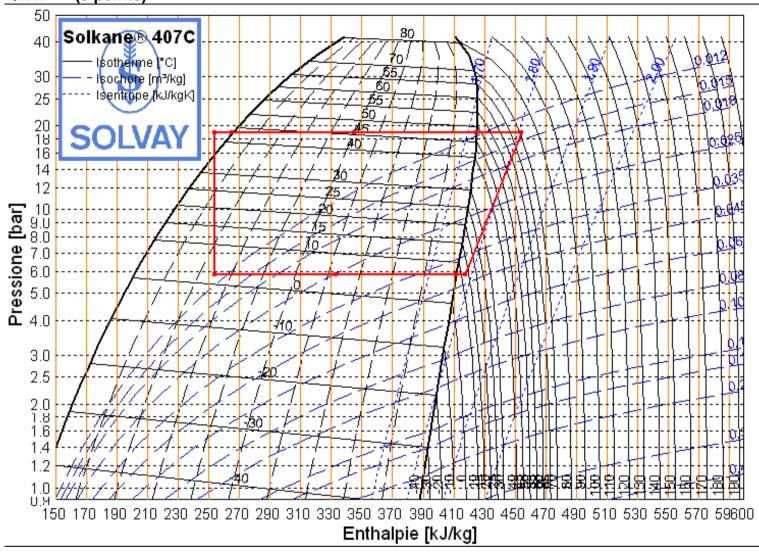
BTS FLUIDES ÉNERGIES ENVIRONNEMENTS

ÉTUDE DES INSTALLATIONS – OPTION D

CORRIGÉ


SESSION 2013

Le corrigé comporte 11 pages, numérotées de 1/11 à 11/11.

BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 1/11

Partie 1:

BTS - Fluides - Énergies - Environnements - Option D	Session 2013	
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 2/11

Q2.1 (5 points)

	P(bar)	T (℃)	H (kJ/kg)	Vm (m ³ /kg)
1	5,8	13	418	0,04151
2	19	71	454	
2,1	19	48	425	
3	19	43	265	
4	19	36	254	
5	5.8	0	254	
6	5.8	7	412	

Q1.3 (5 points)

Puisque E = P / t on en déduit que E= P x t E = 152 x 10 x 60 = 91200 kJ Or E = m x C x Δ T donc m = E / (C x Δ T) = 91200 / (4,18 x 10) = 2182 kg

Q1.4 (5 points)

Pour remplacer le fonctionnement en cascade des ventilateurs de l'aéroréfrigérant, on peut envisager d'incorporer en amont de cet aéroréfrigérant une vanne 3 voies qui permettra une régulation de débit..

BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 3/11

Partie 2:

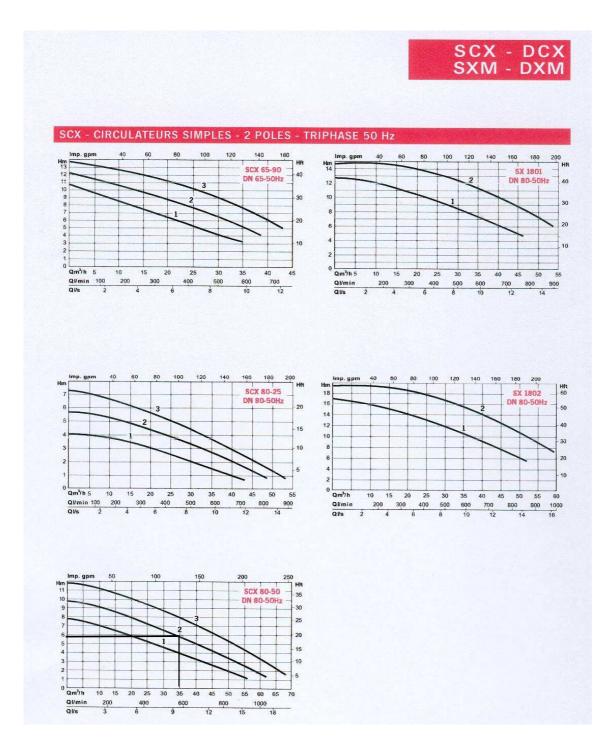
Q2.1 (2 points)

Le rôle de l'aéroréfrigérant est d'évacuer la chaleur via le ballon d'eau chaude du condenseur du groupe d'eau glacée.

Q2.2 (3 points)

Le régime d'eau glacée est de 42℃ / 37℃ La perte de charge est de 0,6 bar La puissance est de 202 kW.

En utilisant le tableau de la DT 1


Aéro modèle 9053 ref circuit B

BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 4/11

Q2.3 (4 points)

Q2.4 (4 points)

DT 2 Suite « folio 3 »

Pompe : SCX 80 – 50, Vitesse 2

BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 5/11

Q2.5 (4 points)

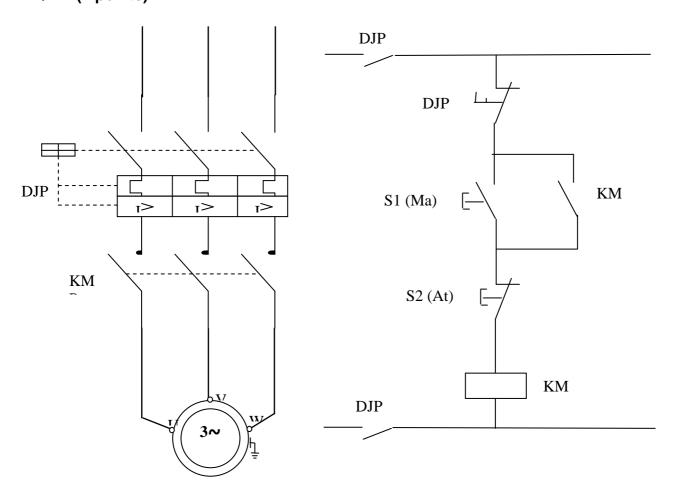
P élec abs : UI√3 cosφ

 $I = P \text{ élec abs } / U\sqrt{3} \cos \varphi = 1530 / (400 \times 1.732 \times 0.9) = 2.45 \text{ A}.$

a) Valeur de réglage: 2.45A

b) Référence du disjoncteur moteur : utilisation du tableau de DT5 : 2,45 est compris dans la plage 1,60 ... 2,50 du MS 116-2,5 Référence : 141 106.

Q2.6 (4 points)

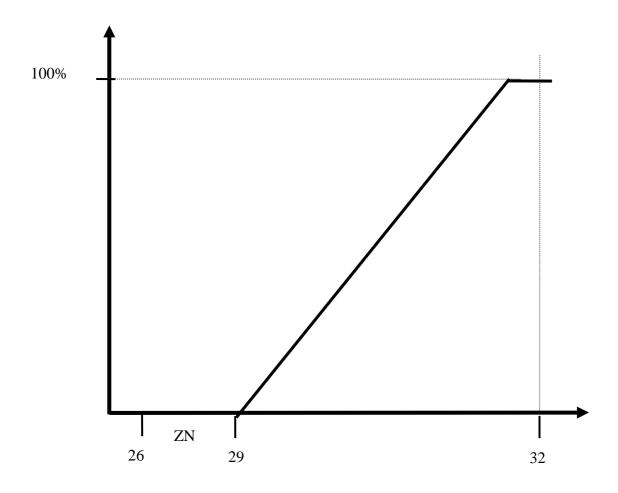

Contacteur tripolaire avec un contact auxiliaire NO, bobine 24V 50Hz.

Pour I= 2,45 A Contacteur avec un courant assigné de 9A.

Tableau DT5 suite,

Ligne 1 : Type A-9-30-10 bobine 24V Référence : 2031 81.

Q2.7 (4 points)



BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 6/11

Q2.8 (3 points) Q2.9 (2 points)

Consigne 26 ℃ Zone neutre 3℃ Ouverture de la vanne 100% à 32℃

Bande proportionnelle: 3

BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 7/11

Partie 3:

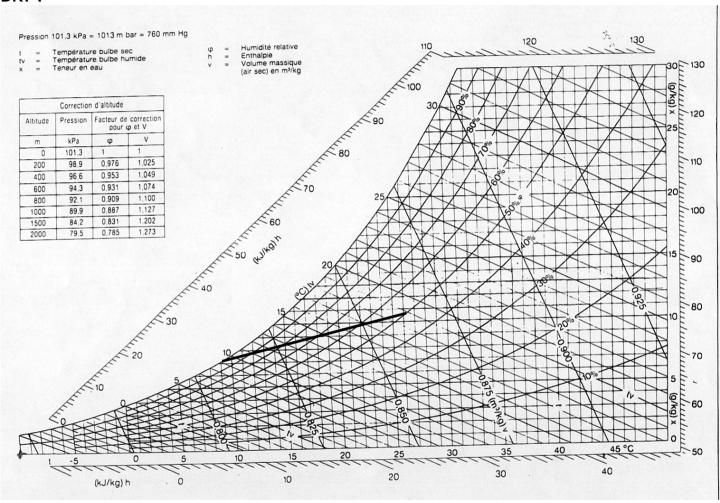
Q3.1 (5 points)

N°	DESIGNATION	FONCTION
1	Humidificateur	Humidifier l'air soufflé
2	Ventilateur de soufflage	Assurer le débit d'air dans la gaine de soufflage
3	Batterie froide	Elle permet le refroidissement de l'air traité, elle participe à la deshumidification)
4	Volet	Permet un mélange d'air entre air neuf et air extrait
5	Filtre	Assure la filtration de l'air neuf

Q3.2 (3 points)

Le rôle du récupérateur d'énergie est d'assurer un transfert de chaleur entre air repris du local et l'air neuf.

Q 3.3 (3 points)


$$C = (3 + 6) / (20 + 6) = 9 / 26 = 0.34$$
 soit 34 %.

Cette efficacité étant faible cet échangeur a des problèmes d'encrassement ce qui limite l'échange thermique.

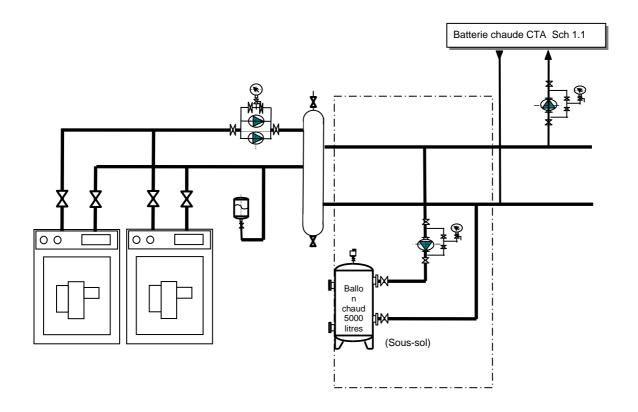
BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 8/11

Q 3.4 (4 points)

DR7:

BTS - Fluides - Énergies - Environnements - Option D		Session 2013
Épreuve E3 : étude des installations - CORRIGÉ	Code : FEDEISI	Page 9/11

Partie 4:


Q4.1 (2 points)

L'élément A est une bouteille de découplage ou bouteille casse pression, son rôle est de purger,

- le débit du primaire > débit du secondaire
- elle sert a séparer un circuit
- créer une décantation.

Q4.2 (2 points)

DR 10

Q4.3 (3 points)

P brûleur = $qv \times PCI = 190 \times 9,45 = 1795,5 \text{ kW}$

P nominale = P brûleur x $\eta = 1795,5 \times 0,94 = 1687,7 \text{ kW}$

Q4.4 (2 points)

La solution technique est d'incorporer une sonde de température dans le ballon d'eau chaude (à 1/3 du niveau) et de contrôler ainsi le fonctionnement du circulateur.

Q4.5 (1 point)

Le ballon de stockage de cette installation a pour rôle de stocker une partie de l'eau de l'installation.

Cette quantité stockée dépendant de la demande en eau à la fois par le groupe d'eau glacée mais aussi par les différents éléments de distribution.

Session: