BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE

ÉPREUVE E.4.2.

ÉTUDE D'UN SYSTÈME TECHNIQUE INDUSTRIEL CONCEPTION ET INDUSTRIALISATION

SESSION 2021

Durée : 4 heures Coefficient : 3

BASSIN DE STOCKAGE- RESTITUTION

Éléments de correction

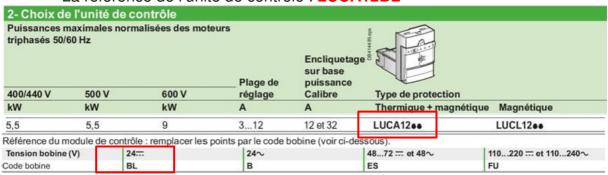
BTS ÉLECTROTECHNIQUE	SESSION 2021
Épreuve E4.2 : Étude d'un système technique industriel Conception et industrialisation	Code : 21-EQCIN-Édc

A 1. **Donner** en la justifiant, pour le démarreur-contrôleur :

Agitateur Wilo-EMU TR36 6/8R

Puissance nominal: 1.75kW

U=400V


Courant nominal: 4.45A

 $Cos\phi=0.8$

La référence de la base TeSys U : LUB12

La référence de l'unité de contrôle : LUCA12BL

la référence du module de contacts additifs : LUA1C20

On intégrera dans le « démarreur-contrôleur » un bloc auxiliaire de contacts de signalisation → 10F (NO) + 1SD (NO)

Bloc auxiliaire de contacts de signalisation	Fonction	Protection OK/déclench	Signale la protection ouverte/fermée : par contact OF Protection OK/déclenchée : par contact SD Insertion sous un module de signalisation				
10000	Sortie	Contacts OF et SD : type NO	Contact OF : type NF Contact SD : type NO				
W	Référence	LUA1C20	LUA1C11				

A 2. **Indiquer** la valeur de réglage de l'unité de contrôle

La plage de réglage de l'unité de contrôle s'étend de 3A à 12A Elle sera réglée à 4.45A par excès → ~ 4.5A

- A 3. **Donner** en la justifiant, la référence de l'ampèremètre à placer en face avant des armoires
 - Ampèremètre 72x72 de type ROTEX,
 - · raccordement direct,
 - Déviation: 90°,
 - étendue d'échelle 10A
 - Échelle moteur 5 l_n: utilisation sur départs moteurs jusqu'à 8 l_n.

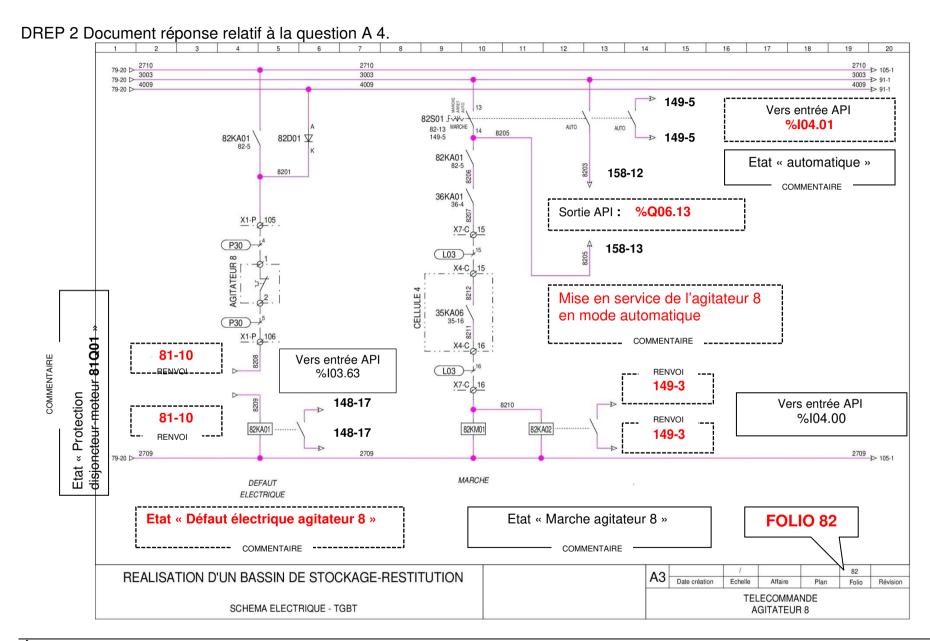
Références

Échelle moteur (5 l_n) en déviation 90°

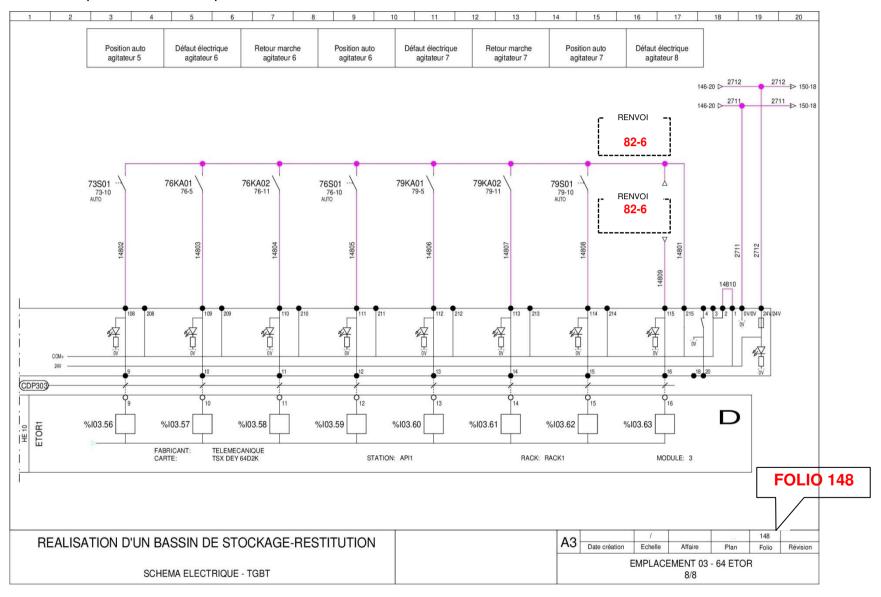
	F	Raccordement direc	t		
	DIN 48x48 D48A90-A	DIN 72x72 D72A90-A	DIN 96x96 D96A90-A	ROTEX 72x72 R72A90-A	ROTEX 96x96 R96A90-A
Calibre	Référence	Référence	Référence	Référence	Référence
0 - 5 A - 25 A	192B 1200	192B 1300	192B 1400	192D 1300	192D 1400
0 - 10 A - 50 A	192B 1201	192B 1301	192B 1401	192D 1301	192D 1401
0 - 15 A - 75 A	192B 1202	192B 1302	192B 1402	192D 1302	192D 1402
0 - 25 A - 125 A	192B 1203	192B 1303	192B 1403	192D 1303	192D 1403
0 - 40 A - 200 A	192B 1204	192B 1304	192B 1404	192D 1304	192D 1404
0 - 60 A - 300 A	192B 1205	192B 1305	192B 1405	192D 1305	192D 1405
0 - 75 A - 375 A		192B 1317	192B 1417	192D 1317	192D 1417
0 - 80 A - 400 A		192B 1318	192B 1418	192D 1318	192D 1418
0 - 100 A - 500 A		192B 1310	192B 1410	192D 1310	Nous consulter

Référence attendue : 192D 1301

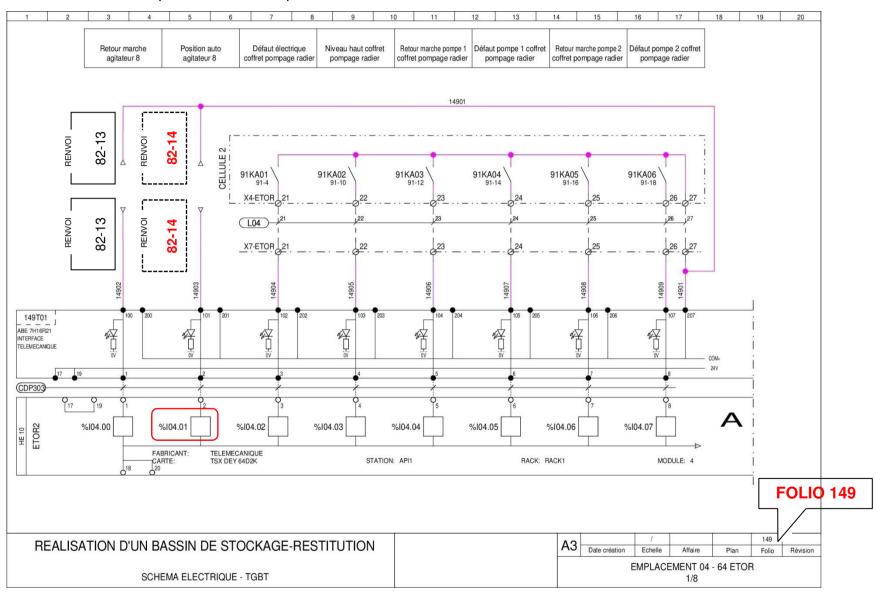
A 4. Compléter les schémas des documents réponse DREP1 à DREP5 en indiquant les liaisons électriques, les symboles et les renvois de folio manquants.

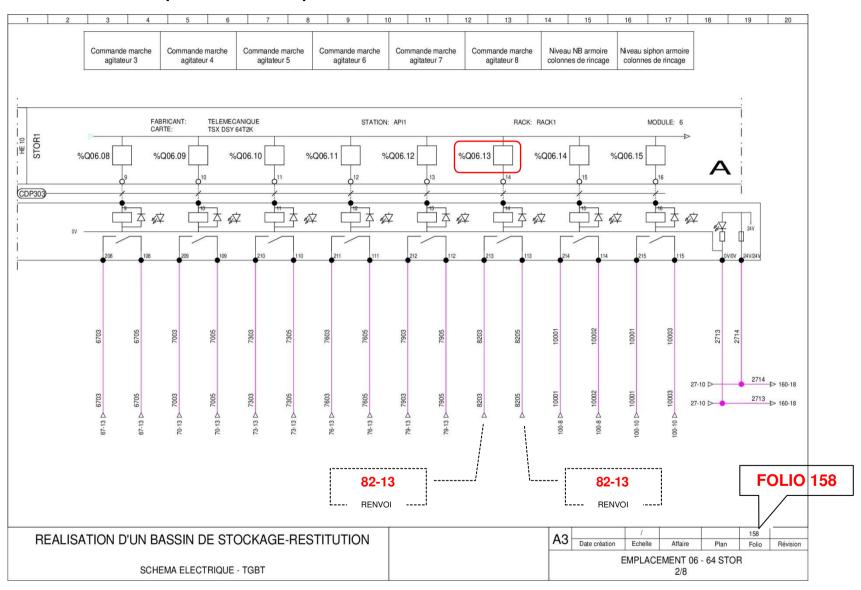

Inscrire les informations manquantes dans les cases repérées par des pointillés sur les différents folios

Ne pas oublier de placer l'ampèremètre sur le schéma concerné


DREP 1 Document réponse relatif à la question A 4. 78-20 D 1002 1002 1003 82-4 RENVOI 81Q01 L Vers ligne activation relais 82KA01 3...12A NO/82-5 COMMENTAIRE 82-4 RENVOI Position ampèremètre X1-P 102 103 104 81M01 AGITATEUR 8 **FOLIO 81** BASSIN 25/02/2011 REALISATION D'UN BASSIN DE STOCKAGE-RESTITUTION PUISSANCE

SCHEMA ELECTRIQUE - TGBT


AGITATEUR 8


DREP 3 Document réponse relatif à la question A 4.

DREP 4 Document réponse relatif à la question A 4.

DREP 5 Document réponse relatif à la question A 4.

L'étude du programme se limitera aux agitateurs 1 à 3. (Démarche identique pour les agitateurs 4 à 8)

B 1. Afin de préparer la programmation de l'automate, **Identifier** les Entrées et Sorties nécessaires à l'élaboration du programme en complétant le document réponse **DREP 6**

REPERE	DESIGNATION
%IW0.7.2	Mesure hauteur- Ultrason bassin (XPS-40)
%10.3.42	Défaut électrique agitateur 1
%10.3.43	Retour marche agitateur 1
%10.3.44	Position automatique agitateur 1
%10.3.45	Défaut électrique agitateur 2
%10.3.46	Retour marche agitateur 2
%10.3.47	Position automatique agitateur 2
%10.3.48	Défaut électrique agitateur 3
%10.3.49	Retour marche agitateur 3
%10.3.50	Position automatique agitateur 3
%Q0.6.06	Commande marche agitateur 1
%Q0.6.07	Commande marche agitateur 2
%Q0.6.08	Commande marche agitateur 3

- B 2. **Déterminer** les valeurs numériques associées à l'entrée analogique %IW0.7.2 provoquant respectivement la mise en service puis l'arrêt des agitateurs en conditions normales.
 - → Pour une mesure de 33 m (Bassin considéré vide) la valeur numérique présente dans l'automate est de 10000.
 - → Pour une mesure de 0m (Bassin considéré plein) la valeur numérique présente dans l'automate est de 0.
 - → Lors du remplissage, si le niveau est supérieur ou égal à 8 mètres <u>au-dessus</u> des agitateurs alors la phase de démarrage débute.
 - → Lors de la phase de vidange du bassin, si le niveau est inférieur à 0.5 mètre <u>au-dessus</u> des agitateurs, l'ensemble s'arrête.
 - → On notera que les agitateurs sont placés à 1 m du fond du bassin.

MISE EN SERVICE:

```
33-1-8=24m
(24*10000)/33=7272.73
```

Résultat attendu → %IW0.7.2= 7272 ou 7273

ARRET:

$$33-1-0.5=31.5m$$

(31.5*10000)/33=9545.45

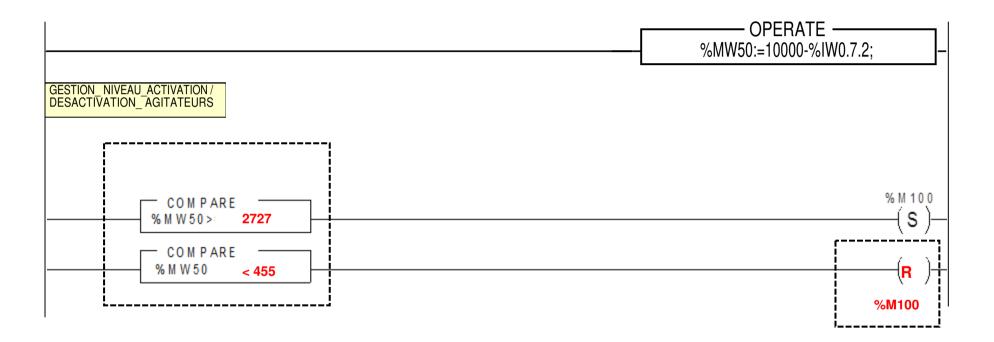
Résultat attendu → %IW0.7.2 = 9545

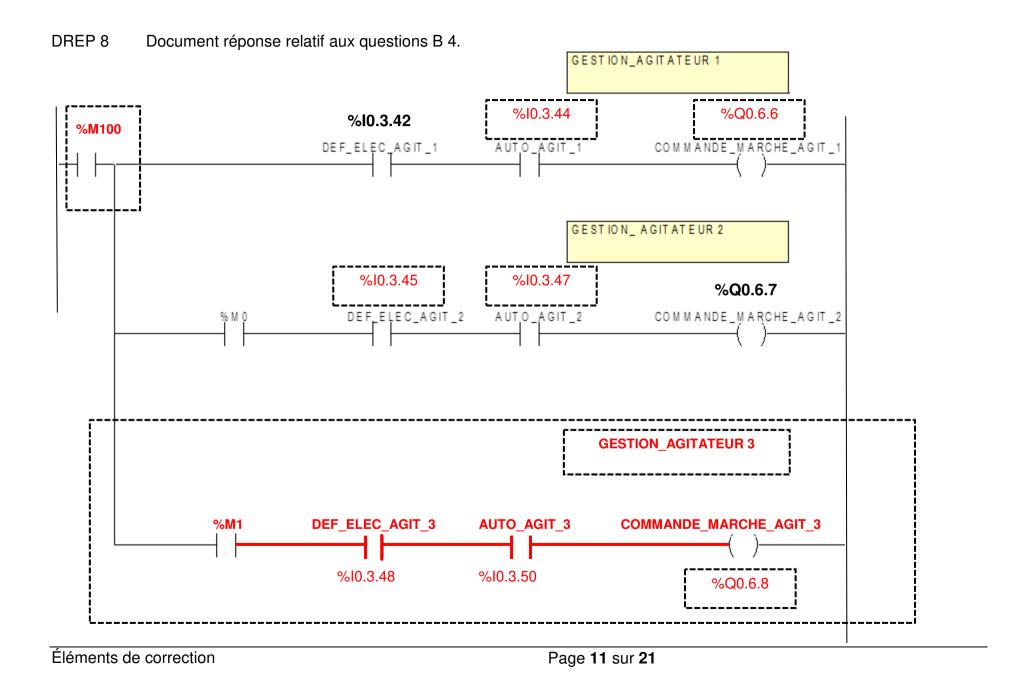
Le mot %MW50 permet l'inversion de l'échelle de mesure. Associé au bit %M100, il autorise la mise en marche ou l'arrêt des agitateurs selon le niveau du bassin.

Il est également utilisé dans la supervision afin de rendre compte du niveau du bassin (**Non étudié**)

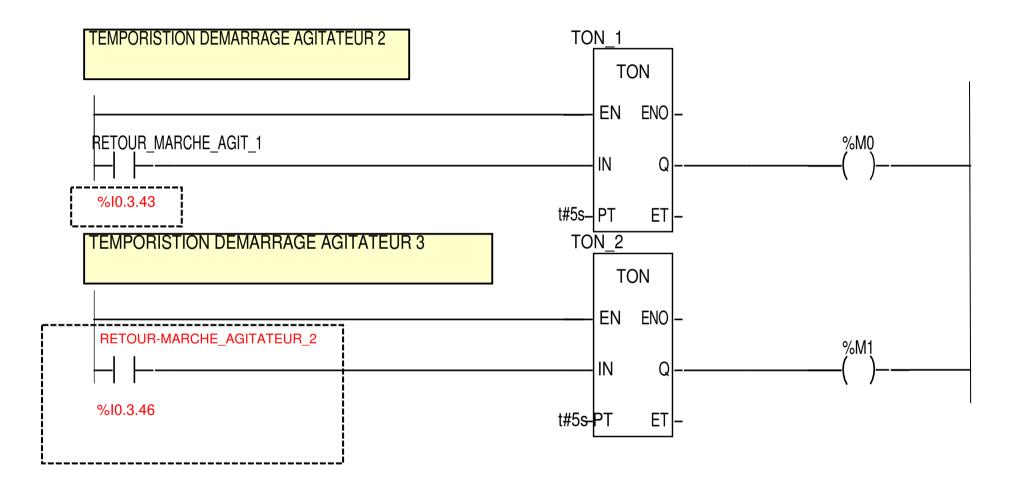
B 3. En tenant compte du bloc « OPERATE » présent sur le document réponse DREP 7, calculer les valeurs du mot %MW50 permettant l'activation et la désactivation du bit %M100

%MW50 présente 2 valeurs caractéristiques permettant d'activer ou désactiver le bit %M100. Soit :


```
%MW50 = 10000 - 7273 = 2727 pour l'activation
%MW50 = 10000 - 9245 = 455 pour la désactivation
```

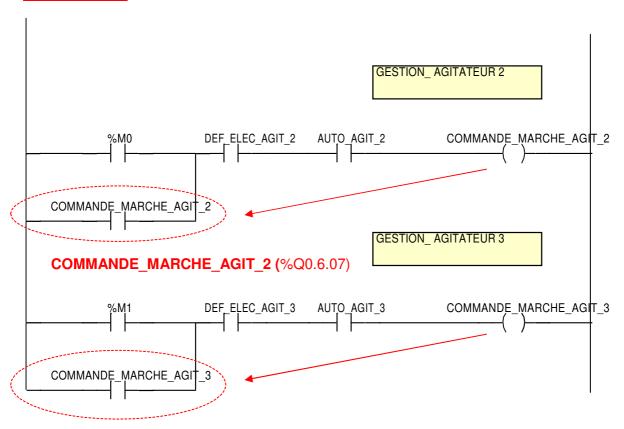

B 4. En tenant compte des questions précédentes, **compléter** le programme des documents réponse DREP 7 à DREP 9 en indiquant les informations manquantes.

Extrait du programme de gestion des agitateurs à compléter → pages suivantes (10 à 14)


DREP 7 Document réponse relatif à la question B 4.

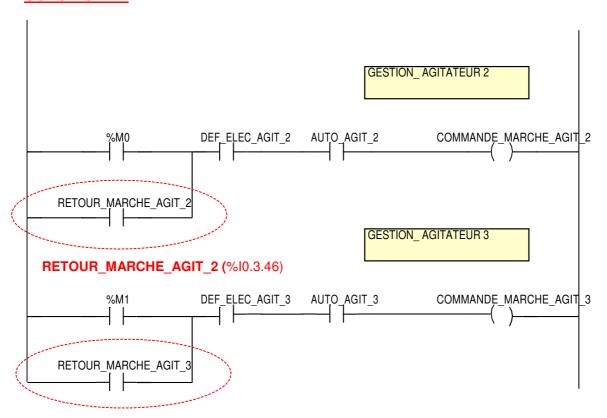
Extrait du programme de gestion des agitateurs (1 à 3) à compléter (pages 8 à 10)

DREP 9 Document réponse relatif à la question B 4.



L'arrêt de l'agitateur 2 (défaut ou autre) ne doit pas provoquer l'arrêt de l'agitateur 3 (et ainsi de suite jusqu'à l'agitateur 8).

B 5. Pour pallier le problème, les concepteurs ont choisi d'intégrer un « auto maintien » sur chacune des lignes d'activation des agitateurs à l'exception de l'agitateur 1. **Modifier** le programme du document réponse DREP 8.


À l'exception de l'agitateur 1, on réalise un auto maintien sur la ligne d'activation des agitateurs 2 et 3. →2 solutions sont possibles

SOLUTION 1:

COMMANDE_MARCHE_AGIT_3 (%Q0.6.08)

SOLUTION 2:

RETOUR_MARCHE_AGIT_3 (%10.3.49)

La motorisation des nouvelles pompes.

- C1. **Donner** en la justifiant, la référence des nouveaux variateurs de vitesse.
 - → La nouvelle puissance des motopompes est de 132kW
 - → Les motopompes ne génèrent pas de surcharge dans leur cycle de fonctionnement
 - → La tension d'alimentation des variateurs s'effectuera en 3*400V 50Hz
 - → Les variateurs intégreront des filtres CEM de catégorie C3 pour respecter les niveaux de radio-perturbation issues des normes et ainsi répondre aux exigences du CCTP (Ne pas perturber les dispositifs de mesure, de régulation et de protection)
 - → Les variateurs seront montés en armoire (enveloppe)

Pour le variateur, la gamme choisie est « Altivar Process » Série 600 (adaptée au pompage des eaux usées)

Mote	ur		Réseau	Réseau			Altivar Process							
Puissance indiquée sur plaque (1)			Puissance apparente	lcc ligne présumé	Courant permanent	Courant transitoire	Référence (6)	Masse						
		380 V	480 V	380 V	- maxi	maxi (1)	maxi pendant 60 s							
ND:	Norm	nal duty (3)												
HD:	Heav	y duty (4)												
	kW	HP	A	A	kVA	kA	A	A		kg <i>It</i>				
Avec	filtre (CEM inté	gré de c	atégorie	C3									
ND	132	200	237	213	161,4	50	250	275	ATV630C13N4 (5)	82,000/				
HD	110	150	201	165	121,8	50	211	317		180, 779				

Un variateur ND (Normal Duty → utilisation ordinaire) est nécessaire Référence : **ATV630C13N4**

C2. Choisir les constituants à associer aux nouveaux variateurs de vitesse.

r de ligne		
Référence (3) (4)		

Pouvoir de coupure du disjoncteur

Disjoncteur	Icu (kA) pour 380415 V									
	· ·	В	1	F	1	N	н	S	N	
NSX400•, NSX630•	144	=:		36	J	50	70	100	150	

Le courant de court-circuit présumé au lieu d'installation est de 9 kA Référence attendue du disjoncteur : **NSX400F Micrologic 1.3-M**

Complément de référence du contacteur (tension de commande 230VAC)

24	48	110	220	/ 230	240
B7	E7	F7	M7	P7	U7
				B7 E7 F7 M7	B7 E7 F7 M7 P7

Référence attendue : LC1F265P7

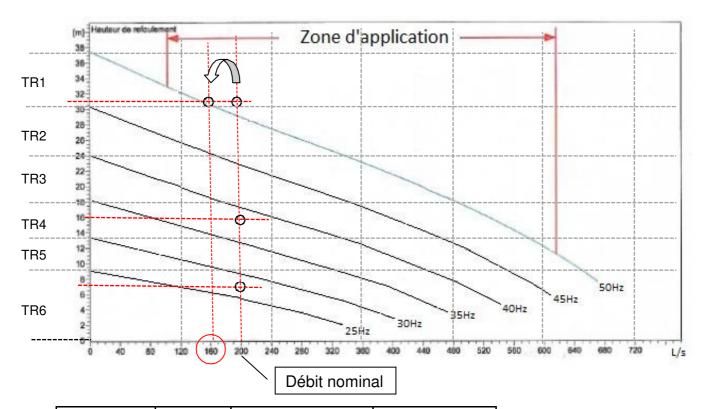
Paramétrage et pilotage des variateurs

C3. Afin de réaliser la mise en service des variateurs ATV630, **Compléter** le document réponse **DREP 10** en indiquant la valeur des principaux paramètres de réglage. **Justifier** les réponses demandées sous le tableau.

Code variateur	Désignation	Réglage
[Puiss.Moteur Nomin.] nPr	Puissance nominale du moteur (kW)	132
[Tension Nom. Moteur] UnS	Tension nominale du moteur (V)	400
[Courant Mot. Nom.] nCr	Courant nominal du moteur (coefficient)	1.08
[Fréq. Moteur Nomin.] FrS	Fréquence nominale du moteur (Hz)	50
[Vitesse Mot. Nomin.] nSP	Vitesse nominale du moteur. (tr/min)	975
[Cos. Phi Moteur 1] COS	Cosinus Phi nominal du moteur.	8.0
[Cour. Therm. Moteur] ItH	Courant de surveillance de l'état thermique du moteur (coefficient)	1.08
[Type Al1] Al1t	Configuration de l'entrée analogique Al1	0A
[Valeur Min. Al1] CrL1	Paramètre de mise à l'échelle du courant de 0% sur Al1.	4
[Valeur Max. Al1] CrH1	Paramètre de mise à l'échelle du courant de 100 % sur Al1.	20

Justification du réglage du paramètre nCr :

Le courant nominal du variateur est de 250A Le courant nominal du moteur est de 270A


$$nCr = \frac{270}{250} = 1.08$$

Justification du réglage du paramètre ItH:

Le courant nominal du variateur est de 250A Le courant nominal du moteur est de 270A

$$itH = \frac{270}{250} = 1.08$$

- C4. Afin de préparer la mise en service et les vérifications du fonctionnement du dispositif de pompage, **déterminer** les consignes que devra recevoir chaque variateur de vitesse en fonction du niveau d'eau du bassin pour satisfaire le débit nominal de la pompe. **Compléter** le document réponse **DREP 11**.
 - Le débit nominal des motopompes est de 200L/s

TRANCHE	HMT (m)	Fréquence en Hz	consigne en mA
TR6	7	~ 27	12,64
TR4	16	~ 38	16,16
TR1	31	50	20

Lorsque le variateur est à l'arrêt la consigne est de 4mA

Expression de la Consigne (mA) en fonction de la Fréquence (Hz) :

Consigne
$$(mA) = 0.32 * Fréquence(Hz) + 4$$

C5. Le niveau dans le bassin est à 31m. **Indiquer** et **commenter** la valeur du débit correspondant sur votre copie.

Lorsque le niveau du bassin est à 31m et que le processus de pompage est en cours. Le débit nominal de la pompe ne peut pas être maintenu (200L/s →160L/s). La fréquence du variateur restant figée à 50Hz.

Dimensionnement de la solution 1

D1. Compte tenu de la position du dispositif de comptage d'énergie, **indiquer** la valeur de la tangente $(\tan \phi')$ ayant permis d'échapper aux pénalités.

Le dispositif de comptage d'énergie est placé coté basse tension (BT) en aval du transformateur HTA/BT. On doit tenir compte de la consommation d'énergie réactive du transformateur situé en amont des batteries de condensateurs. On recherchera donc $\tan \varphi = 0.31$

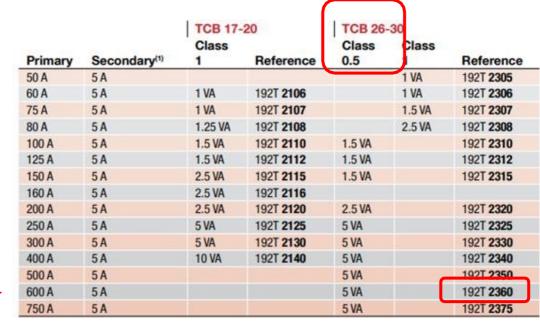
- D2. **Donner** la référence de la batterie de compensation en justifiant la réponse
- Il n'y a pas l'envoi d'un signal de télécommande Pulsadis d'Enédis (175Hz),
- La batterie de compensation intégrera le disjoncteur de protection générale
- Présence d'harmoniques générées par les variateurs de vitesse associés aux motopompes → batterie de compensation pour réseau pollué

Mise en place d'une batterie de compensation pour réseau pollué intégrant des selfs anti-harmoniques dont le rang d'accord est fixé à 3.8

puissance rang (kvar) d'accord		raccordement	dimensions H x L x P (mm)	poids (kg)	référence avec disjoncteu de protection générale VarSet Auto			
50	2,7	par le bas	1400 x 800 x 400	334	-			
85	3,8	par le bas	1400 x 800 x 400	334	VLVAF2P03506AA			
75	2,7	par le bas	1400 x 800 x 400	334	-			

Référence attendue : VLVAF2P03506AA

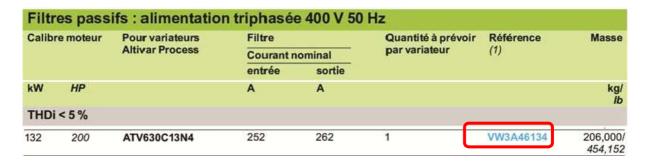
D3. **Donner** la référence du Transformateur de courant nécessaire à la mesure du Cosφ de l'installation.


Un seul Transformateur d'Intensité (TI) placé sur la ligne d'alimentation générale est nécessaire pour contrôler le Cos

de l'installation.

Rapport de transformation est ip/5A

Classe de précision : 0.5


• Dimensions: 26-30

Le courant nominal du transformateur est de 563A

Référence attendue : 192T 2360

- D4. Les variateurs choisis ayant pour référence ATV630C13N4, **effectuer** le choix des filtres passifs.
- On se base sur la puissance du moteur qui est de 132kW
- THDI < 5%

3 filtres passifs de référence : VW3A46134

- D5. **Effectuer** le choix du contacteur permettant de connecter ou déconnecter les filtres passifs selon le niveau de charge des moteurs.
- Le contacteur tripolaire permettant la mise en service ou la déconnection du filtre est choisi en catégorie AC1 et sa tension de commande sera de 230V – 50Hz
- Son calibre est fixé à 50% du courant nominal du variateur de vitesse :
 250 A x 0.5 = 125 A

(2) Repères des tensions du circuit de commande existantes (délai variable, consulter notre agence régionale).

Volts ∼	24	48	110	115	120	208	220	230	240	380	400	415	440
LC1F115F225													
40400 Hz (bobine LX9)	-	E7	F7	FE7	G7	L7	M7	P7	U7	Q7	V7	N7	R7

3 contacteurs de référence : LC1F115P7

D6. **Effectuer** un chiffrage de la solution 1 en complétant le document réponse DREP 10

DESIGNATION	REFERENCE	QTE	PRIX UNITAIRE HT	PRIX TOTAL HT
Filtre passif 5%	VW3A46134	3	15 463,85 €	46 391,55 €
Contacteur	LC1F115 P7	3	706.94 €	2 120.82 €
Batterie de compensation	VLVAF2P03506AA	1	11 598,94 €	11 598,94 €
Transformateur de courant (TC)	192T2360	1	26,62 €	26,62 €

total **60 137,93 €**

Choix de la solution la plus adaptée

Situation considérée pour l'alimentation électrique du bassin coté Basse Tension avec solution 1 : THDI = 4,99%, THDU = 2.79% et un cos φ proche de 1

D7. **Expliquer** pourquoi la solution 2 (Filtre actif) est la plus intéressante d'un point de vue technique et économique.

D'un point de vue général, d'après l'extrait de la Norme NFC15-100 sur la pollution harmonique, on recherche un THDI < 10% et un THDV < 5%

Bilan de la solution 2 après analyse du DTEC 6

- Le filtre actif permet de fixer le $Cos\phi = 0.955$ évitant ainsi toute pénalité de la part du distributeur d'énergie.
- Le THDI est de 1.64% → conforme car il est bien inférieur à 10%
- Le THDV est de 1.77% → conforme car il est bien inférieur à 5%
- La solution coûte 44 193,72 €

Bilan de la solution 1

- L'association « batterie de compensation + filtres passifs permettent d'obtenir un Cosφ proche de 1 évitant ainsi toute pénalité de la part du distributeur d'énergie.
- Le THDI est de 4.99% → conforme car il est inférieur à 10%
- Le THDV est de 2.79% → conforme car il est inférieur à 5%
- La solution coûte 60 137,93 €

Conclusion:

Les 2 solutions répondent aux exigences du CDCF.

La solution par filtre actif est cependant la solution la plus adaptée :

- → Elle est plus économique, plus performante et plus simple à mettre en œuvre que la solution « Batterie de compensation + filtres passifs »
- → Elle permet un contrôle de la qualité de l'énergie électrique sur toute la plage de fonctionnement de l'installation contrairement à la solution 1. En effet :
- Les filtres passifs ne peuvent pas être laissés en permanence en service sous peine de placer par moment l'installation en surcompensation au niveau réactif avec également un risque de non-respect du THDI < 10% et THDV < 5%.
- la batterie de compensation fonctionne en gradins d'où un contrôle du Cosφ moins précis avec un risque de pénalités sur certaines plages de fonctionnement de l'installation.