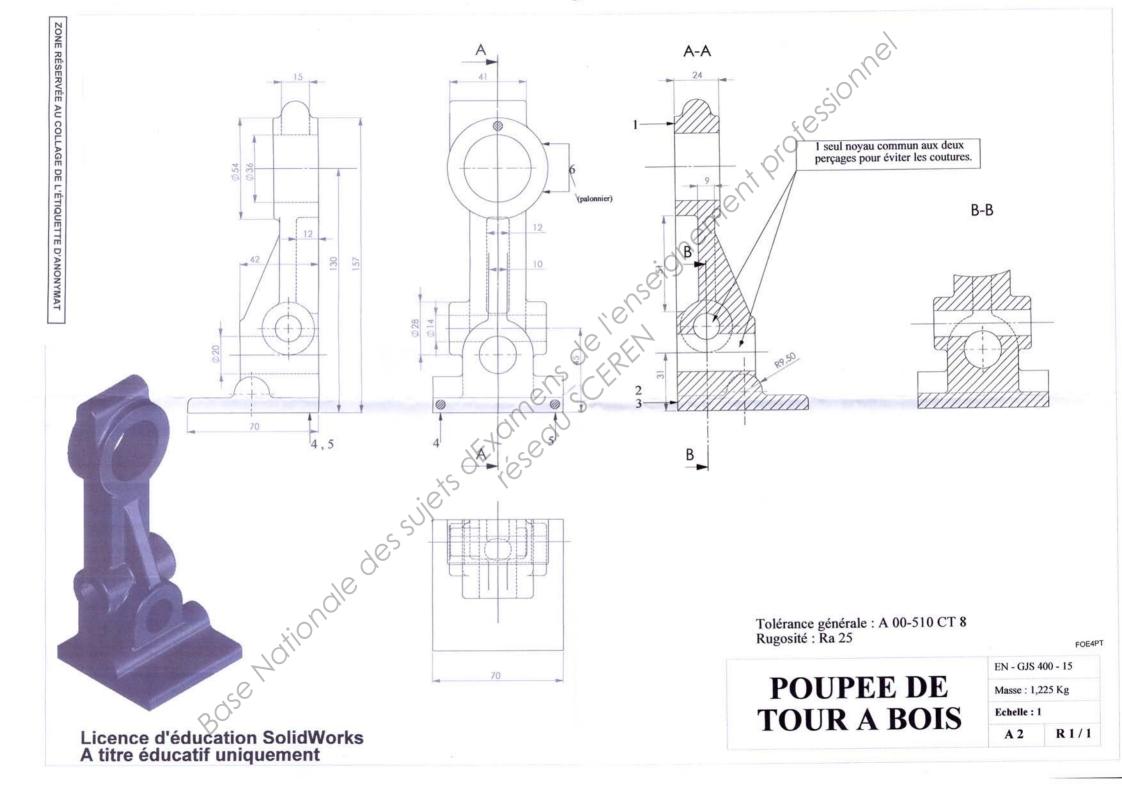
- Le secteur « noyautage » dispose de 6 personnes travaillant 7 heures par jour sur 5 jours.
- Le même opérateur assure le montage des outillages, le noyautage et l'enduction à la couche sur sa machine.
- Par soucis de place, chaque série de noyaux est transférée en zone de stockage sur le chantier de moulage

RESSOURCES pour la gestion de production

(2/2)

seignement professionnel Estimation des temps de réalisation et des taux de rebuts et/ou arrêts Estimation basée sur commande antérieure.

2) Moulage – remmoulage


a) Données relatives au cycle

- Montage des 2 plaques modèles sur table rotative
- L'alimentation en châssis est automatisée
- Taux de rebuts global (dont arrêts mécaniques) : 5 %

TEMPS DE RÉALISATION	
Montage des plaques modèles	10 mn
Réglage machine, et essais	10 mn
Mise en place du châssis automatique incluse dans le cycle	е
Cycle de moulage	45 sec / partie
Remmoulage et fermeture cadencés sur le cycle de moulag	re

b) Gestion de production

- Le secteur « moulage » dispose de 4 personnes travaillant 7 heures par jour sur 5 jours.
- Le poste de moulage concerné nécessite 2 opérateurs en simultané.
- Les 2 opérateurs assurent ensemble le montage des outillages et les réglages.
- En cycle, le 1^{er} opérateur assure la gestion machine et le suivi qualité du moulage.
- Le 2^{ème} opérateur assure le remmoulage et la fermeture des moules.

