CORRECTION DU SUJET

Option B Électronique et Communications

Partie 1 Domaine Professionnel
Durée 4 h coefficient 3

PARTIE A

- **Q1**. Configuration 2. Le dôme caméra et laser ALS sont installés dans des zones géographiques différentes.
- Q2. Sur diagramme cas d'utilisation

Détecteur laser (1) carte LaserBoard (2) dôme caméra (3 ou 4) caméras fixe (3 ou 4)

- Q3. Laser classe 1 sans danger pour les personnes (aucune protection de l'œil).
- **Q4.** La période d'interrogation est de 400 ms, le temps de réaction du laser pour la détection d'intrusion est de 2 s. La période d'interrogation est donc inférieure au temps de réaction du laser (pas de risque d'oublier une intrusion).
- Q5. Liaison RS485 Half Duplex.
- Q6. Liaison RS485 Full Duplex.
- Q7. Document réponse :

Données intrusions : distance et angle ou range et azimut

Données pilotage caméra : Pan, Tilt, Zoom

PARTIE B

Q8. Document réponse :

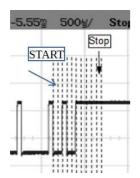
INTRUSION	Range ou	AZIMUT ou	Panoramique	Inclinaison
	distance en m	angle en °	pan en °	tilt en °
1	150	180	155,56	7,88
2	200	90	117,22°	7,26°
3 200		270	195,52°	15,03°

Q9. Durée d'un bit = $52 \mu s$ vitesse= 19 230 bits/s le protocole indique 19 200 bits/s.

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-pro 1 sur 6	
19SN4SNEC1-COR	Corrigé Domaine professionnel		

Q10. Document réponse

Octet 1 (Header tag)	Octet 2	Octet 3	Octet 4	Octet 5	Octet 6
	(Master Tag + lenght)	(Adress laser)	(Comman d)	(Additional Command)	(Check sum)
0X55	0x83	0x00	0x18	0x02	


Q11. Check sum : octet de contrôle de la transmission.

La somme des octets de la trame sur 8 bits

Q12. Check sum = 0x55 + 0x83 + 0x18 + 0x02 = 0xF2

Octet 1	Octet 2	Octet 3	Octet 4	Octet 5	Octet 6
(Header tag)	(Master Tag + lenght)	(Adress laser)	(Comman d)	(Additional Command)	(Check sum)
0X55	0x83	0x00	0x18	0x02	0XF2

Q13. Document réponse

Check sum (binaire):11110010 Check sum (hexadécimal): 0xF2

- Q14. Le huitième bit (MSB)de l'octet 2 est au NL1 donc l'émetteur est la carte LaserBoard et le récepteur le détecteur laser.
- Q15. Interrogation du laser (intruder detected).
- **Q16.** Length = 0x08 soit 8 octets.
- **Q17.** Trame de réponse du laser pour une intrusion.

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-pro 2 sur 6
19SN4SNEC1-COR	Corrigé Domaine professionnel	

Q18. Document réponse

Données Azimut

					Azth 7							Azth 0
0	1	0	1	1	1	0	1	1	0	0	0	0

Données range

Range	Range	Range	Range	Range	Range	Range	Range	Range	Range	Range
10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	1	1	1	1	

Q19. Distance => $0x2FF => 767 => (767 \times 200)/1023 = 149,95 \text{ m}$

Q20. Angle => $0x0BB8 => 3000 => (3000 \times 359,94)/5999 = 180°$

PARTIE C

Q21. Vitesse 2 400 bauds soit durée d'un bit = 417 μ s

Q22. 7 octets par donnée à piloter soit 3 x 7=21 octets.

Q23. 10 bits par octets soit 210 bits pour une commande du dôme

donc Tcommande= 210 x 417 μ s = 87,6 ms la commande est largement inférieure au temps de réponse du laser (2 s).

Q24. La valeur max de la donnée Pan est de 35 999, cette valeur est codée sur 16 bits qui permet de coder jusqu'à 65 535.

Q25. $155,56^{\circ} = 15556$ en décimal soit 0x3CC4 donc octet 5 = 0x3C et octet 6 = 0xC4.

Q26. Document réponse

4: command pan

<0xFF><0x01>< 0x00 >< 0x4B >< 0x3C >< 0xC4 ><0x4C>

PARTIE D

Q27. 4 couronnes pour les 32 secteurs, le secteur 21 se situe sur la couronne 3

Q28. Range = 1023 et azimut = 70 / 0.06 = 1 166

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-pro 3 sur 6
19SN4SNEC1-COR	Corrigé Domaine professionnel	

Q29. Document réponse

Nom des données	Contenu des données
Range	1023
Azimut	1166
Couronne	3
premier_secteur[couronne]	19
angle_secteur[couronne]	462
Secteur	21

Q30. 4 circuits MCP23S08 : 32 relais à piloter chaque circuit peut piloter 8 relais soit 4x8=32.

Q31. Liaison SPI.

Q32. Document réponse

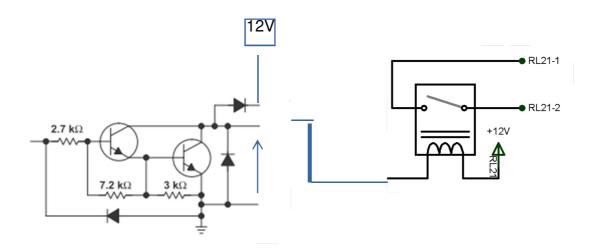
					A1	A0	R/W
0	1	0	0	0	1	0	0

Q33. Document réponse

	0x09	80x0
Device_Opcode	Adresse registre	Données du registre

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-pro 4 sur 6
19SN4SNEC1-COR	Corrigé Domaine professionnel	

Q34. Document réponse


wr MCP23S08 (0x44,0x09,0x08);

Q35. Le registre GPIO (affecter les sorties logiques du circuit)

Q36. La sortie GP3 = +5 V

Q37. Le bit HAEN doit être à '1' pour valider les adresses.

Q38. Q39. Document réponse

Q40 Tension bobine= 12 - VCEsat= 12-1,1 = 10,9 V

Q41. Must operate voltage = 75 % de 12 V => 9 V

la tension aux bornes de la bobine est supérieure à 9 V donc l'alimentation du relais est validée.

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-pro 5 sur 6
19SN4SNEC1-COR	Corrigé Domaine professionnel	

Sciences Physiques Correction

CORRECTION

Α	Amélioration du fonctionnement de la détection Laser	
Q42	λ = 905 nm > 800 nm : domaine = Infra Rouge	
Q43	On a 6000 pts de mesures pour un tour donc : $\phi = \frac{2.\pi}{6000} = 1$ mrad.	
Q44	Deux rayons de longueur R = 125 m séparés d'un angle ϕ = 1 mrad définissent l'arc \hat{A} = R. ϕ avec \hat{A} = 12,5 cm. Si un objet a une largeur inférieure à 13,1 cm, il ne sera pas atteint par deux rayons successif (12,5 cm accepté)	
Q45	Le retard entre le signal réel et le signal de référence vaut : $\Delta\theta = \frac{2.M2M}{c} \text{ (le signal de référence parcourt la distance } 2.OM à la vitesse c et le signal réel la distance 2.OM2) Application numérique : \Delta\theta = \frac{2\times25}{3\times10^{8}} = 166,7 \text{ ns.}$	
Q46	Voir document réponse DR-SP1.	
Q47	Le filtre est non-récursif puisque le calcul de y _n ne fait appel qu'aux échantillons d'entrée.	
Q48	Le filtre est stable puisque non-récursif (RIF).	
Q49	$y_0 = y_1 = y_2 = y_3 = y_4 = y_5 = y_6 = y_7 = 1/8$ pour n compris entre 0 et 7 puis $y_n = 0$ pour n > 7 Le filtre atténue et élargit l'impulsion.	
Q50	Voir document réponses DR-SP2	
Q51	Voir document réponse DR-SP3	
Q52	Le filtre numérique a permis de diminuer le nombre de fausses alertes en diminuant l'importance des petits objets.	

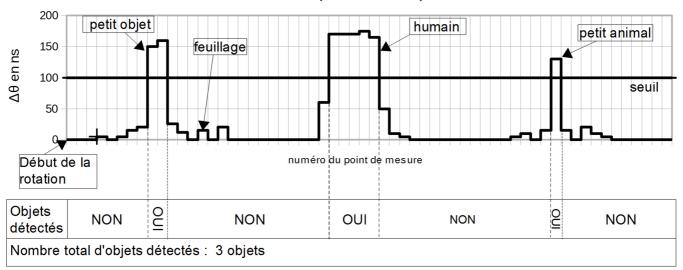
Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 1 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	

В	Analyse de la liaison RS485	
Q53	La ligne est adaptée donc $R_L = R_c = 120 \Omega$.	
Q54	Dans le système en fonctionnement, on veut un signal qui ne se réfléchit pas sur la charge.	
Q55	Avec les notations de la figure 5, $v_{mes} = \frac{200 \text{ m}}{980 \text{ ns}} = 2,04 \times 10^8 \text{ m.s}^{-1}$	
Q56	Le constructeur donne : $\frac{v_{constr}}{c}$ = 66%, ce qui donne v_{constr} = 1,98×10 ⁸ m.s ⁻¹	
Q57	Ecart relatif en % : 100 × v _{mes-Vconstr} v _{constr} Valeur numérique : 3%, ce qui veut dire que la mesure correspond bien à la valeur donnée par le constructeur puisque cet écart est inférieur à 5% (critère du cahier des charges).	
Q58	$A_{dB} = 20 \times log(\frac{10.01}{6.4}) = 3.94$ dB. Le constructeur donne 1,97 dB pour L = 100 m, ce qui fait $A_{constructeur} = 2 \times 1.97$ = 3,94 dB pour 200 m.	
Q59	Si on place en entrée un signal sinusoïdal d'amplitude $\hat{Ve} = 4 \text{ V}$, on obtiendra donc une amplitude du signal de sortie de : $\hat{Vs} = 2,54 \text{ V}$ puisque : $\hat{Vs} = 10^{-3.96} \times \hat{Ve}$	
Q60	Critère 1 : le temps de parcours des 200 m est largement inférieur à 1 s (980 ns). Critère 2 : si le signal d'entrée varie entre -4 V et +4 V, le signal de sortie va varier entre -2.54 V et +2.54 V d'après la question Q62. L'écart est de 5 V, supérieur à 4 V. Critère 3 : les caractéristiques constructeur (vitesse et atténuation) sont validées à moins de 5 % près. Les trois critères sont donc vérifiés.	
Q61	Le temps Δt correspond à la propagation du signal sur une distance 2.D avec la vitesse v_{constr} . On a donc : $2 \times D = \Delta t \times v_{constr}$. La valeur numérique de D est : D = 144,5 m.	
Q62	Le défaut est un court-circuit puisque le signal réfléchi et le signal incident sont de signes contraires (le coefficient de réflexion est négatif).	

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 2 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	

С	Transmission Radio du signal PTZ.			
Q63	La fréquence porteuse du canal n°3 est de f _{P3} = 2,43 GHz.			
Q64	Les fréquences porteuses de 2 canaux adjacents sont séparées de 10 MHz, ce qui limite l'encombrement spectral de chaque canal à BW _{max} =10 MHz si on veut éviter le chevauchement de deux canaux successifs.			
Q65	La modulation qui correspond au diagramme de constellation est la BPSK. On a deux points à la même distance du centre et qui représentent deux signaux déphasés de π .			
Q66	Pour cette modulation, on a deux points seulement, donc deux symboles et 1 bit par symbole.			
Q67	Voir document réponses DR-SP4 : f _{P3} = 2,43 GHz.			
Q68	Voir document réponses DR-SP4 : BW = 18 kHz.			
Q69	La largeur du lobe principal vaut : BW = $2 \times R$. Comme on a 1 bit/symbole, la relation entre D et R est D = R. Voir document réponses DR-SP4 pour les valeurs numériques avec unités.			
Q70	On a BW = 18 kHz << BW _{max} = 10 MHz.			
Q71	« 9 dB Directional Antennas » sur la figure 9 ou par lecture sur le diagramme de directivité, les antennes ont un gain maximal de 9 dBi par rapport à l'antenne isotrope.			
Q72 Voir document réponses DR-SP5				
Q73	Portée théorique : plus que 2500 pieds, soit plus que : 762 m (= $2500 \times 0,3048$). C'est supérieur à la longueur de transmission L = 200 m.			

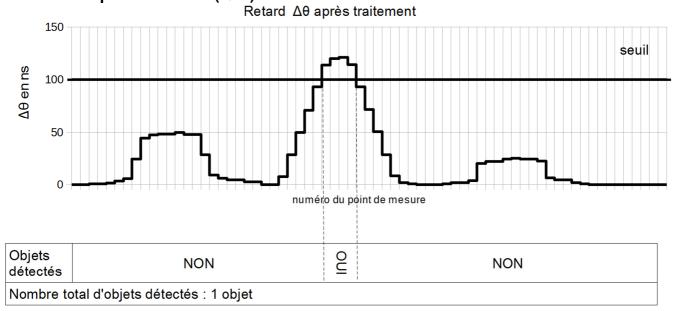
Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 3 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	


Q74	$P_{E}(dBm) = 10 \times log \left(\frac{65.10^{-3}}{10^{-3}}\right) = 18,1 \ dBm.$ $P_{RMini} = S_R + 15dB$ $A_P = P_E(dBM) + G_E - (G_R + P_{RMini})$ $Voir document réponses DR-SP6 pour les valeurs de A_P et P_{Rmini}.$ $Avec la valeur de A_P on trouve d_{max} = \frac{10^{\frac{A_P \cdot 32,4}{20}}}{1} = 2 \ km$ $Valeur supérieure aux 200 m nécessaires.$	
-----	---	--

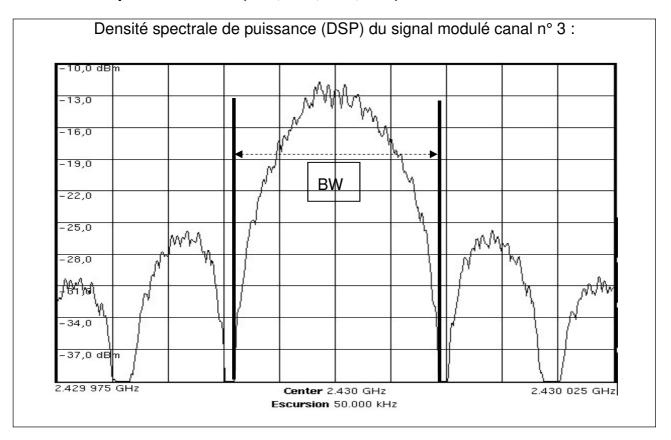
Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 4 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	

Corrigé des documents réponse de Sciences Physiques.

Document réponse DR-SP1 (Q46)

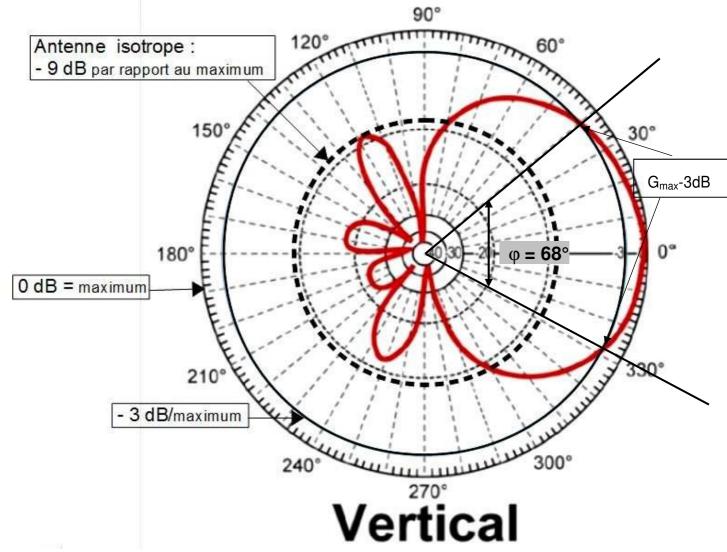

Retard $\Delta\theta$ (sans traitement).

Document réponse DR-SP2 (Q50)


n	0	1	2	3	4	5	6	7	8	9	10
$\{x_n\}$	0	0	0	5	0	5	15	20	150	160	25
{y _n }	0	0	0	0,625	0,625	1,25	3,125	5,625	24,375	44,375	47,5

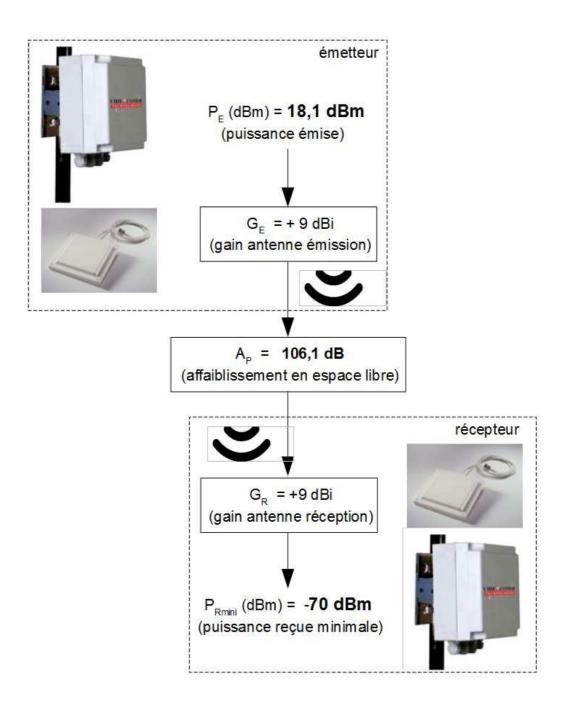
Document réponse DR-SP3 (Q51)

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 5 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	


Document réponses DR-SP4 (Q65, Q67, Q68, Q69)

f _{p3} = fréquence de la porteuse du canal n°3 (en GHz) :	2,430
BW = encombrement spectral (en kHz) :	18
R = débit des symboles :	9 kbaud
D = débit binaire :	9 kbit.s ⁻¹

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 6 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	


Document réponses DR-SP5 (Q71, Q72)

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 7 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	

Document réponses DR-SP6 (Q74)

Bilan de liaison à compléter :

Session 2019	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 8 sur 9
19SN4SNEC1-COR	Sciences Physiques - Corrigé	