BTS CONCEPTION ET RÉALISATION DE

SYSTÈMES AUTOMATIQUES

E51 CONCEPTION DÉTAILLÉE D'UNE CHAÎNE FONCTIONNELLE

2018

SUJET

Durée: 4 h 00 Coefficient: 3

L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé.

Ce document comporte 23 pages, numérotées de 1/23 à 23/23. Dès que ce document vous est remis, assurez-vous qu'il est complet

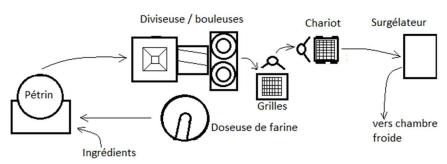
2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 1 / 23

Présentation générale

Introduction

SPAL PIZZA est une PME qui réalise différents produits surgelés pour les professionnels de la restauration :

- des boules de pâte à pizza appelées "pâtons" ;
- des fonds de pizza vierges (pâtes étalées sans garniture) ;
- des fonds de pizza tomatés.



SPAL PIZZA produit 6 formats de pâtons, de masses et de dimensions différentes : 160 g, 180 g, 200 g, 350 g, 560 g et 900 g.

Les diamètres évoluent de 68 mm à 122 mm pour une hauteur respective de 51 à 81 mm. La pâte est constituée principalement de farine, d'eau, d'huile végétale et de levure.

Description de la ligne actuelle de production de pâtons

Après pétrissage, une diviseuse découpe la pâte en deux morceaux identiques. Ces morceaux de pâte sont ensuite acheminés par un tapis roulant vers deux bouleuses. Chaque bouleuse met en forme le morceau de pâte pour obtenir un pâton globalement sphérique.

Pâton

Schéma vu de dessus de la ligne actuelle.

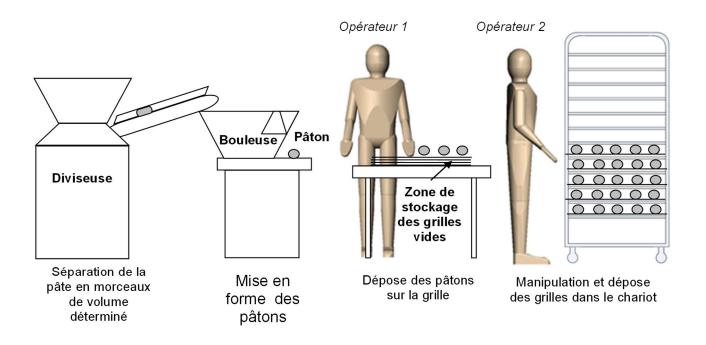
La diviseuse et les 2 bouleuses fonctionnent en continu. Une bouleuse forme un pâton toutes les 2,9 s soit 1 240 pâtons par heure. La cadence globale de la ligne actuelle est donc de 2 480 pâtons par heure.

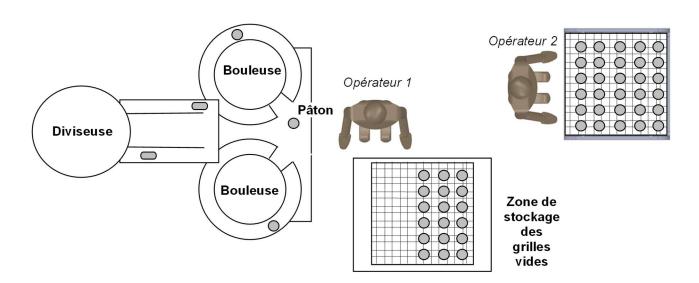
Cette cadence élevée nécessite la présence de deux opérateurs.

Un premier opérateur (« opérateur 1 ») prend les pâtons pour les disposer sur une grille. La disposition des pâtons sur la grille est spécifique pour chacun des six formats.

Lorsque la grille est pleine, un deuxième opérateur (« opérateur 2 ») prend la grille et la range dans un chariot. Une fois le chariot plein, le deuxième opérateur déplace le chariot pour le mettre dans des surgélateurs où les pâtons seront congelés à cœur en quelques minutes.

Une fois la surgélation terminée, le deuxième opérateur sort le chariot, retire chacune des grilles et verse les pâtons dans un carton qui sera stocké en chambre froide.


Opérateur 1 : dépose des pâtons

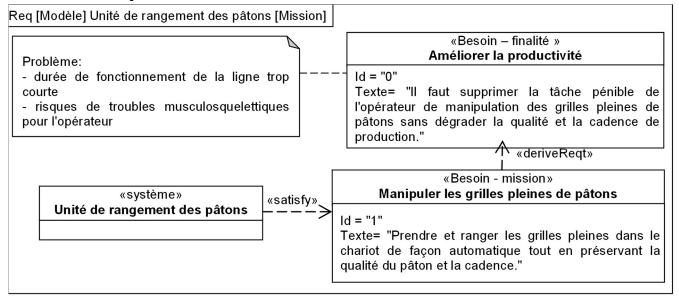


Opérateur 2 : rangement des grilles pleines

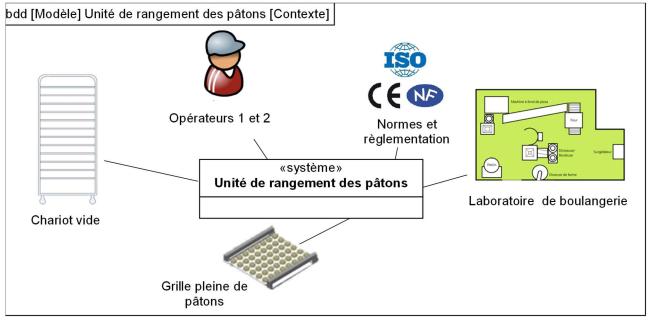
2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 2 / 23

Schéma de l'installation

Besoin

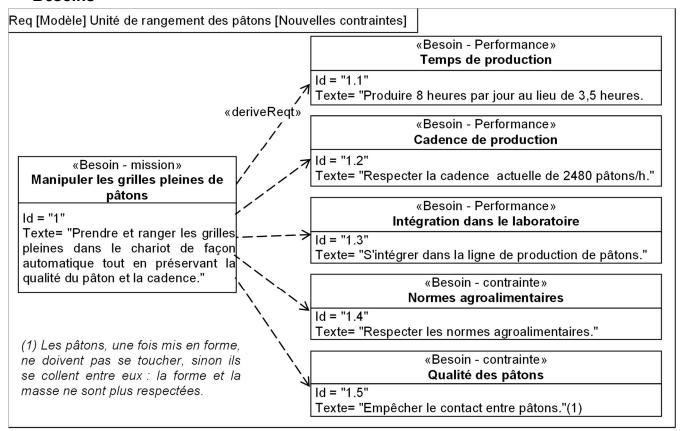

Les tâches de manipulation des grilles pleines sont pénibles. L'entreprise ne peut faire fonctionner cette ligne que 3,5 heures par jour compte-tenu de cette pénibilité.

L'entreprise souhaite donc investir dans une machine permettant le rangement automatique des grilles dans le chariot.

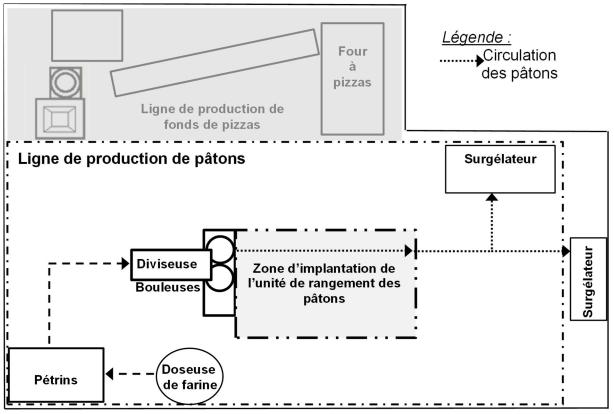

2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 3 / 23

Étude proposée :

Mission du système



Contexte du système en phase d'exploitation

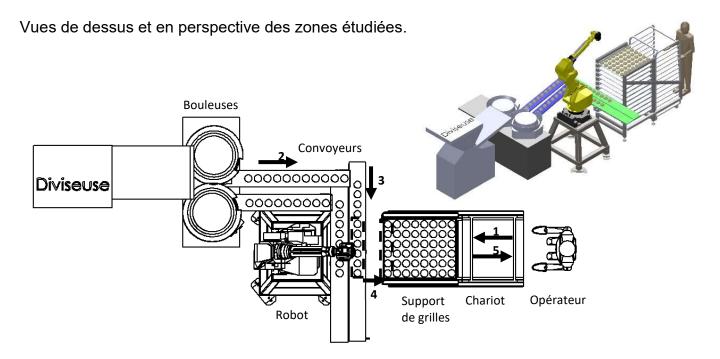


2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 4 / 23

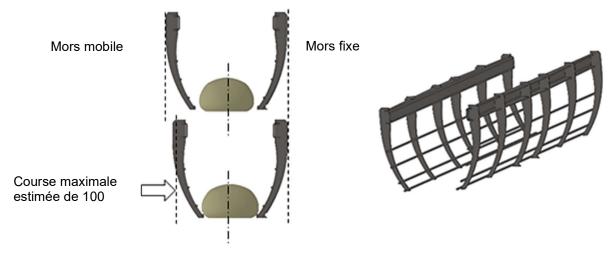
Besoins

Implantation de l'unité de rangement des pâtons dans le laboratoire de boulangerie

2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 5 / 23


Étude du préhenseur pour la manipulation des pâtons

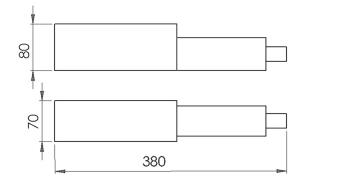
Mise en situation

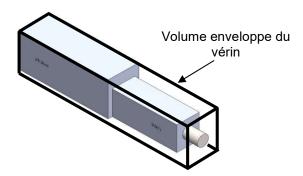

La conception préliminaire a permis d'aboutir à la solution suivante :

- un opérateur place le chariot rempli de grilles vides contre le support de grilles. Il pousse chacune des grilles dans le support (repère 1). Ensuite il met l'unité de rangement de pâtons en fonctionnement. La diviseuse et les 2 bouleuses forment les pâtons. Deux convoyeurs assurent le transport (repère 2) et la constitution d'une rangée de pâtons (repère 3). Un robot prend et dispose une rangée de pâtons sur la grille (repère 4). Une fois la grille pleine, le robot la repousse vers le chariot (repère 5).

Le cycle continue jusqu'à ce que toutes les grilles soient pleines et repoussées dans le chariot. L'unité de rangement s'arrête. L'opérateur retire le chariot plein et l'emmène dans le surgélateur.

Un préhenseur spécifique permettant la manipulation d'une rangée de pâtons est conçu. Il est constitué de deux mors réglables en écartement (un fixe et un mobile), qui épousent la forme des différents formats de pâtons.




2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 6 / 23

Un actionneur électrique (vérin) est choisi afin de pouvoir gérer les positions des mors.

Principe de fonctionnement du préhenseur

Pour une course donnée, le fournisseur du vérin électrique donne son encombrement minimum :

Une première solution consiste à implanter le vérin dans le sens du mouvement des mors.

Question 1 (sur le document-réponse n° 1)

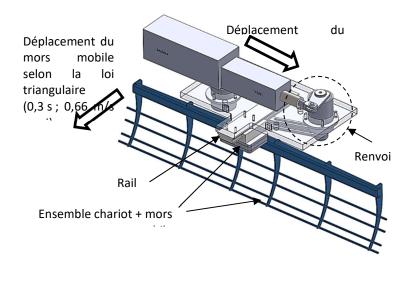
Proposer une implantation du vérin en dessinant le volume enveloppe sur les vues fournies, représentant les situations extrêmes du préhenseur. Cette solution est-elle envisageable ? Justifier la réponse.

Pour éviter les collisions entre le vérin et le reste du système, une seconde solution consiste à implanter le vérin perpendiculairement au mouvement du mors mobile. Un renvoi d'angle assure la transmission de mouvement, pour que la pince se ferme lorsque la tige du vérin sort.

Question 2 (sur le document-réponse n° 2)

Compléter le schéma cinématique de principe du renvoi d'angle en représentant la transmission du mouvement entre le renvoi d'angle et le mors mobile.

Dimensionnement du vérin électrique


L'objectif est de déterminer les caractéristiques du vérin et de le choisir dans la gamme du fournisseur.

L'étude est réalisée dans le cas extrême : la pince effectue sa course maximale, de 100 mm, en partant de la position ouverte au maximum, à la position fermée pour le plus petit format de pâton.

Ce mouvement de fermeture est réalisé en 0,3 s selon une loi triangulaire de vitesse maximale 0,66 m/s, comme présentée sur les documents ressources n°1a-1b.

Le mors mobile est monté sur une glissière constituée d'un chariot et d'un rail fixe.

Le mouvement du vérin électrique est transmis au chariot et donc au mors mobile par l'intermédiaire d'un système de renvoi d'angle.

2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 7 / 23

L'ensemble chariot et mors mobile a une masse de 3 kg.

Une maquette numérique a permis de réaliser une simulation mécanique dont les résultats sont fournis sur les documents ressources n° 1a et n° 1b.

Question 3 (sur le document-réponse n° 2)

À partir des documents ressources n° 1a et n° 1b, relever l'effort maximal exercé par le vérin pendant le mouvement.

Question 4 (sur le document-réponse n° 2)

Indiquer le(s) paramètre(s) à modifier pour diminuer l'effort maximal du vérin relevé précédemment.

Question 5 (sur le document-réponse n° 2)

À partir des documents ressources n° 1a et n° 1b, relever la course et la vitesse maximale du vérin.

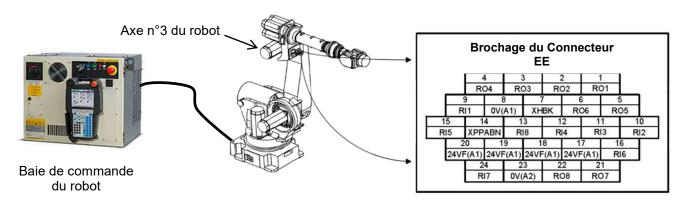
Le fournisseur propose les vérins type LEY X5, gamme de vérins étanches au ruissellement et à la poussière (équivalent IP 65).

Cette gamme de vérins, présentée sur le document ressources n° 2, se décline en 2 tailles : taille 25 et taille 32, avec plusieurs pas de vis.

Question 6 (sur le document-réponse n° 2)

Justifier pourquoi il est nécessaire de choisir la gamme LEY X5.

Question 7 (sur le document-réponse n° 2)


À partir du document ressources n° 2, choisir le modèle du vérin avec sa course, et justifier votre réponse.

Choix du contrôleur pour le vérin électrique

Le robot est relié à sa baie de commande à l'aide d'un câble électrique via un connecteur situé sur sa base.

Un second connecteur (nommé EE) situé sur l'axe n° 3 permet de relier les entrées et sorties du contrôleur du vérin à celles de la baie. Un câble interne au robot relie ces deux connecteurs afin d'éviter sa dégradation s'il était à l'extérieur.

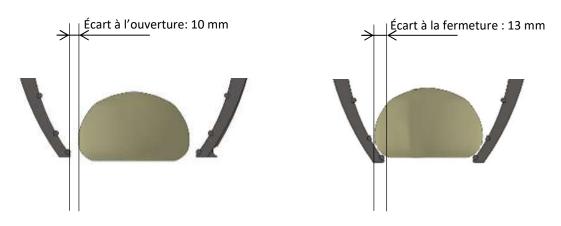
Ces entrées/sorties se nomment RI et RO pour Robot Input et Robot Output.

La configuration du connecteur est établie par le fabricant du robot et est non modifiable. Elle est présentée sur le document ressources n° 3.

2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 8 / 23

Le contrôleur du vérin électrique du préhenseur sera fixé solidement sur l'axe n° 3 du robot et relié au connecteur EE par un câble de longueur 1,5 m.

Le contrôleur choisi est le modèle LECP6. Il peut être en PNP ou en NPN. Le document ressources n° 4 présente le câblage dans les 2 cas.


Question 8 (sur le document-réponse n° 3)

À partir des documents ressources n° 3 et 4, donner la référence complète du contrôleur du vérin.

Pour obtenir un déplacement du vérin électrique, la baie de commande envoie l'ordre de déplacement et le code de la position à atteindre au contrôleur du vérin. Le vérin se déplace et lui renvoie l'information « position atteinte ».

Le connecteur EE a un nombre limité d'entrées sorties. Il faut vérifier qu'il permettra la transmission de toutes les positions du vérin.

Les différents diamètres de pâtons sont donnés dans le tableau sur le document-réponse n° 3. Des essais ont permis de définir les écarts utiles par rapport au diamètre du pâton lorsque la pince est ouverte, puis fermée. Ces valeurs permettent une prise correcte du pâton sans dégrader les pâtons adjacents lors de la dépose.

Question 9 (sur le document-réponse n° 3)

Compléter le tableau en calculant l'écartement des mors pour les différents formats de pâtons, pour les 2 cas : pince ouverte et pince fermée.

Les contraintes matérielles imposent que le codage de la position à atteindre se limite à 3 fils (sorties RO1, RO2 et RO3). Le codage des positions du mors mobile est effectué en binaire pur.

Question 10 (sur le document-réponse n° 3)

Déterminer le nombre maximal de positions pouvant être codées. Proposer des groupements de positions sachant qu'un écart inférieur à 6 mm entre 2 positions permet de considérer qu'elles sont identiques. Conclure quant à la faisabilité de coder les positions sur 3 fils.

2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 9 / 23

Câblage du contrôleur du vérin électrique

Les documents ressources n° 5a et n° 5b présentent le principe de câblage du contrôleur du vérin.

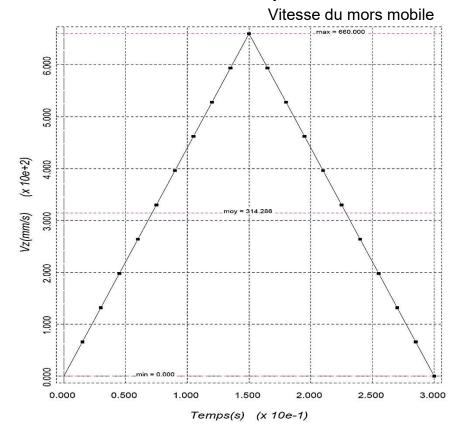
Question 11

À l'aide des documents ressources n° 5a et 5b, compléter sur le document réponses n° 4 les liaisons électriques d'alimentation du contrôleur sans les entrées de déblocage.

Question 12 (sur le document-réponse n° 4)

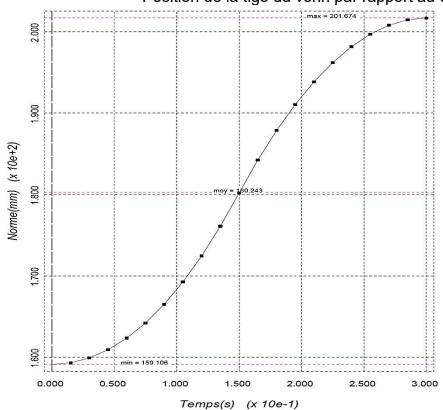
À l'aide des documents ressources n° 5a et 5b, schématiser le câble de liaison entre le contrôleur et le moteur. Écrire le repère des connecteurs sur le câble (repères A, C, D) et représenter par une flèche la liaison entre le câble et les connecteurs (suivre l'exemple du connecteur d'alimentation).

Montage des mors de la pince


Pour respecter les contraintes d'hygiène de l'industrie agroalimentaire, les mors doivent être régulièrement démontés pour être nettoyés et désinfectés dans un bain javellisé.

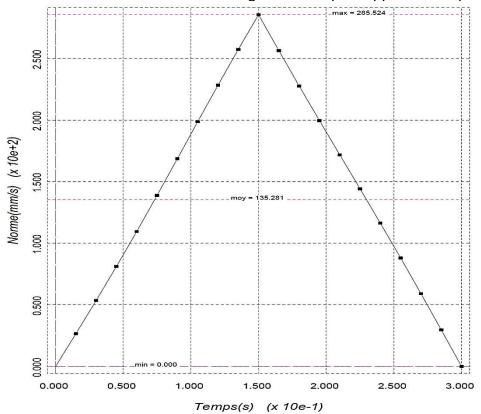
Question 13 (sur le document-réponse n° 5)

Représenter une solution technique pour assembler le mors mobile sur le chariot. Pour assurer le démontage rapide et sans outil, utiliser la goupille d'arrêt autobloquante présentée sur le document ressources n° 6. Compléter les deux vues nécessaires à la compréhension.

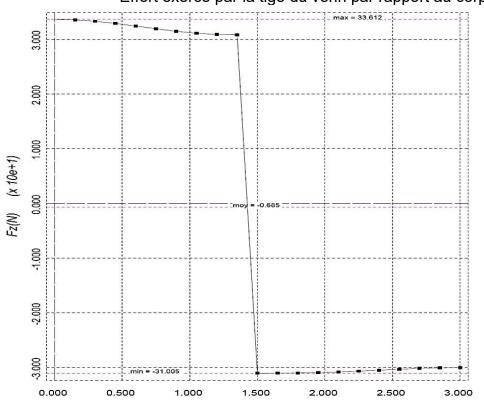

2018	BTS - Conception et réalisation de systèmes automatiques		SUJET	
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 10 / 23

Résultats de la simulation mécanique lors de la fermeture de la pince

Temps(s)	Vz(mm/s)
0.000	0.000
0.015	66.000
0.030	132.000
0.045	198.000
0.060	264.000
0.075	330.000
0.090	396.000
0.105	462.000
0.120	528.000
0.135	594.000
0.150	660.000
0.165	594.000
0.180	528.000
0.195	462.000
0.210	396.000
0.225	330.000
0.240	264.000
0.255	198.000
0.270	132.000
0.285	66.000
0.300	0.000


Position de la tige du vérin par rapport au corps du vérin

Temps(s)	Norme(mm)
0.000	159.106
0.015	159.305
0.030	159.905
0.045	160.913
0.060	162.341
0.075	164.201
0.090	166.503
0.105	169.254
0.120	172.453
0.135	176.092
0.150	180.160
0.165	184.219
0.180	187.846
0.195	191.046
0.210	193.829
0.225	196.197
0.240	198.150
0.255	199.681
0.270	200.785
0.285	201.451
0.300	201.674


2018	BTS - Conception et réalisatio	SUJET		
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 11 / 23

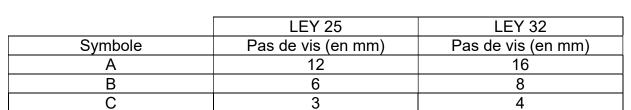
Vitesse de la tige du vérin par rapport au corps du vérin

Temps(s)	Norme(mm/s)	
0.000	0.000	
0.015	26.589	
0.030	53.545	
0.045	81.165	
0.060	109.604	
0.075	138.835	
0.090	168.631	
0.105	198.602	
0.120	228.289	
0.135	257.305	
0.150	285.524	
0.165	256.380	
0.180	227.695	
0.195	199.571	
0.210	171.830	
0.225	144.181	
0.240	116.318	
0.255	88.002	
0.270	59.117	
0.285	29.713	
0.300	0.000	

Effort exercé par la tige du vérin par rapport au corps du vérin

Temps(s)	Fz(N)
0.000	33.612
0.015	33.522
0.030	33.264
0.045	32.871
0.060	32.396
0.075	31.899
0.090	31.444
0.105	31.085
0.120	30.864
0.135	30.797
0.150	-31.005
0.165	-30.980
0.180	-30.962
0.195	-30.905
0.210	-30.795
0.225	-30.640
0.240	-30.458
0.255	-30.277
0.270	-30.123
0.285	-30.021
0.300	-29.985

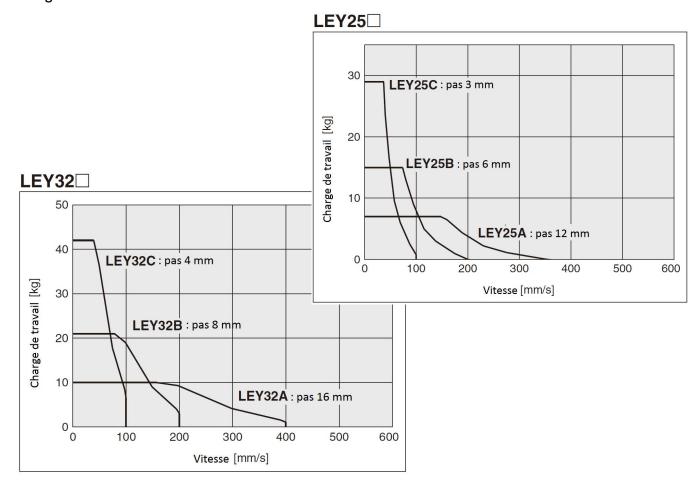
Temps(s) (x 10e-1)

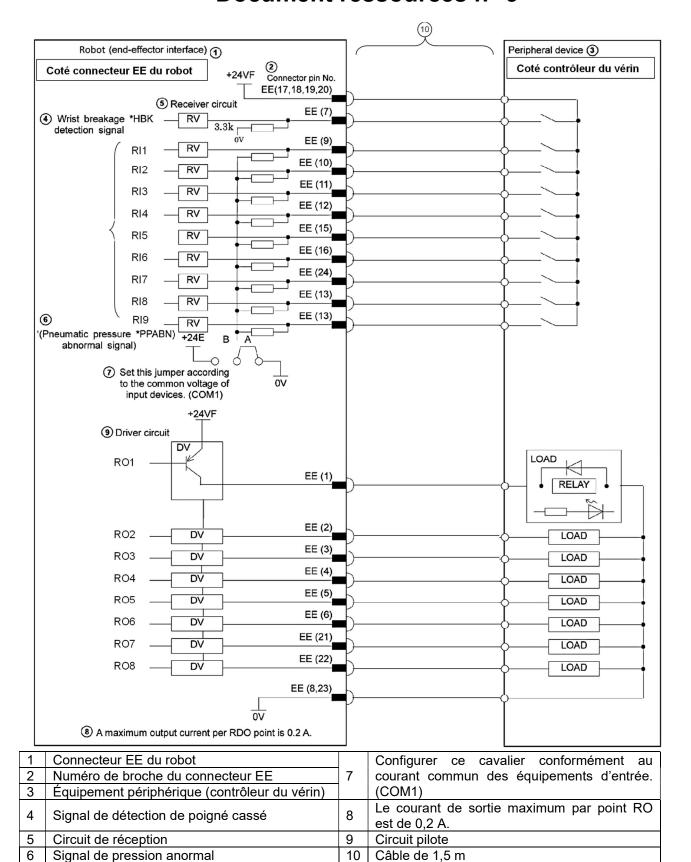

2018	BTS - Conception et réalisatio	SUJET		
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 12 / 23

Présentation de la gamme de vérins électriques LEY X5

Modèles LEY X5, vérins étanches au ruissellement et à la poussière (équivalent IP 65)

Entraînement par système vis – écrou anti rotation.

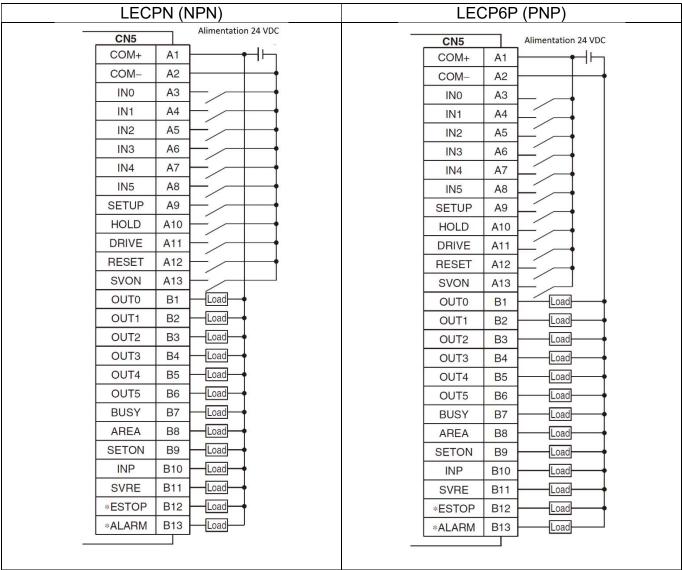

Deux modèles : taille 25 et taille 32, avec plusieurs pas de vis :


Courses disponibles:

Codioco dioponio	.00 .										
Courses	30	50	100	150	200	250	300	350	400	450	500
standard (mm)											
LEY 25	X	Х	Х	Χ	Х	Χ	Χ	Х	Х		
LEY 32	Х	X	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	X

Charges et vitesses de travail admissibles :

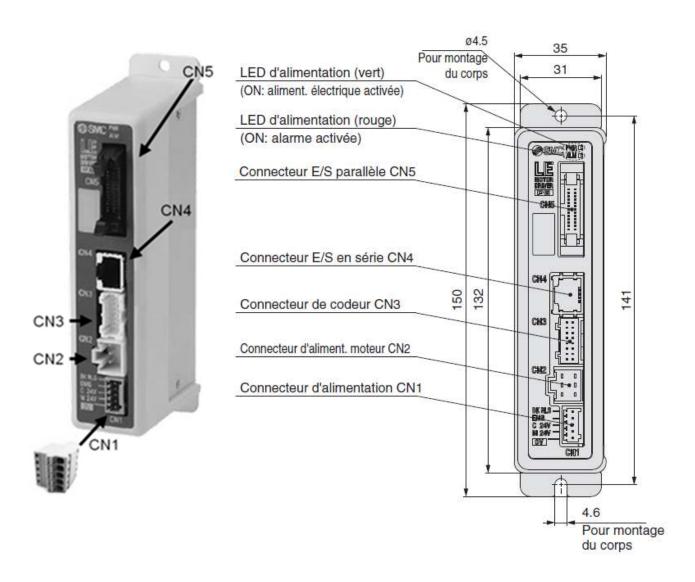
2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 13 / 23


Principe de connexion du connecteur EE

Le cavalier n° 7 permet de configurer le commun des entrées sur 0V ou +24V. Sur le schéma, la configuration représentée est celle du +24V (pour les entrées).

2018	BTS - Conception et réalisatio	SUJET		
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 14 / 23

Modèles du Contrôleur du vérin électrique LECP6


Principaux signaux d'entrées sorties

Signaux d'entrée					
COM+	À connecter au + 24 V				
COM-	À connecter au 0 V				
INO à	Codage de la position				
IN5					
SETUP	Instruction de retour à l'origine				
HOLD	Instruction d'arrêt du				
	mouvement en cours				
DRIVE	Instruction de déplacement				

	Signaux de sortie				
OUT0	à	Renvoie le code de la position			
OUT5					
BUSY		Indique lorsque le vérin bouge			
SETON		Indique lorsque le retour à l'origine			
		est effectué			
INP		Indique que la position est atteinte			

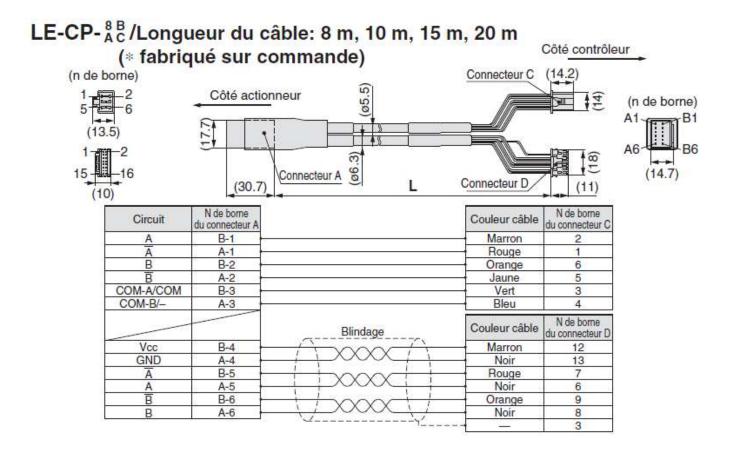
2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 15 / 23

Description des différents connecteurs du contrôleur LECP6



Connecteur CN1

Connecteur d'alimentation : CN1 * Le connecteur d'alimentation est un accessoire.

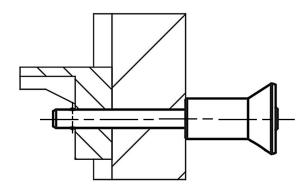

Borne du connecteur d'alimentation CN1 pour LECP6 (contact Phoenix FK-MC0.5/5-ST-2.5)

Nom de la borne	Fonction	Fonctions en détails
OV	Entrée commune (-)	Les bornes M24V/C24V/EMG/BK RLS sont commun négatif (-)
M24V	Alimentation moteur (+)	Alimentation du moteur (+)
C24V	Alimentation de commande (+)	Alimentation de la commande (+)
EMG	Arrêt (+)	Entrée (+) de déblocage de l'arrêt d'urgence
BK RLS	Déverrouillage (+)	Entrée (+) de déblocage au frein

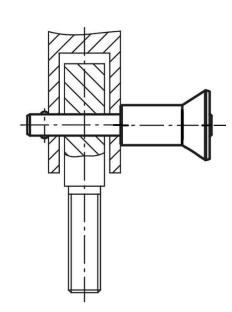
2018	BTS - Conception et réalisatio	SUJET		
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 16 / 23

Câble de liaison entre le contrôleur LECP6 et le moteur

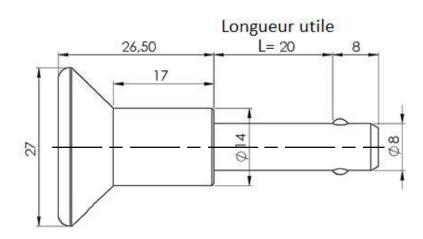
2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 17 / 23


Goupille d'arrêt autobloquante en acier inoxydable

Description:

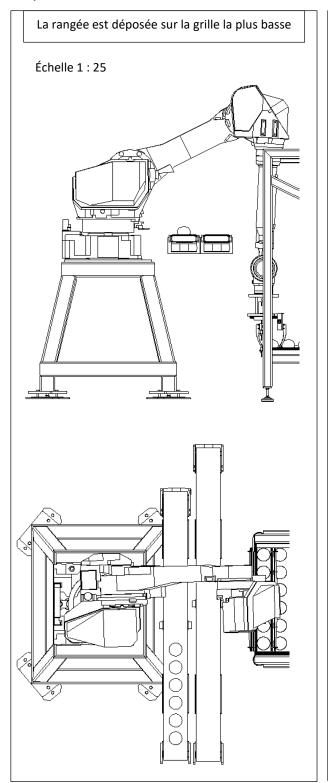

Les goupilles d'arrêt sont utilisées pour la fixation et l'assemblage simples et rapides d'éléments et pièces. Un appui sur le bouton pression permet de déverrouiller les deux billes et donc de désolidariser les pièces. En relâchant le bouton pression, les billes se bloquent et permettent un assemblage sûr et indémontable.

Elles résistent à la corrosion.



Exemples de montage

Dimensions du modèle de goupille choisi :

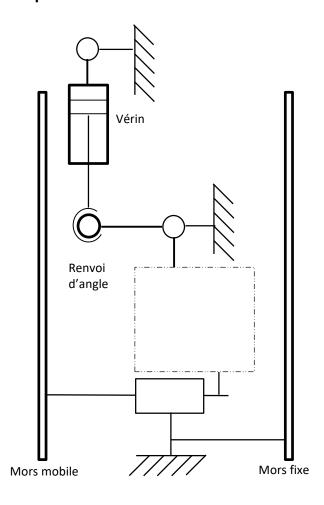


Longueurs utiles L disponibles : 10 / 15 / 20 / 25 / 30 / 35 / 40 / 45 / 50 mm

2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 18 / 23

Document-réponse n° 1 Principe de fonctionnement du préhenseur

Question 1



2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 19 / 23

Document-réponse n° 2

Question 2 - Schéma à compléter

Questions 3, 4 et 5

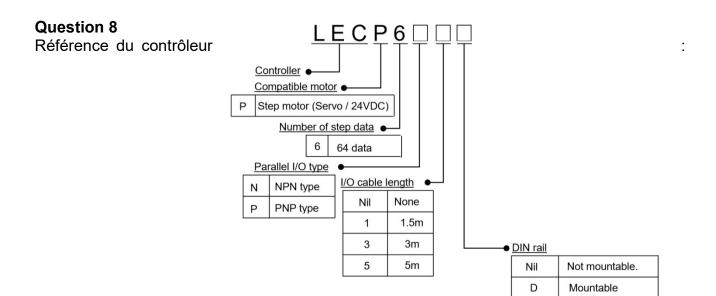
Effort maximal exercé par le vérin :

Paramètres permettant de diminuer l'effort :

Course du vérin :

Vitesse maximale du vérin :

Questions 6 et 7


Justification gamme LEY X5:

Modèle du vérin choisi et course :

Justification:

2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 20 / 23

Document-réponse n° 3 Référence du contrôleur du vérin électrique

Positions des mors du préhenseur

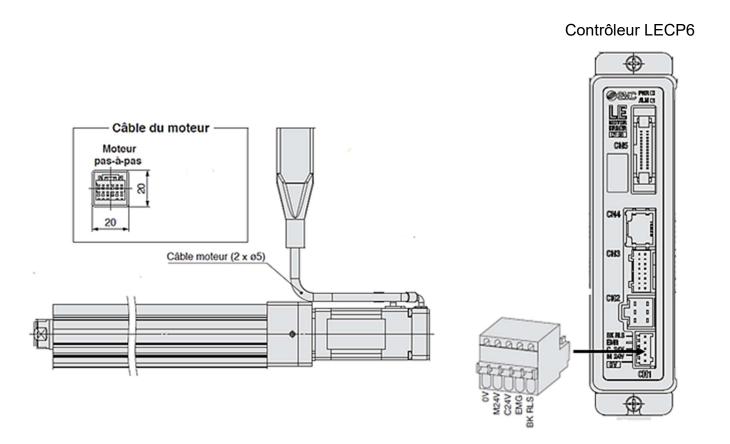
Question 9

Diamètre des pâtons (mm)	Écartements des mors			
	Pince ouverte (mm)	Pince fermée (mm)		
68				
72				
74				
90				
108				
122				

Question 10

Nombre maximal de positions :

Groupements:

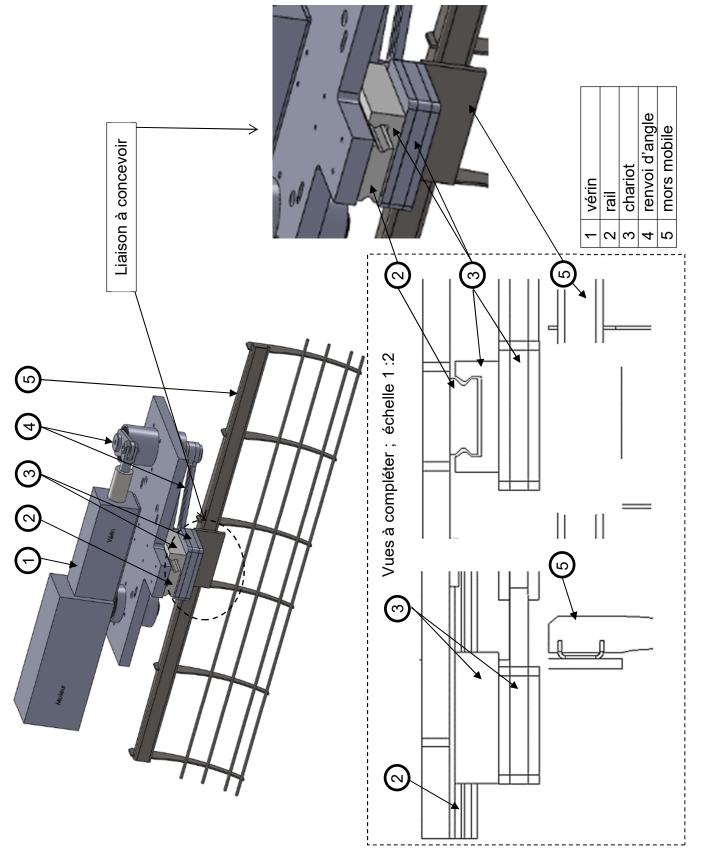

Conclusion

2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 21 / 23

Document-réponse n° 4 Câblage du contrôleur du vérin électrique

Questions 11 et 12

À compléter :



+ 24Vcc	
0\/	

	2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
18-CS	id 18A E5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 22 / 23

Document-réponse n° 5 Montage du mors mobile du préhenseur

Question 13

2018	BTS - Conception et réalisation de systèmes automatiques			SUJET
id 18A 18-CSE5CCF-ME-1	E51 – Conception détaillée d'une chaîne fonctionnelle	Coefficient : 3	Durée : 4 h 00	Page 23 / 23