BREVET DE TECHNICIEN SUPÉRIEUR

CONCEPTION ET INDUSTRIALISATION EN CONSTRUCTION NAVALE

Session 2019

U41 – THÉORIE DU BATEAU

Durée: 4 heures - Coefficient: 2

Documents et matériels autorisés :

Tout document autorisé.

Moyens de calculs autorisés :

L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé.

Dès que le sujet vous est remis, assurez-vous qu'il soit complet. Le sujet comporte 12 pages numérotées de la façon suivante :

Présentation et mise en situation : Page 2/12 Texte du sujet : Pages 3/12 à 7/12 Annexe 1: rappels de calculs de formes simples : Page 8/12 Annexe 2: extrait de la table des pantocarènes du bateau porte : Page 8/12 Annexe 3: extrait de la table des hydrostatiques du bateau porte : Page 9/12 extrait de la table des capacités du bateau porte : Page 10/12 Annexe 4:

Annexe 5 : extrait de la réglementation Bureau Veritas NR183 pour le

remorquage en mer de navires ou des unités flottantes : Pages 11/12 à 12/12

Les candidats rédigeront les réponses aux questions posées sur feuilles de copie et dans le cas de la question 12, sur la feuille de papier millimétré fournie à cet effet.

Tous les documents, copies et papier millimétré, sont à remettre en fin d'épreuve.

	CICN41 I		EXAMEN VET DE TECHNICIEN SUPÉRIEUR	SPÉCIALITÉ : CONCEPTION ET INDUSTRIALISATION EN CONSTRUCTION NAVALE			
SESSION : 2019	SU.	JET	ÉPREUVE	: U41 – THÉORIE	DU BATEAU		
Durée : 4h	Coeffi	cient :	2	SUJET N° 05ED1	9 12 pages		

Le sujet comporte 3 parties indépendantes :

PARTIE I: Comparatif entre deux formes de carène pour le bateau porte. 12 pts

PARTIE II: Vérification de la stabilité du bateau porte en configuration de 14 pts

remorquage.

PARTIE III: Stabilité du bateau porte lors de l'échouage. 14 pts

ÉTUDE DE STABILITÉ D'UN BATEAU PORTE

L'objectif de l'épreuve concerne l'optimisation préliminaire de la forme du bateau porte, la vérification réglementaire lors de son remorquage ainsi que la vérification de sa stabilité lors de sa mise en place.

Photos : © SAS Verchéenne

Présentation et mise en situation :

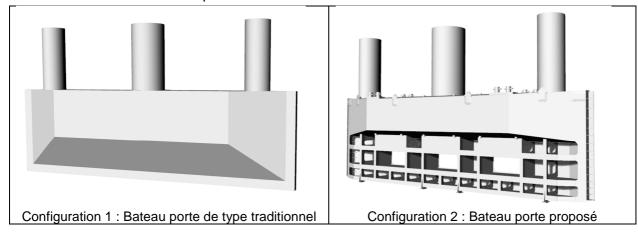
Pour les entretiens de la porte du bassin à flot du port du Tréport, un bateau porte a été réalisé afin de permettre l'assèchement du sas de la porte.

Ce bateau porte est stationné à flot dans le bassin près du sas et permet, une fois mis en place, de sécuriser le bassin à flot dans le cas de non fermeture des portes du bassin.

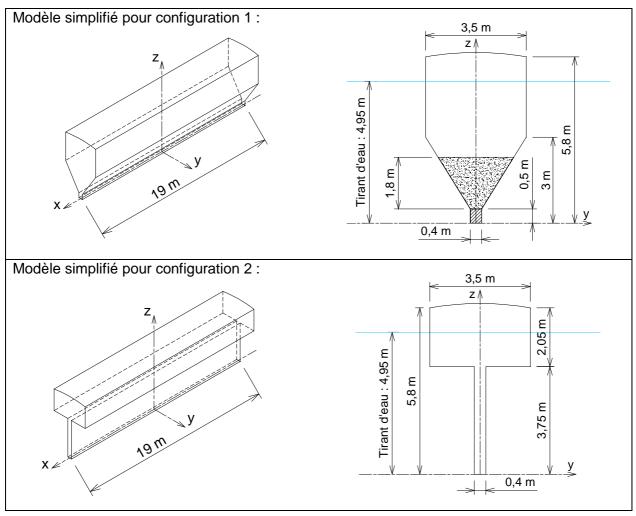
Les caractéristiques principales de ce bateau porte sont :

- longueur : 19,00 m, - largeur : 3,50 m, - creux au pont : 5,80 m.

Les calculs seront réalisés avec :


masse volumique de l'eau de mer : 1,025 t/m³,
 accélération de la pesanteur : 9,81 m/s².

EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet Nº05ED19 - page 2/12


PARTIE I : Comparatif entre deux formes de carène pour le bateau porte.

Pour ce projet, il a été proposé au client un bateau porte non conventionnel constitué des éléments suivants :

- une partie basse avec vantelles (trappes pour mise en communication du bassin avec l'extérieur) et sans volume important de flottabilité,
- une parte haute avec le volume de flottabilité,
- le tout surmonté par trois tourelles pour conserver une partie émergée à marée haute et recevoir la passerelle d'accès.

Pour cela, le bureau d'étude a comparé les deux types de carène à partir des deux modèles simplifiés suivants :

EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet Nº05ED19 - page 3/12

Objectif de cette partie : évaluer la stabilité en vérifiant le critère demandé par le client, une hauteur métacentrique transversale initiale GMT₀ supérieure à 450 mm pour le bateau lège.

Étude de la configuration 1 : forme classique du bateau porte.

Question 1: Pour la configuration 1, déterminer pour un tirant d'eau de 4,95 m, le

volume de carène, la position verticale du centre de carène et le rayon

métacentrique transversal.

(Voir l'annexe 1 – page 8/12 : Rappels de calculs de formes simples)

Question 2 : À partir des données ci-après, définir la masse et le centre de gravité

du navire lège dans la configuration 1 :

structure coque : 72,30 t
 accessoires coques : 27,50 t
 CdG / 0H : 3,25 m
 CdG / 0H : 6,40 m

Question 3 : Définir la masse totale du lest à mettre en place dans le bateau porte

pour obtenir le tirant d'eau prévisionnel du navire lège de 4,95 m.

Question 4 : Sachant que la masse calculée de lest à la question 3 est constituée

d'une pièce massive en acier de 29,83 t située dans la partie basse avec un CdG / 0H = 0,25 m et d'un lest béton dont le CdG / 0H = 1,62 m, déduire la masse du lest béton et calculer la position verticale

du centre de gravité du navire lège lesté.

Question 5: Calculer la hauteur métacentrique transversale dans cette

configuration.

<u>Étude de la configuration 2 : nouvelle forme proposée pour le bateau porte.</u>

Question 6: Pour la configuration 2, déterminer pour un tirant d'eau de 4,95 m, le

volume de carène, la position verticale du centre de carène et le rayon

métacentrique transversal.

Question 7: Dans la configuration 2, la masse du bateau porte sans lestage est :

structure et accessoires coque : 82,40 t CdG / 0H : 4,47 m

Définir la masse totale du lest à mettre en place dans le bateau porte

pour obtenir le tirant d'eau prévisionnel du navire lège de 4,95 m.

Question 8: Sachant que le lest possède un CdG à 1,80 m / 0H, calculer la position

verticale du centre de gravité du navire lège lesté et en déduire la

hauteur métacentrique transversale dans cette configuration.

Comparaison des deux solutions.

Question 9 : Vérifier si les configurations proposées respectent le critère du client

 $(GMt_0 \text{ bateau lège} > 450 \text{ mm}).$

Comparer les deux solutions techniques proposées et donner votre

avis sur la nouvelle configuration du bateau porte.

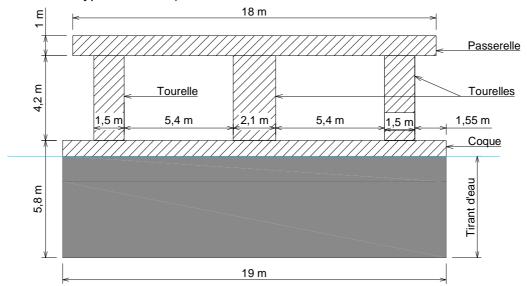
EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet Nº05ED19 - page 4/12

PARTIE II : Vérification de la stabilité du bateau porte en configuration de remorquage

Objectif de cette partie: vérifier les critères de stabilité lors du remorquage du bateau porte conformément à la réglementation du Bureau Veritas relative aux "remorquages en mer des navires ou des unités flottantes" (NR183).

Pour cette partie, les caractéristiques du bateau porte lège lesté (non ballasté) sont :

Déplacement	Position du centre de gravité						
Deplacement	LCG / milieu	TCG / Axe	VCG / 0H				
109,41 t	0, 000 m	0,000 m	3,686 m				

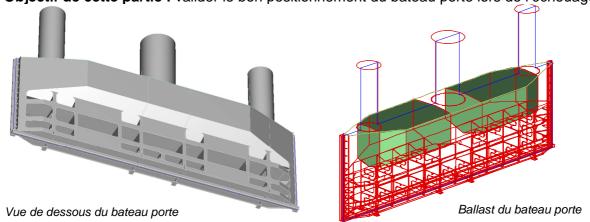

Le remorquage du bateau porte est réalisé en zone portuaire (eaux abritées) avec les différentes ouvertures fermées par un dispositif étanche pendant cette opération.

- Question 10: À partir des tables hydrostatiques du bateau porte (voir annexe 3 page 9/12), déterminer dans cette configuration le tirant d'eau et la position verticale du métacentre transversal (KMT).
- Question 11: En déduire la hauteur métacentrique transversale initiale.
- Question 12: À partir des tables pantocarènes du bateau porte (voir annexe 2 page 8/12), tracer, sur papier millimétré A4 horizontal, la courbe des GZ pour des angles entre 0 et 60° (avec un calcul tous les 10°).

On prendra pour échelle :

- abscisses: 3 cm pour 10 degrés; - ordonnées: 2 cm pour 0,1 m.
- Question 13: Vérifier les quatre critères de stabilité de la réglementation du Bureau Veritas (voir annexe 5 pages 11/12 et 12/12), et ce, sans prise en compte de neige ou de givrage.

Pour le calcul relatif au vent, la passerelle supérieure est considérée comme un treillis, les tourelles sont des éléments cylindriques et la coque est un élément plan (avec prise en compte des C_X spécifiques à chaque type d'élément).

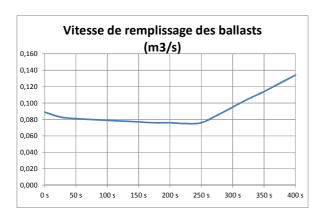


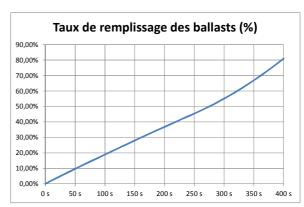
Question 14: Quel est l'intérêt d'utiliser, au point d) du texte réglementaire du Bureau Veritas (voir annexe 5 – pages 11/12 et 12/12), la comparaison au niveau des aires sous-tendues aux courbes ?

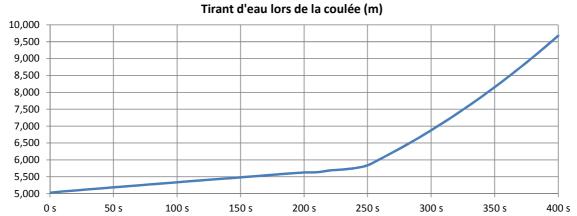
EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet Nº05ED19 - page 5/12

PARTIE III: Stabilité du bateau porte lors de l'échouage

Objectif de cette partie : valider le bon positionnement du bateau porte lors de l'échouage.


Pour cette partie, les caractéristiques du bateau porte lège lesté sont :


Déplacement	Position du centre de gravité						
Deplacement	LCG / milieu	TCG / Axe	VCG / 0H				
109,41 t	0, 000 m	0,000 m	3,686 m				


La hauteur d'eau au niveau du seuil où repose le bateau porte est à 7,520 m.

Une fois le bateau porte positionné au-dessus du seuil, il est ballasté grâce à l'ouverture de vannes en partie basse des deux ballasts.

Le remplissage des ballasts et l'évolution du tirant d'eau du bateau porte sont représentés par les courbes suivantes en tenant compte des diamètres des orifices.

Attention, les courbes présentées ne tiennent pas compte du seuil et des effets induits.

EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet N°05ED19 - page 6/12

Question 15 : À partir de la courbe ci-avant de l'évolution des tirants d'eau lors de la coulée, déterminer le temps approximatif que va mettre le bateau porte à toucher le seuil lors de la coulée.

À votre avis, pourquoi le tirant d'eau du bateau porte augmente-t-il plus rapidement après 250 secondes de coulée ?

- **Question 16:** À partir des tables hydrostatiques du bateau porte (voir annexe 3 page 9/12), déterminer le déplacement correspondant au tirant d'eau du seuil.
- Question 17 : À partir du déplacement calculé à la question 16, définir le pourcentage de remplissage des deux ballasts au moment où le bateau porte touche le seuil.
- Question 18: À partir des tables de remplissage des ballasts (voir annexe 4 page 10/12), calculer la position verticale du centre de gravité du bateau porte ballasté et en déduire la hauteur métacentrique corrigée des effets de carène liquide (GMT_C).

Lorsque le bateau porte aura touché le seuil, son tirant d'eau et son volume de carène ne vont plus évoluer, mais les ballasts vont continuer à se remplir.

La masse d'eau additionnelle va être reprise par une force verticale au niveau du seuil (effort d'échouage) que nous considérerons uniformément répartie.

Il est demandé de calculer l'influence de ce phénomène sur la stabilité du bateau et plus particulièrement sur la hauteur métacentrique corrigée des effets de carène liquide (GMT_c).

- Question 19: À partir des tables de remplissage des ballasts (voir annexe 4 page 10/12), calculer la masse du bateau porte et la position verticale de son centre de gravité avec les deux ballasts remplis à 80%.
- **Question 20 :** En déduire la résultante de l'effort vertical au niveau du contact entre le dessous du bateau porte et le seuil.
- **Question 21 :** Avec la prise en compte de l'effort vertical au niveau du seuil, calculer la hauteur métacentrique corrigée des effets de carène liquide (GMT_C) dans cette configuration.

Pour cela, il est nécessaire de considérer un ensemble « Bateau porte - Effort d'échouage » avec $\Delta_{\text{ensemble}} = \Delta_{\text{Bateau porte}}$ - F échouage et de calculer le nouveau centre de gravité comme barycentre de cet ensemble.

Question 22 : Que pouvez-vous en déduire et que préconisez-vous dans cette situation pour être sûr que le bateau porte appuie sur la feuillure à la fin de la mise en place ?

Annexe 1: RAPPELS DE CALCULS DE FORMES SIMPLES.

Rectangle:	Calcul de l'aire : A = a x b	Cacul de la position verticale du centre de surface / base : $z_G = b / 2$
Triangle:	Calcul de l'aire : A = a x h / 2	Cacul de la position verticale du centre de surface / base : $z_G = h \ / \ 3$
Trapèze:	Calcul de l'aire : A = h x (a + b) / 2	Cacul de la position verticale du centre de surface / base : $z_G = \frac{h \times (a + 2 \text{ b})}{3 \times (a + \text{b})}$

Annexe 2: TABLE DES PANTOCARÈNES DU BATEAU PORTE.

Cross Curves BP - Treport (PS Heel - Initial Trim: 0.000) page 3/4
AP @ -9.250, FP @ 9.250, K point @ 0.000, Add. Thickness: 0.000, Density: 1.0250, Length in m, Weight in t
Min Displacement: 100.000, Max Displacement: 120.00, Heel in degrees

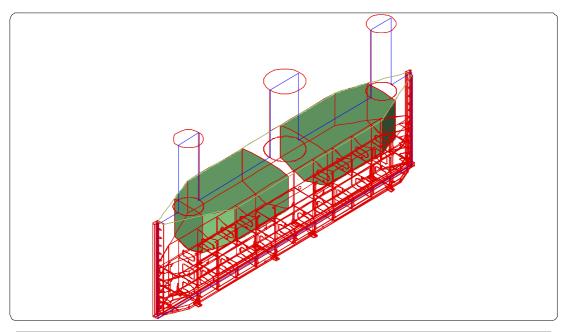
Displ.Mld	HAP	HFP	HMP	KN 5	KN 10	KN 15	KN 20	KN 25	KN 30	KN 40	KN 50	KN 60
100.00	4.857	4.857	4.857	0.354	0.710	1.063	1.410	1.752	2.081	2.679	3.174	3.567
102.00	4.894	4.894	4.894	0.356	0.713	1.067	1.415	1.758	2.086	2.682	3.179	3.576
104.00	4.930	4.930	4.930	0.357	0.716	1.070	1.421	1.763	2.090	2.685	3.184	3.585
106.00	4.967	4.967	4.967	0.359	0.718	1.074	1.426	1.768	2.093	2.687	3.189	3.594
108.00	5.003	5.003	5.003	0.360	0.721	1.078	1.431	1.773	2.097	2.689	3.194	3.602
110.00	5.040	5.040	5.040	0.361	0.724	1.082	1.436	1.777	2.100	2.691	3.198	3.610
112.00	5.077	5.077	5.077	0.363	0.726	1.087	1.441	1.781	2.103	2.693	3.203	3.619
114.00	5.113	5.113	5.113	0.364	0.729	1.091	1.445	1.784	2.106	2.695	3.207	3.627
116.00	5.150	5.150	5.150	0.366	0.732	1.095	1.449	1.787	2.108	2.697	3.210	3.635
118.00	5.186	5.186	5.186	0.367	0.735	1.099	1.453	1.790	2.110	2.699	3.214	3.643
120.00	5.223	5.223	5.223	0.368	0.738	1.103	1.456	1.792	2.112	2.701	3.218	3.651
(

EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet N°05ED19 - page 8/12

Annexe 3: TABLE DES HYDROSTATISQUES DU BATEAU PORTE.

 $\label{eq:hydrostatic Curves Forms: BP - Treport} $$AP @ -9.250, FP @ 9.250, VCG: 3.686, Density: 1.025, Trim: 0.000, Heel: 0.000°$

$\overline{}$										
	HMP BL	HAPIBL	HFP BL	DSPL	VOL	LCB	TCB	VCB	LCB F(%)	W.S. Area
	(m)	(m)	(m)	(t)	(m3)	(m)	(m)	(m)		(m²)
	, ,	` ′	, ,		` '	` '	, ,	` ′		, ,
1	5.000	5.000	5.000	107.81	105.18	0.000	0.000	3.714	50.00	706.14
2	5.200	5.200	5.200	118.75	115.85	0.000	0.000	3.842	50.00	726.35
3	5.400	5.400	5.400	129.69	126.53	0.000	0.000	3.965	50.00	746.60
4	5.600	5.600	5.600	140.63	137.20	0.000	0.000	4.084	50.00	766.86
5	5.800	5.800	5.800	149.50	145.85	0.000	0.000	4.179	50.00	871.27
6	6.000	6.000	6.000	151.15	147.46	0.000	0.000	4.198	50.00	874.85
7	6.200	6.200	6.200	152.80	149.07	0.000	0.000	4.219	50.00	878.29
8	6.400	6.400	6.400	154.44	150.68	0.000	0.000	4.241	50.00	881.73
9	6.600	6.600	6.600	156.09	152.29	0.000	0.000	4.265	50.00	885.17
10	6.800	6.800	6.800	157.74	153.89	0.000	0.000	4.290	50.00	888.61
(


	HMP BL	B² area	WPA	LCF	TPC	MCT	KMT	KML	T Inertia	L Inertia
	(m)	(m²)	(m²)	(m)	(t cm)	(t.m)	(m)	(m)	(m4)	(m4)
1	5.000	10.814	53.357	0.000	0.54691	0.62	4.161	14.266	47.038	1109.847
2	5.200	11.475	53.357	0.000	0.54691	0.62	4.248	13.421	47.038	1109.847
3	5.400	12.135	53.394	0.000	0.54729	0.64	4.337	12.762	47.039	1113.125
4	5.600	12.796	53.357	0.000	0.54691	0.65	4.427	12.174	47.038	1109.847
5	5.800	13.327	8.082	0.000	0.08284	0.16	4.192	5.682	1.886	219.162
6	6.000	13.327	8.040	0.000	0.08241	0.16	4.211	5.660	1.885	215.516
7	6.200	13.327	8.040	0.000	0.08241	0.16	4.231	5.664	1.885	215.516
8	6.400	13.364	8.040	0.000	0.08241	0.17	4.253	5.671	1.885	215.516
9	6.600	13.811	8.040	0.000	0.08241	0.17	4.277	5.680	1.885	215.516
10	6.800	14.258	8.040	0.000	0.08241	0.17	4.302	5.690	1.885	215.516

	HMP BL	HAP BL	HFP BL	DSPL	VOL	LCB	TCB	VCB	LCB F(%)	W.S. Area
	(m)	(m)	(m)	(t)	(m3)	(m)	(m)	(m)		(m²)
11	7.000	7.000	7.000	159.39	155.50	0.000	0.000	4.317	50.00	892.05
12	7.200	7.200	7.200	161.04	157.11	0.000	0.000	4.346	50.00	895.49
13	7.400	7.400	7.400	162.69	158.72	0.000	0.000	4.375	50.00	898.93
14	7.600	7.600	7.600	164.33	160.33	0.000	0.000	4.407	50.00	902.37
15	7.800	7.800	7.800	165.98	161.93	0.000	0.000	4.439	50.00	905.81
16	8.000	8.000	8.000	167.63	163.54	0.000	0.000	4.474	50.00	909.25
17	8.200	8.200	8.200	169.28	165.15	0.000	0.000	4.509	50.00	912.69
18	8.400	8.400	8.400	170.93	166.76	0.000	0.000	4.545	50.00	916.13
19	8.600	8.600	8.600	172.58	168.37	0.000	0.000	4.583	50.00	919.57
20	8.800	8.800	8.800	174.22	169.97	0.000	0.000	4.622	50.00	923.01

	HMP BL	B² area	WPA	LCF	TPC	MCT	KMT	KML	T Inertia	L Inertia
	(m)	(m²)	(m²)	(m)	(t cm)	(t.m)	(m)	(m)	(m4)	(m4)
11	7.000	14.706	8.040	0.000	0.08241	0.17	4.329	5.703	1.885	215.516
12	7.200	15.153	8.040	0.000	0.08241	0.18	4.358	5.717	1.885	215.516
13	7.400	15.600	8.040	0.000	0.08241	0.18	4.387	5.733	1.885	215.516
14	7.600	16.047	8.040	0.000	0.08241	0.18	4.419	5.751	1.885	215.516
15	7.800	16.494	8.040	0.000	0.08241	0.19	4.451	5.770	1.885	215.516
16	8.000	16.942	8.040	0.000	0.08241	0.19	4.485	5.791	1.885	215.516
17	8.200	17.391	8.040	0.000	0.08241	0.19	4.520	5.814	1.885	215.516
18	8.400	17.839	8.040	0.000	0.08241	0.20	4.557	5.838	1.885	215.516
19	8.600	18.288	8.040	0.000	0.08241	0.20	4.594	5.863	1.885	215.516
20	8.800	18.736	8.040	0.000	0.08241	0.21	4.633	5.890	1.885	215.516

EXAMEN : BTS C.I.C.N - Épreuve : U41 - Théorie du bateau - Sujet N°05ED19 - page 9/12

Annexe 4 : TABLE DES CAPACITÉS DU BATEAU PORTE.

ID:	Item:	Net Volume:	Baffles	: µin:	Weight:	LCG:	TCG:	VCG:	Max FSM:
		(m3)		(%)	(t)	(m)	(m)	(m)	(t.m)
Sea Water	r (density=1.025):								
	Ballast AR	43.400	0	95.0	44.485	-4.191	0.000	4.551	17.40
	Ballast AV	43.400	0	95.0	44.485	4.191	0.000	4.551	17.40
Total Sea	Water:	86.800			88.970	0.000	0.000	4.551	34.80
Total Tan	ks:	86.800			88.970	0.000	0.000	4.551	34.80

Table du ballast avant (ballast arrière symétrique / milieu du bateau)

Tank Capacity of 'Ballast AV', Content: Sea Water (1.0250), Raw Volume: 45.684 m3, Capacity: 43.400 m3

Trim = 0.000, Heel = 0.0°, Perm.: 95%, Max Weight: 44.485 t, LCG: 4.191 m, TCG: 0.000 m, VCG 4.551 m

Tank Bottom @ Z=3.097 m, Tank Top @ Z=5.798 m, No Tank Pipe

No baffle

								-
Filling	H/Botm	H/Top	Volume	Weight	LCG	TCG	VCG	FSMt
(%)	(m)	(m)	(m3)	(t)	(m)	(m)	(m)	(t.m)
0.00	0.000	2.701	0.000	0.000	0.000	0.000	0.000	0.00
0.93	0.150	2.551	0.403	0.413	4.320	0.000	3.199	0.49
3.71	0.300	2.401	1.611	1.651	4.320	0.000	3.298	3.64
8.31	0.450	2.251	3.607	3.697	4.307	0.000	3.397	11.30
10.00	0.492	2.209	4.340	4.449	4.294	0.000	3.424	13.01
14.32	0.600	2.101	6.216	6.371	4.261	0.000	3.492	17.40
20.56	0.750	1.951	8.922	9.145	4.235	0.000	3.577	17.40
26.79	0.900	1.801	11.628	11.919	4.221	0.000	3.657	17.40
33.03	1.050	1.651	14.335	14.693	4.212	0.000	3.736	17.40
39.26	1.200	1.501	17.041	17.467	4.207	0.000	3.813	17.40
45.50	1.350	1.351	19.747	20.241	4.202	0.000	3.890	17.40
50.00	1.458	1.243	21.700	22.243	4.200	0.000	3.945	17.40
51.74	1.500	1.201	22.453	23.015	4.199	0.000	3.966	17.40
57.97	1.650	1.051	25.160	25.789	4.196	0.000	4.042	17.40
64.21	1.800	0.901	27.866	28.563	4.194	0.000	4.117	17.40
70.44	1.950	0.751	30.572	31.336	4.193	0.000	4.193	17.40
76.68	2.100	0.601	33.278	34.110	4.191	0.000	4.269	17.40
82.91	2.250	0.451	35.985	36.884	4.190	0.000	4.344	17.40
89.15	2.400	0.301	38.691	39.658	4.189	0.000	4.419	17.40
95.38	2.550	0.151	41.397	42.432	4.188	0.000	4.495	17.40
98.00	2.635	0.066	42.532	43.595	4.190	0.000	4.527	7.55
99.98	2.700	0.001	43.391	44.476	4.191	0.000	4.551	0.10
99.98	2.701	0.000	43.393	44.478	4.191	0.000	4.551	0.06

EXAMEN: BTS C.I.C.N - Épreuve: U41 - Théorie du bateau - Sujet N°05ED19 - page 10/12

Annexe 5: EXTRAITS "NR183" DU BUREAU VERITAS.

Remorquage en mer des navires ou des unités flottantes.

Chapitre 3: Préparation au remorquage

3.21 Stabilité

La stabilité d'un navire remorqué est étudiée en tenant compte des exigences des autorités maritimes compétentes. À défaut de telles exigences, l'étude peut être réalisée comme suit :

. . .

§2 – L'unité remorquée est une barge, un ponton, etc...

La stabilité à l'état intact est étudiée en considérant l'unité chargée et lestée dans les conditions de remorquage.

Les effets de surface libre doivent être pris en compte dans les calculs.

Les courbes des bras de levier de redressement sont tracées pour les cas de chargement prévus.

La courbe du bras de levier inclinant sous l'action du vent est tracée à partir des calculs de la force et du moment dus au vent, donnés ci-dessous :

$L_{vent} = M_{vent} / (g \times 1000 \times \Delta)$ avec $F_{vent} = \frac{1}{2} C_X C_H \rho_{air} S V^2$ et $M_{vent} = F_{vent} \times (h + (T/2))$

L_{vent} bras de levier inclinant dû au vent, en mètre,

F_{vent} force du vent, en newton,

M_{vent} moment dû au vent, en newton mètre,

Δ déplacement du cas de chargement, en tonne,

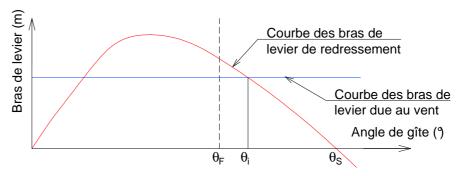
C_x coefficient de traînée (voir table 1),

C_H coefficient dépendant de la hauteur de la surface exposée (zone centrale) au-dessus du niveau de la mer (voir table 2),

 ρ_{air} masse volumique de l'air ($\rho_{air} \approx 1,22 \text{ kg/m}^3$),

S surface, en mètre carré, de l'élément projeté perpendiculairement au vent,

V vitesse du vent, en mètre par seconde,


h hauteur du centre de fardage à la flottaison, en mètre,

T tirant d'eau considéré, en mètre.

Les valeurs de la vitesse du vent à prendre en compte sont les suivantes :

- vent constant minimum de 36 m/s (70 nœuds) pour un remorquage avec limitation des conditions météorologiques,
- vent constant de 36 m/s (70 nœuds) avec des rafales à 51,5 m/s (100 nœuds) pour un remorquage sans limitation sur les conditions météorologiques,
- dans les eaux abrités, un vent minimum de 25,8 m/s (50 nœuds) peut être utilisé.

Le diagramme suivant doit être tracé :

EXAMEN : BTS C.I.C.N - Épreuve : U41 - Théorie du bateau - Sujet N°05ED19 - page 11/12

Les données sur l'enneigement ainsi que sur la formation possible de glace due au givrage sur les parties supérieures de l'unité remorquée doivent également être prises en compte. Le Bureau Veritas doit être informé de la possibilité de neige ou de glace lors du remorquage.

Les critères de stabilité à l'état intact sont :

- a) la hauteur métacentrique initiale avec la prise en compte des effets des carènes liquides ne doit pas être inférieure à 0,30 m;
- b) le bras de levier de redressement ne doit pas être nul pour un angle de gîte inférieur à 35 °(θ_s);
- c) l'aire totale sous-tendue par la courbe du bras de levier de redressement doit être au moins égale à 0,1 m.rad ;
- d) le rapport entre l'aire sous-tendue de la courbe du bras de levier de redressement en eau calme et l'aire sous-tendue de la courbe du bras de levier due au vent ne doit pas être inférieur à 1,4.

Pour cette comparaison, il est nécessaire de limiter les aires sous-tendues au plus petit des angles de la liste suivante :

- θ_i est l'angle correspondant à la deuxième intersection des deux courbes,
- θ_F est l'angle correspondant à l'envahissement d'un compartiment de flottabilité, et ce lorsque la ligne de flottaison coïncide avec une ouverture non munie d'un dispositif étanche aux intempéries,
- 50°.

TABLE 1 – COEFFICIENT C_x

Type d'élément	C _X
Élément plan	1,0
Élément sphérique	0,4
Élément cylindrique	0,5
Câble	1,2
Treillis	1,25
Élément exposé de renforcement	1,3
Petit élément exposé	1,4
Élément imposant et exposé	1,5

TABLE 2 – COEFFICIENT C_H

ſ j	
Hauteur vis-à-vis de la flottaison, en m	Сн
0 – 15,3	1,0
15,3 – 30,5	1,10
30,5 – 46,0	1,20
46,0 – 61,0	1,30
61,0 – 76,0	1,37
76,0 – 91,5	1,43
91,5 – 106,5	1,48