BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE

SESSION 2019 Épreuve E.4.2

Moulinage fils textiles "IFFC"

Dossier réponses

Ce dossier est à rendre agrafé avec une copie

Il contient les documents réponse à compléter, pour lesquels les repères sont les mêmes que les questions correspondantes au dossier présentation-questionnement.

DREP1.	LISTE DES CÂBLES	2
DREP2.	CHOIX DES MATÉRIELS DÉPART MOTEUR	3
DREP3.	SCHÉMA DE PUISSANCE ET RENVOIS DE FOLIOS – QUESTION B2.1	4
DREP4.	RACCORDEMENT XPS AC, KAS1, KAZ1, P1 – QUESTION B2.2	4
DREP5.	CONFIGURATION DU MESUREUR D'ÉNERGIE WM12 - MODULE M71	5
DREP6.	CONFIGURATION Z-10-D-OUT	6
DREP7.	SCHÉMA DE BRANCHEMENT DU MESUREUR WM12 – QUESTION C1.3	7
	TRADUIRE UN EXTRAIT DE L'ALGORITHME DANS LE LANGAGE LADDE (VOIR QUESTION C.2.4).	

Tableau 1 : Calculs des besoins en câbles (A.1.1)

Raccordement des 12	2 unités de production (UP) au tableau de distribution (TD3)
TD3 jusqu'à l'UP	Longueur du câble(m)
M51-52	
M53-54	
M55-56	
M57-58	
M59-60	
M61-62	
M63-64	
M65-66	
M67-68	
M69-70	
M71-72	
M73-74	

Longueur totale (1)

Tableau 2 : récupération des câbles en minimisant les chutes de câbles (A.1.4)

Liste des câbles récupérés		UP	Long	UP	Long	Chute de câbles
N° Câble Long (m)						
1	90	M73-M74	90			
2	95	M57-M58	50	M55-M56	45	
3	100	M71-M72	85			
4	105	M65-M66	70	M51-M52	35	
5	115	M61-M62	60	M59-M60	55	
6	120	M69-M70	80	M53-M54	40	

Totaux (2) 625 Total (3) Total (4) Total (5)

Remarque : le tableau 2 propose déjà une solution pour une utilisation des câbles récupérés dans l'usine démantelé. Le câble 6, par exemple, est coupé en deux tronçons pour permettre l'alimentation de deux UP.

Tableau 3 de récapitulation (A.1.5)

Récapitulation (longueurs exprimées en m)									
Longueur totale (1) Récupérées (2) Utilisées (3+4) Longueur de câble à acheter Chute de câbles									

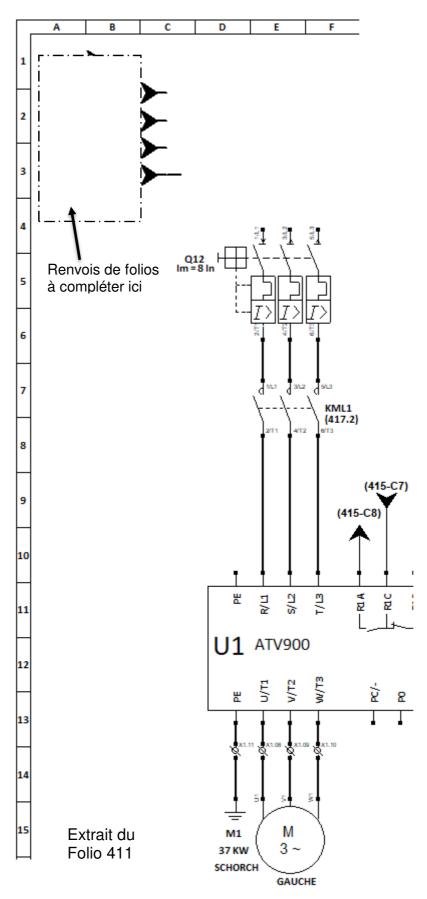

DREP2. Choix des matériels départ moteur

Tableau 1 : Principales caractéristiques du moteur SCHORCH (B.1.1)

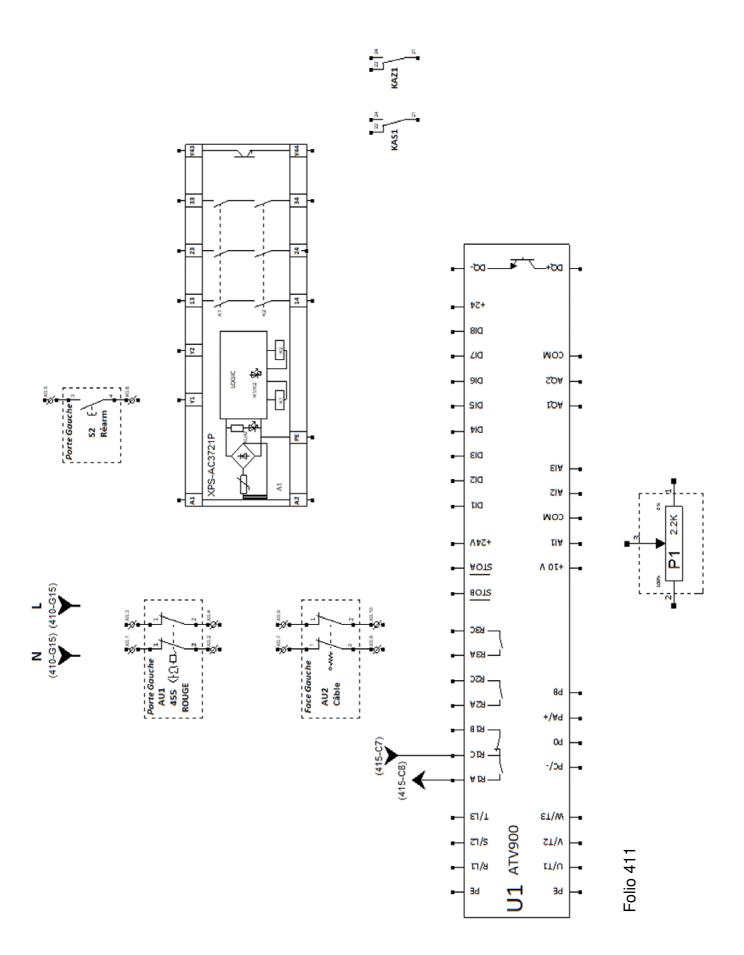

Référence	Pn (kW)	In (A)	N (tr/min)	I _A /I _N	M _A /M _N
KA7-225S-BB011	37				

Tableau 2 : Choix du variateur, appareil de commande de protection et filtre (B.1.2)

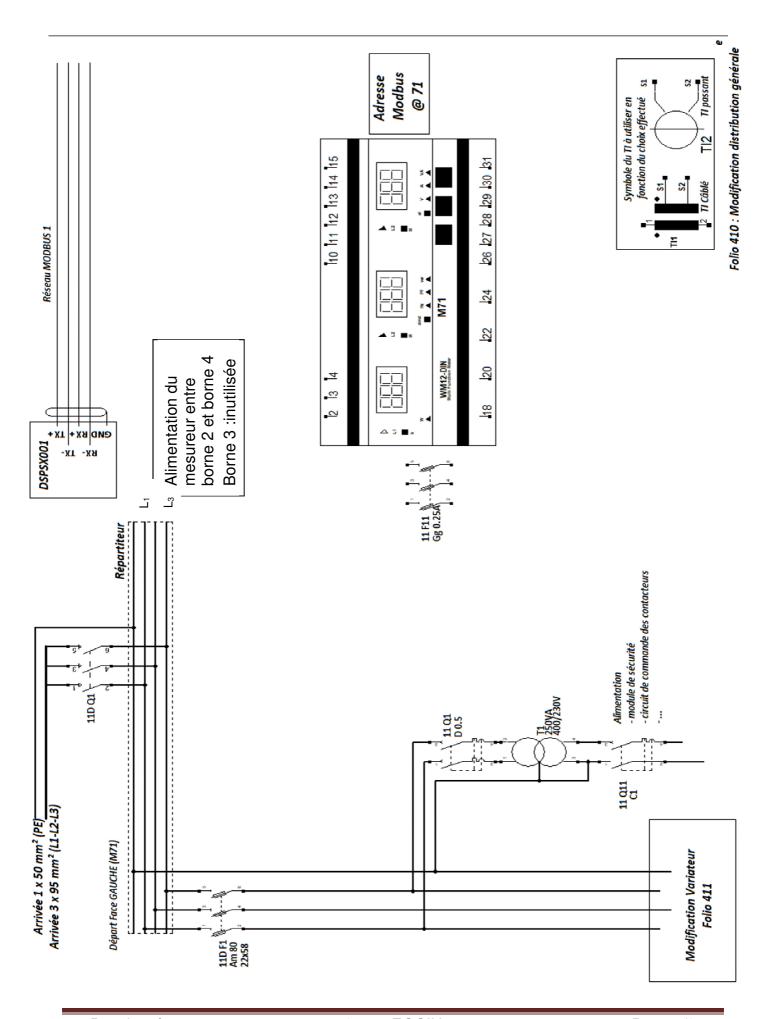
Variateur ATV900	Protection par disjoncteur	Commande par contacteur

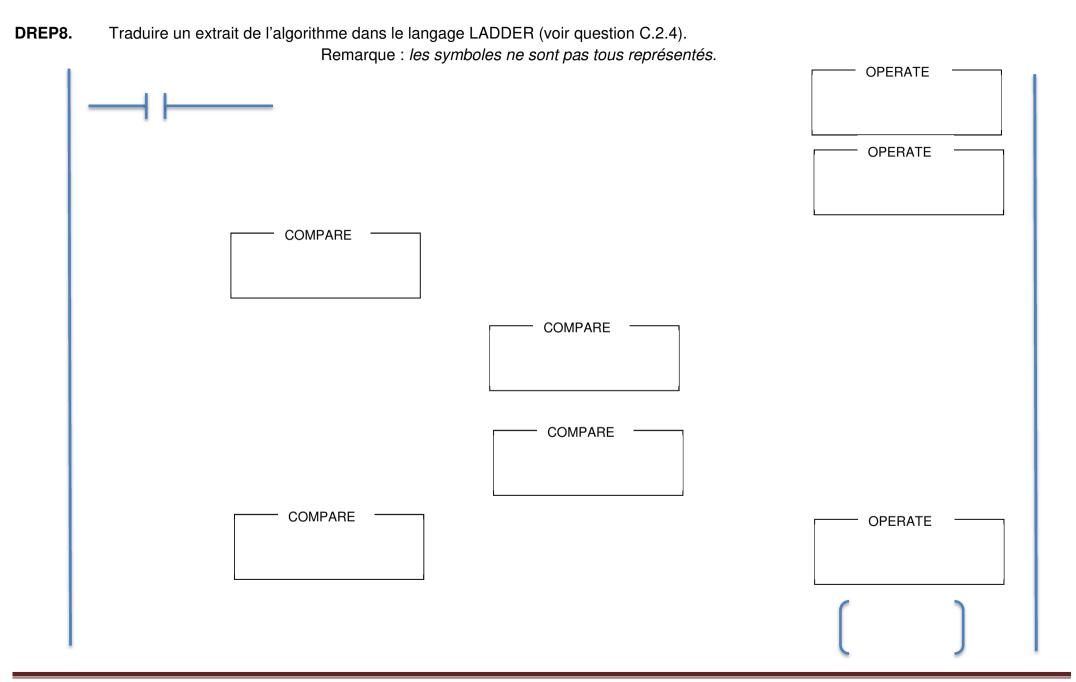
DREP4. Raccordement XPS AC, KAS1,KAZ1, P1 – Question B2.2

DREP5. Configuration du mesureur d'énergie WM12 - module M71

Fonction	Désignation	Valeurs possibles				Valeur			
Baud	Vitesse maximale	-							
SYS	Système électrique	3P	3P+N	3P A					
Ct.r	Rapport de transformation (courants)		0	à 999					
Ut.r	Rapport de transformation (tensions)		1.0	à 99.9	١				
Pi.t	Temps d'intégration Puissance	1 à 30 min			1				
Fis	Filtre numérique		1 à 100 %			1 à 100 %			1
Fic	Coefficient du filtre	1 à 16			1				
AL	Alarme Haute (V LN)	0 à pleine échelle			248 V				
AL	Alarme Basse (V LN)	0 à pleine échelle			208 V				
AL.n	Alarme courant neutre	0 à 6 (Ct.r = 1)			1A				
Adr	Adresse port série MODBUS	1 à 255							

DREP6. Configuration Z-10-D-OUT


Configuration des DIP-SWITCHES du Z-10-D-OUT (C.2.3)


Doo	Baı	uds	Adresse				Term.			
Pos	1	2	3	4	5	6	7	8	9	10
ON										
OFF										

Noircir la case ON ou OFF, en fonction de la configuration. Dans la documentation du Z-10-D-OUT un point indique ON.

Remarque : une installation Modbus RS485 2 fils standard a une topologie de type bus et est constituée d'une paire de fils équilibrés pour la transmission des données et d'un fil "Commun" servant de référence de potentiel.

Les 2 extrémités du bus doivent être rebouclées par l'intermédiaire d'une **terminaison de ligne** constituées d'une résistance de 120 ohms.

